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We describe an approximate quantum mechanical picture of hadrons
in Minkowski space in the context of a renormalization group procedure
for effective particles (RGPEP) in a light-front Hamiltonian formulation
of QCD. The picture suggests that harmonic oscillator potentials for con-
stituent quarks in lightest mesons and baryons may result from the gluon
condensation inside hadrons, rather than from an omnipresent gluon con-
densate in vacuum. The resulting boost-invariant constituent dynamics
at the renormalization group momentum scales comparable with ΛQCD,
is identified using gauge symmetry and a crude mean-field approximation
for gluons. Besides constituent quark models, the resulting picture also
resembles models based on AdS/QCD ideas. However, our hypothetical
picture significantly differs from the models by the available option for a
systematic analysis in QCD, in which the new picture may be treated as a
candidate for a first approximation. This option is outlined by embedding
our presentation of the crude and simple hadron picture in the context of
RGPEP and a brief outlook on hadron phenomenology. Several appendices
describe elements of the formalism required for actual calculations in QCD,
including an extension of RGPEP beyond perturbation theory.
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1. Introduction

The glaring contrast between the simplicity of the constituent quark
model (CQM) classification scheme for hadrons in particle data tables [1]
and the many complexities and subtleties of QCD has not been resolved
since quarks were proposed to explain hadrons [2] and QCD was proposed
as a theory of strong interactions [3, 4, 5]. This contrast can be illustrated
by the simplicity of attempts to build relativistic quark models, where one
introduces harmonic oscillator potentials [6], in comparison with the com-
plexity of QCD sum rules [7], in which even the state without any hadron,
i.e., vacuum, is meant to contain a complex structure. The complex struc-
ture is reflected in the concept of condensates.

(1933)
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The vacuum structure in quantum field theory (QFT) eludes theorists [8]
despite the fact that they have a complete command of perturbative calcu-
lations. For example, in the case of QCD, theorists can use asymptotic
freedom [9,10] to calculate quark and gluon scattering amplitudes but they
also have to use a parton model [11] to relate their calculations to observ-
ables. The point is that the mechanism of binding of partons continues to
be a mystery. The mystery is understood in principle as related to the com-
plex features of the theory that lie beyond reach of perturbative approaches.
Regarding these complex features, palpable progress in calculating hadronic
masses is achieved using lattice formulation of QCD [12,13]. However, so far
it is not clear how to use QCD for producing quark and gluon wave functions
of hadrons in the Minkowski space and thus provide a picture of hadrons of
comparable precision to the picture of atoms achieved in QED.

In this situation, it is interesting to note that there exists a formulation
of QCD which uses Dirac’s light-front (LF) form of Hamiltonian dynamics
[14, 15] and does not introduce any complex vacuum structure [16]. How
could then the LF formulation of QCD produce the effects that in other
approaches are associated with the concept of a complex vacuum state, in-
cluding effects associated with spontaneous symmetry breaking or the gluon
condensate? Ref. [16] points out that an effective Hamiltonian expected to
result from a renormalization group analysis of the canonical LF Hamilto-
nian of QCD with all counterterms that are necessary for stabilizing the
analysis, may contain new terms that provide such effects.

Here it is argued that the renormalization group procedure for effec-
tive particles (RGPEP, see Sec. 2) provides a new way of thinking about
light quarks in LF QCD. In this new way, the harmonic oscillator poten-
tials, previously associated in Ref. [17] with a gluon condensate in vacuum,
can be interpreted as coming from the gluon content of a hadron rather
than a vacuum. Previous reasoning in Ref. [17] was developed using the
instant form [14] of dynamics, i.e., the standard Hamiltonian evolution in
time. Now, the possibility of considering harmonic oscillator potentials for
light quarks at distances comparable with the characteristic size of hadrons,
meant here to be equivalent to the distances on the order of 1/ΛQCD in the
RGPEP scheme, is pointed out using a decomposition of hadronic states
into the LF Fock space components, i.e., states obtained from empty vac-
uum using creation operators defined in the LF quantization of fields rather
than the standard canonical quantization of the instant form. These Fock
components contain various numbers of virtual effective particles whose in-
teractions depend on the renormalization group scale in the RGPEP scheme.
The scale is denoted by λ. One can think about λ as having dimension of
momentum. Low-energy features of light states in QCD made of light quarks
are expected describable using an effective Hamiltonian that corresponds to
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λ comparable with ΛQCD. Readers interested in the details of RGPEP that
are already known in the case of heavy quark dynamics, can consult Ref. [18],
where an approximate QCD calculation of masses of heavy quarkonia is de-
scribed. Here only the case of light quarks is discussed.

According to Ref. [19], if gluon condensate effects are coming from the
gluon content of hadrons rather than a vacuum1, one can avoid the prob-
lem of an excessively large vacuum energy density in cosmology. However,
the new reasoning presented here does not deal with cosmological issues.
Instead, this article explains how the mean-field mechanism that was de-
scribed in Ref. [17] can be reinterpreted in the context of RGPEP in QCD.
In the mechanism in Ref. [17], the gluon condensate meant to exist in a vac-
uum provided harmonic oscillator potentials for constituent quarks in light
mesons and baryons. The potentials agreed with known phenomenologi-
cal CQMs [21,22,23] when the expectation value of the gluon field strength
squared was equated to the vacuum gluon condensate value used in the QCD
sum rules [7]. It is argued below that it was not necessary to assume, as it was
done in Ref. [17], that the gluonic expectation value came from the empty
vacuum. The point of view developed here is that the gluon expectation
value might be coming from the content of a hadron itself, and the relevant
content can in principle be identified in LF QCD using RGPEP. Potentially
broad implications of such change in interpretation are not discussed here.
The hypothesis put forward in this article requires a considerable amount of
work to verify and it would be premature to draw broad conclusions before
relevant RGPEP calculations are completed.

The calculations described here arrive at similar harmonic potentials to
those found in Ref. [17] but in a different way and with a significantly dif-
ferent interpretation. Namely, instead of starting from the non-relativistic
(NR) Schrödinger equation and gluon vacuum condensate, one starts from
the LF QCD Hamiltonian eigenvalue equation for mesons and baryons.
Canonical quark and gluon field operators are formally transformed using
RGPEP to effective operators at the running cutoff scales that are compa-
rable with ΛQCD. Using color gauge invariance principle, together with a
mean-field approximation that still needs justification and is not verified yet
by a rigorous ab initio calculation, one arrives at the eigenvalue equations in
which expectation values of effective gluon fields are evaluated in a gluonic
component of hadronic states rather than in the vacuum. The gluonic com-
ponent is postulated to be universal. Then, using new relative momentum
variables, one obtains LF wave functions that describe the relative motion
of hadronic effective constituents in a boost-invariant way. In summary, the
reasoning described here implies a relativistic picture of hadrons in which

1 The quark condensate has also been suggested to originate in hadronic content instead
of a vacuum [20].
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the same harmonic oscillator potentials that agree with CQMs phenomenol-
ogy may result from the gluon content of hadrons in LF QCD rather than
from the vacuum per se.

It should be clarified that harmonic potentials among effective con-
stituents in lightest hadrons apply in a situation where color charges are
close to each other. If they were separated by a distance considerably larger
than the size of a light hadron, their invariant mass would increase con-
siderably due to the potential. Interactions other than the potential term
alone would be activated, able to create additional particles and changing
the dynamics, perhaps including a string of effective gluons.

The new way of thinking about effective, low-energy dynamics of light
quarks, introduced here through the RGPEP, differs from the strategy de-
scribed in Ref. [16] in several ways besides identification of vacuum-like ef-
fects. The new elements that are extensively discussed in the following sec-
tions include: the dynamical transformation from bare to effective particles
of size s = 1/λ, construction of the corresponding effective fields, possibility
of using NR approximation at small λ, identification of effective interactions
through gauge symmetry (instead of introducing an entirely ad hoc poten-
tial), extension beyond perturbation theory, and invariance with respect to
7 kinematical LF symmetries.

It follows from the RGPEP that the low-energy (actually, small invariant
mass) LF dynamics of quarks should include a gluon component. We use a
mean-field approximation to show that such gluon component may provide
expectation values of the type that is associated with vacuum in the instant
form of quark dynamics. As a result, the first-approximation potential for a
LF mass-squared operator of quarks at small λ is obtained in the form of a
quadratic function of distances among the effective quarks, not a linear one.
Note, however, that the LF operator where the quadratic potential enters
is mass squared. This means that, for a large distance between static con-
stituents, the mass squared is proportional to the distance squared. This in
turn means that the mass is proportional to the distance. Thus, the LF os-
cillator potential actually corresponds to a linear potential in a conventional
way of thinking in terms of Hamiltonians in the instant form of dynamics.

This new feature of the LF oscillator potential was entirely absent in
the Ref. [17], which introduced the oscillator potential only in the instant
form of dynamics. Therefore, although the introduction of the mean-field
approximation in the LF mass-squared operator at small λ shares the step of
evaluating expectation values of the gluon field with Ref. [17], the state that
provides the expectation value is quite different and the interpretation of the
potential is quite different. In addition, the introduction of the potential in
the LF mass-squared operator requires new relative momentum variables for
constituent quarks in mesons and baryons, and the required LF definitions
are provided in the text.
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A surprising new outcome of the present article is that the new variables
used to define the effective LF oscillator potential correspond to the variables
that Brodsky and Teramond used to show how AdS/QCD ideas may be
incorporated in the LF dynamics [24, 25, 26], including the soft-wall model
oscillator potential [27]. The present reasoning suggests that the coefficient
of the SW-model oscillator potential in Brodsky–Teramond holography may
be identified with the condensate of gluons inside hadrons.

Most importantly, however, the LF Hamiltonian formulation of QCD
must include an ab initio renormalization group procedure. This is a nec-
essary condition for the whole theory to become well-defined and for the
issue of effective gluon expectation values in hadronic states to become well-
posed. The whole RGPEP scheme is further required for carrying out more
detailed calculations than the crude mean-filed ones described in this article.
The more detailed calculations are required to verify the extent to which the
heuristic picture of quarks oscillating in the mean-field of hadronic gluons
may be a good approximation to a full solution for light mesons and baryons
in LF QCD. The complexity of the required scheme and the need for placing
the discussion of gluon condensation within the scheme of RGPEP, are the
actual reasons for a considerable length of this article.

The article is organized in the following way. Section 2 describes the
concept of effective particle in the context of RGPEP and explains why
the vertex form factors (denoted by fλ) eliminate changes of the number
of massive virtual effective particles. This feature is required for thinking
that a hadron can be represented by a convergent expansion in the basis
of the Fock space. The basis that counts is not built in terms of canonical
quark and gluon operators but in terms of the effective ones, corresponding
to relatively small scale parameter λ. The convergence is not proven, but
it is deemed not excluded given the exponential falloff of the RGPEP form
factors fλ as functions of constituent invariant masses. Section 3 outlines
the representation of states of light hadrons in the effective particle basis
in the Fock space. Section 4 discusses a perturbative expansion for the
unitary transformation Uλ that connects current, or canonical quarks and
gluons with their CQM counterparts, and for the transformationsWλ1λ2 that
connect effective particles that correspond to different values of the scale
λ. The eigenvalue problem for light hadrons is considered in Sec. 5. This
section describes our derivation of LF invariant mass operators for quarks
including their minimal coupling to the gluons condensed in a hadron. Next
section shows how the RGPEP can be applied in phenomenology of hadrons,
with emphasis on form factors, structure functions, and connection with
AdS/QCD ideas. Section 7 concludes the paper. Finally, four appendices are
provided in order to support the claim that RGPEP can be used to verify our
reinterpretation of the gluon condensate in QCD. Appendix A outlines how
CQMs can be viewed as limited representatives of the same universality class
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that QCD belongs to. Appendix B describes details concerning perturbative
calculations of RGPEP transformations. Presentation of RGPEP beyond
perturbation theory is given in Appendix C. The last Appendix D offers a
visualization of the RGPEP scale dependence of hadronic structure.

2. Effective particles and vertex form factors

Reasoning described in the next sections requires elements of RGPEP
[28]2. This section focuses on the concept of effective particles and the role
of vertex form factors that RGPEP introduces in the interactions of effective
particles, starting from QCD.

In QCD, RGPEP begins with the canonical LF Hamiltonian in which
the dynamically independent quark and gluon quantum fields are expanded
into their Fourier components. These components are the operators that
create or annihilate single bare quarks or gluons of definite momentum.
For brevity, creation and annihilation operators will be commonly called
particle operators, in order to distinguish them where necessary from quark
and gluon field operators.

The canonical LF Hamiltonian contains singular interaction terms. It
must be regulated to avoid infinities. This is done by introducing regular-
ization factors in interaction terms. These factors are constructed to limit
relative motion of particles that participate in interactions. For example, let
the total momentum of all particles in an interaction term have components
P+ and P⊥. The notation means: P+ = P 0 + P z, z-axis is the direction
distinguished in the definition3 of the LF, ⊥ denotes transverse components,
i.e., the components x and y that are transverse to the z-axis. Let a selected
particle have momentum components p+ = xP+ and p⊥ = xP⊥+k⊥. Then,
the regulating factor for this particle that is sufficient for taming logarith-
mic divergences in QCD can be of the form xδ exp (−k⊥ 2/∆2) [29], where
δ → 0 and ∆ → ∞ are the small-x and ultraviolet regularization param-
eters, respectively. Initially, one also introduces an absolute infinitesimal
lower bound ε+ < p+ for all particle operators in order to eliminate the LF
zero modes. This step amounts, however, to saying that all particles must
have positive momentum component p+. This requirement eliminates com-
plex vacuum. Subsequently, one demands that for every particle in every
interaction term x > ε, with an infinitesimal number ε. The number ε is a

2 Appendix A describes RGPEP in the context of asking how QCD can be transformed
into an effective theory that resembles CQMs as approximate representatives of the
same universality class.

3 LF is a hyper-plane in space-time that is swept by a wave front of a plane wave
of light. In standard notation, the frame of reference of the inertial observer who
develops a quantum theory is set up so that the plane wave moves against the z-axis
in the chosen frame.
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fraction of momentum. It is not related to ε+. Then, when one works in the
limit ε x−δ → 0 point-wise in x when ε is sent to 0, the factor xδ takes over
the regulatory function from ε. As a result, the variables x range from 0 to
1 and there are regulating factors xδ and (1 − x)δ at the end points in all
interaction vertices. The variable x = p+/P+

h for a particle of momentum
p in a hadron of momentum Ph coincides with the parton model longitudi-
nal momentum fraction in a hadron in the infinite momentum frame (IMF).
Variable k⊥ is equal to the transverse momentum of a parton in the IMF
when the parent hadron of the parton moves precisely along z-axis. Note,
however, that LF QCD is formulated in terms of the same variables x and
k⊥ no matter how hadrons move, i.e., the LF Hamiltonian theory is explic-
itly invariant with respect to the 7 Poincaré transformations that preserve
the LF. This means that the theory of a hadron structure in a rest frame of
the hadron has the same form as in the IMF.

When the regularization is being removed, δ → 0 and ∆→∞, RGPEP
establishes the required ultraviolet counterterms [28]. The small-x regu-
larization drops out from dynamics of colorless states because they cannot
produce long-distance interactions along the LF.

Let the regularized LF Hamiltonian of QCD with counterterms be de-
noted by H and let b denote bare particle operators. RGPEP introduces
effective particles of scale λ through a unitary transformation

bλ = Uλ b U
†
λ . (1)

The corresponding Hamiltonian operator,

Hλ(bλ) = H(b) , (2)

is a combination of products of operators bλ with coefficients cλ that are
different from coefficients c of corresponding products of operators b in the
canonical Hamiltonian with counterterms, H(b). Since λ is related to an up-
per limit on momentum transfers in interactions, the operators b correspond
to λ =∞. For the infinite λ, we have b∞ = b and H(b) = H∞(b∞)4.

RGPEP provides differential equations that produce expressions for the
coefficients cλ in Hλ. The operator Uλ is calculable in RGPEP order-by-
order in an effective coupling constant [28] in the form of normal-ordered
products of particle operators bλ. Appendix B illustrates how it is done in
lowest orders. Appendix C shows how non-perturbative calculations can be
attempted. Appendices A, B, and C, provide a formal background for the
entire discussion that follows.

4 Where it is unlikely to lead to a confusion, Hλ(bλ) is abbreviated to Hλ. Later,
also operators such as Hλ1(bλ2) occur, meaning an operator that is a combination of
products of particle operators bλ2 with coefficients cλ1 instead of cλ2 .
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The key feature of Hλ(bλ) that emerges from RGPEP is that all coeffi-
cients cλ contain a form factor fλ. The form factor prevents changes of the
total invariant mass of effective particles undergoing interaction by more
than λ. The RGPEP parameter λ plays thus the role of a momentum-space
width of vertex form factors in all interaction terms. In fact, RGPEP is
designed to work this way. When λ is small, the form factors suppress all
interactions among massive particles besides the terms one can call poten-
tials, i.e., the interaction terms that do not change the number of massive
particles (see below). In other words, the RGPEP transformation Uλ is de-
signed to identify the dynamical relationship between nearly massless cur-
rent quarks and their field-theoretic interactions at formally infinite λ with
massive constituent quarks and their interactions through potentials at λ so
small that potential models may apply as an approximation to solutions of
the whole theory for states of smallest masses.

If one so desires, transformation Uλ can be kinematically complemented
with the Melosh transformation [30], which relates the spinors typically used
for description of constituent quarks in the constituents rest frame (CRF5),
with the spinors one can conveniently use in the IMF6. Melosh transforma-
tions for spinors are automatically incorporated in the LF spinors used here.

It follows from its definition that the form factor fλ prevents the number
of effective particles from changing if their massesmλ exceed λ. For example,
suppose that a virtual particle of massmλ emits another virtual particle with
mass mλ. The change of invariant mass of particles in the interaction is at
least mλ. The form factor fλ is designed to quickly tend to 0 for invariant-
mass changes greater than λ. So, if mλ exceeds λ, the form factor eliminates
the emission. In particular, if effective gluons are assumed to have effective

5 The CRF frame is an inertial reference frame in which the total momentum of con-
stituents treated as free particles of definite masses has only time component different
from zero. The concept of CRF in LF dynamics is different from a similar concept in
the instant form of dynamics, because conservation of P+ in interactions makes the
CRF differ from the center-of-mass system (CMS) of a hadron in the LF dynamics,
while the CRF and CMS are the same in the instant form of dynamics, where P z is
conserved by interactions. P⊥ is preserved in interactions in both forms of dynamics
equally.

6 Ref. [4] is of interest here in a context of the dynamical connection between canonical
(or current) quarks and effective (or constituent) quarks that Melosh sought, because
the last sentence in Ref. [4] suggests one might perhaps use some collective coordinates
as a satisfactory method for truncating QCD, instead of “the brute-force lattice gauge
theory approximation!” While Ref. [4] is quite new to the author at the time of
writing this article, it should be noted that RGPEP can be viewed as an attempt
of the type advocated by Gell-Mann. Namely, the effective quarks and gluons, as
constituents of size s = λ−1 ∼ Λ−1

QCD, describe collective modes in dynamics of many
small quarks, anti-quarks, and gluons, while the latter may still be individually active
in virtual processes characterized by large invariant-mass changes, allowed in a single
interaction only when λ� ΛQCD.
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massesmλ, the HamiltonianHλ will not include interactions that can change
the number of effective gluons when mλ > λ. A sizeable mass of effective
gluons in Hλ is what one may expect to happen at small values of λ in QCD
because such effective gluon mass is a candidate for explaining the absence
of small spacing in the spectrum of hadronic masses. There should be small
spacing in the presence of massless gluons, as it happens in atoms described
by QED with massless photons. In contrast to atoms, hadrons do not exhibit
such small spacing.

Note that a smooth form factor fλ must allow for some small, transitional
range of values of λ < mλ. In the transitional range, interactions that change
the number of effective gluons gradually disappear when λ is lowered below
mλ. In the reversed RGPEP evolution in λ from small to large values, gluons
will gradually appear in the dynamics as λ increases and mλ decreases so
that at some point λ becomes greater than mλ.

3. RGPEP representation of states of light hadrons
If QCD is to explain precisely the success of classification of light hadrons

in terms of constituent quarks with masses on the order of 1/3 of a nucleon
mass, a clearly defined procedure must explain how the massesmu andmd of
the lightest quarks increase from their standard model (SM) values of order
5 MeV in a local gauge theory to their common constituent value of order
ΛQCD in a corresponding effective theory7. It is not known yet if RGPEP
leads to such increase of effective masses of light quarks in QCD when the
parameter λ is lowered toward ΛQCD, or even below ΛQCD. We assume
here that RGPEP does lead to such result8. This assumption cannot be
rigorously verified yet because the domain of λ ∼ ΛQCD cannot be reached
using low orders of perturbation theory and non-perturbative solutions to
RGPEP equations are still not known in QCD.

When λ is large in comparison to ΛQCD, so that the effective coupling
gλ is small and perturbation theory applies, the eigenvalue problem involves
many Fock sectors with many quarks of small Lagrangian masses. In these
circumstances, it is hard to analyze the eigenvalue equations precisely. When
λ is lowered, the number of necessary Fock sectors is expected to decrease
because of the vertex form factors fλ but the coupling constant gλ increases
and it is hard to evaluate Hλ precisely. A way out of this situation is to
calculate Hλ in terms of successive approximations9.

7 How RGPEP is able to relate a local canonical theory to a non-local effective theory
is explained in [31].

8 Quark masses increase as momentum scale is lowered in perturbation theory de-
veloped in terms of the Feynman diagrams [32]. Similar results are obtained from
Dyson–Schwinger equations [33]. LF constituent models can incorporate running
masses [34].

9 This includes successive approximations for solutions of the non-perturbative RGPEP
equations in Appendix C.
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A workable RGPEP method for building successive approximations has
been outlined including results for hadron masses and wave functions in the
case of heavy quarkonia [18], where the number of heavy quarks is nearly
constant, equal 2. In that case, one can take advantage of the NR approx-
imation for relative motion of quarks, based on smallness of the effective
coupling constant gλ when λ is comparable with heavy quark masses that
are much larger than ΛQCD.

However, no counterpart for such approximation scheme is available yet
for light quarks in LF QCD using RGPEP. The reason, stated already above,
is that, in distinction from the case of heavy quarks, the light quark masses
are so much smaller than ΛQCD that many light quarks can a priori be
created or annihilated in the interactions that limit virtual energy changes
by about ΛQCD. Therefore, one needs to approximate reasonably well a
great deal of relativistic dynamics of virtual particles that are constantly
created and annihilated by strong interactions. It is suggested below that
a reinterpretation of the gluon condensate as a part of a hadron provides a
guideline for moving in that direction.

It is a conceptual jump that requires a connection between constituent
quarks and structure functions (see Sec. 6.2), but one can observe here that
parton distribution functions at small Q2 are typically very stable as func-
tions of Q2 and quarks always carry only about half of the nucleon mo-
mentum [35, 36, 37, 38, 39]. The gluon component of hadrons, which plays
the role of a gluon condensate in the picture described below, may only be
responsible for a part of the other half of hadron momentum. Namely, the
constituent quarks also contain gluons. The issue of how heavy is the part
of a hadron that is made of effective quarks at λ . ΛQCD and how heavy is
the corresponding gluon condensate component, is discussed in Sec. 6 and
Appendix D. Firm conclusions require RGPEP calculations that have not
been done yet.

In the picture described below, the masses of effective quarks and gluons
at some scale λ . ΛQCD are assumed greater than λ itself. All interac-
tions that change the number of the effective particles are absent and the
only interactions left in Hλ with λ near and below ΛQCD are potentials.
These potentials are expected to match potentials used in the CQMs. Our
reinterpretation of the gluon condensate is associated with a definite result
for the potentials that act among the constituent quarks. In summary, the
LF Hamiltonian of QCD with some λ = λc . ΛQCD is assumed to describe
quarks of mass mc & λc. These quarks interact only through potentials, i.e.,
interactions that do not change the number of constituents. The subscript
‘c’ refers to the word constituent.

An eigenstate |ψ〉 of the effective Hamiltonian Hλc(bλc) that represents a
hadron of momentum Ph, is a superposition of effective-particle basis states
(n = 2 for mesons and n = 3 for baryons)
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|1 . . . n〉λc =
n∏
i=1

b†iλc
|0〉 , (3)

|ψ〉 =
∑
1...n

ψλc(1, . . . , n)|1 . . . n〉λc . (4)

The arguments 1 to n of the wave function provide a shorthand notation for
momenta, spins, flavors, and colors of the corresponding particles. For ex-
ample, 2 as an argument of a wave function stands for the three-momentum,
spin projection on z-axis, flavor, and color of the particle number 2. Sum-
mation over numbers 1 to n is a shorthand notation for summation over the
quantum numbers of the corresponding particles including integration over
their momenta. In this abbreviated notation, the eigenvalue equation for a
mass and a wave function of a hadron with momentum P+

h and P⊥h built
from n constituents of scale λc, takes the form

λc〈1 . . . n|
(
P+
h Hλc − P⊥h 2

)
|ψ〉 = M2

λc〈1 . . . n|ψ〉 . (5)

This eigenvalue equation with n = 2 or n = 3 is meant to correspond to the
CQM picture of hadrons as built from 2 or 3 constituent quarks.

Note that the vacuum state |0〉 is not changed when λ changes. This is a
unique feature of LF dynamics. In the standard, instant form of dynamics,
a change in particle operators must be accompanied with a change of the
corresponding vacuum state.

One can write the same eigenvalue equation for the same states using
other values of λ than λc. The eigenstate |ψ〉 is the same for all values of
λ but the basis states and corresponding wave functions depend on λ. For
λ� ΛQCD, the state |ψ〉 may contain a giant number of multi-particle Fock
components built by acting with creation operators b†λ on the vacuum, while
when λ = λc, the entire state contains only 2 or 3 constituent quarks.

Using RGPEP, one can express constituent quarks at scale λc in terms
of effective quarks and gluons corresponding to λ > λc,

bλc = W bλW
† , (6)

W = UλcU
†
λ . (7)

Momenta, spins, and izospins of the effective particles are the same, irre-
spective of the change in parameter λ. Since W |0〉 = W †|0〉 = |0〉, one has

|1 . . . n〉λc = W

n∏
i=1

b†iλ|0〉 , (8)
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and the same eigenstate can be written as

|ψ〉 =
∑
1...n

ψλc(1, . . . , n)W |1 . . . n〉λ . (9)

The result of action of W on the basis state with n constituents correspond-
ing to scale λ, with λ > λc, is a coherent slew of Fock sectors with various
particle numbers, with the number of quarks grater or equal to the minimal
constituent number n for a hadron. The momentum space wave functions of
the resulting Fock components are determined by the bound-state eigenvalue
condition of Hλ.

Although a precise structure of Hλ is beyond insight of perturbation
theory for λ ∼ ΛQCD and W at such scales also contains non-perturbative
dynamics, some generic features of the Fock wave functions in Eq. (9) can
be assessed on the basis of generic features of W implied by properties of
operators Uλc and Uλ that are visible already in perturbation theory [40].
Operator W conserves momentum. W can replace a single effective particle
with a bunch of other particles which carry together the same momentum
as the replaced particle. W can also annihilate a whole set of particles and
create a new set with the same momentum.

Hence, the colorless meson (M) and baryon (B) states |ψ〉 that corre-
spond to the CQM picture (color factors are written explicitly),

|ψ〉M =
∑
12

ψλc(1, 2)
δab√

3
ba†1λc

db†2λc
|0〉 , (10)

|ψ〉B =
∑
123

ψλc(1, 2, 3)
εabc√

6
ba†1λc

bb†2λc
bc†3λc
|0〉 , (11)

are equal to, respectively,

|ψ〉M =
∑
12

ψλc(1, 2)
δab√

3
W ba†1λd

b†
2λ|0〉 , (12)

|ψ〉B =
∑
123

ψλc(1, 2, 3)
εabc√

6
W ba†1λb

b†
2λb

c†
3λ|0〉 . (13)

The representation of meson and baryon states in Eqs. (10) and (11) in
terms of only 2 or 3 effective constituents at scale λc, is thus transformed
into the representation of the same states in Eqs. (12) and (13) that are built
from effective particles of scale λ. The resulting Fock space wave functions
for effective particles of size λ−1 involve functions ψλc(1, 2) and ψλc(1, 2, 3)
through convolutions that emerge from the sums in Eqs. (12) and (13) and
the structure of W . This is how the complex Fock-space structure of QCD
hadrons is supposed to contain information about a simple CQM picture.
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4. Structure of W

In order to provide an illustration of howW may act on quark and gluon
states, this section explains the structure of W obtained just in first-order
perturbation theory in the effective coupling constant gλ. The perturbative
expression is obtained starting from Eqs. (1) and (A.1), which produce to-
gether

d

dλ
Hλ = [Hλ, T ] , (14)

where T = U†λ
d
dλUλ and Uλ = Uλ(b∞). This means that the functional Fλ

in Eq. (A.1) is set to have the form

Fλ [Hλ] = [Hλ, T ] , (15)

and the key to RGPEP is the dependence of T on Hλ [28]. This dependence
is designed keeping in mind that the resulting Hamiltonian Hλ(bλ) should
contain the form factor fλ in each and every interaction term. Suitable
notation for this condition is provided by writing Hλ = fλGλ, where Hλ

contains the form factor fλ in interaction vertices while Gλ does not. If an
operator Gλ contains a product of creation and annihilation operators bλ
with a coefficient cλ, the operator Hλ = fλGλ contains exactly the same
product with coefficient fλcλ, where fλ depends on the difference between
the invariant mass squared of particles annihilated by annihilation operators
in the product and the invariant mass squared of particles created by creation
operators in the product. Both invariant masses are calculated using the
particle kinematical momentum variables and eigenvalues of part H0λ = G0λ

of the Hamiltonian Hλ.
Thus, using Hλ = Hλ(b) and omitting λ, one writes

H = fG = G0 + fGI . (16)

DifferentiatingH with respect to λ one arrives at the equation that defines T
in such a way that it must vanish when interactions vanish (this guarantees
that T is expandable in powers of the coupling constant) and that its matrix
elements between eigenstates of G0λ vanish when the differences between the
corresponding eigenvalues vanish [28]

[T ,G0] = [(1− f)GI ]′ . (17)

Prime denotes differentiation with respect to λ. The solution is denoted by

T =
{

[(1− f)GI ]′
}
G0 , (18)
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where the curly braces with subscript G0 indicate the energy difference (dif-
ference of eigenvalues of G0) in denominator that results from the commu-
tator of T with G0 on the left-hand side in Eq. (17). Then U satisfies

U ′ = U
{

[(1− f)GI ]′
}
G0 (19)

with condition U∞ = 1. Eq. (19) can be expanded in powers of the coupling
constant.

4.1. Perturbative expansion for Uλ
Let us assume here that G0 does not depend on the coupling constant

to all orders of perturbation theory. This means that perturbative self-
interaction terms are included in GI and G0 is actually independent of λ10.
While this condition may seem quite restrictive, note that it allows for ap-
pearance of mass terms that are proportional to positive powers of ΛQCD,
since ΛQCD vanishes to all orders of perturbation theory. Writing expansions
in the bare coupling constant,

Uλ = 1 + guλ1 + g2uλ2 + . . . , (20)
GIλ = gGIλ1 + g2GIλ2 + . . . , (21)

one obtains equations (for convenience of notation, the prime is now put
outside the curly braces, which is justified because eigenvalues of G0 are
independent of λ)

u′λ1 = {(1− f)GIλ1}′G0 , (22)

u′λ2 = uλ1 {(1− f)GIλ1}′G0 + {(1− f)GIλ2}′G0 , (23)

etc., with solutions of the form [40]

uλ1 = {(1− f)GIλ1}G0 , (24)

uλ2 = 1
2u

2
λ1 + 1

2

λ∫
∞

ds
[
us1, u

′
s1

]
+ {(1− f)GIλ2}G0 , (25)

etc. This expansion can be rewritten in terms of the effective coupling gλ for
the purpose of eliminating ultraviolet divergences involved in the definition
of the bare coupling constant and the corresponding counterterm. However,
for g = gλ + O(g3

λ), one can simply replace g by gλ in the terms explicitly
10 This way of proceeding is not necessary, but it considerably simplifies the discussion

that follows because there is no need to expand the form factor fλ and the energy
denominators in powers of the coupling constant.
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listed in Eqs. (24) and (25). In addition, Uλ is unitary by construction.
Therefore, Uλ = Uλ(b∞) = Uλ(bλ) and one can freely replace b∞ by bλ in
these equations, obtaining thus first two terms in expansion of Uλ in powers
of gλ.

4.2. Perturbative expansion for W

Now consider λc and λ ≥ λc. Eq. (7) implies W (b∞) = Uλc(b∞)U †λ(b∞),
while in Eqs. (12) and (13) the operator W acts on states created from
the vacuum by operators bλ. It is therefore convenient to use an equivalent
expression

W (b∞) = U †λ(bλ)Uλc(bλ) (26)

=
[
1 + gλu

†
λ1 + g2

λu
†
λ2 + . . .

] [
1 + gλuλc1 + g2

λuλc2 + . . .
]
, (27)

where b∞ in every u on the right-hand side is replaced by bλ. Thus,

W = 1 + gλW1 + g2
λW2 + . . . , (28)

W1 = {(fλ − fλc)GI∞1}G0 , (29)

W2 = 1
2 (uλ1 − uλc1)2 + 1

2 [uλc1, uλ1] + 1
2

λ∫
λc

ds
[
us1, u

′
s1

]
+ {(1− fλc)GIλc2}G0 − {(1− fλ)GIλ2}G0 , (30)

where b∞ is replaced by bλ everywhere on the right-hand sides.
The perturbative expansion can be similarly carried out to higher orders.

The term of focus here is W1, as an illustration of how W acts on quark and
gluon states. This illustration is valid when the coupling constant gλ is very
small, which means that λ� ΛQCD in the RGPEP scheme.

To some extent, W1 is also useful as an indicator of how W acts on
states when λ approaches λc ∼ ΛQCD. In this case, gλ is relatively large.
Although the size of contribution of terms containing Wk with k > 1 in
comparison to the size of contribution of the term with W1 for such small λ
is not known, it is certain that all these terms together contribute 0 when
λ = λc. They vanish no matter how large is gλ because integrals in them
effectively range from λc to λ and thus vanish when λ tends to λc. On the
other hand, the higher power of gλ the larger number of integrals involved.
All these integrals must effectively range from λc to λ, so that they vanish
when ∆λ = λ − λc tends to 0 as the appropriate power of ∆λ. The first
term in the expansion in ∆λ must be linear in ∆λ and W1 is such.

Regarding the size of gλ, the range of λ right above λc is a region
where gλ in the RGPEP scheme in QCD may be limited in size, instead
of having large values that one may expect on the basis of a straightforward
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extrapolation of low-order expressions obtained in the region of large λ [41].
Such limitation of gλ from above is certainly observed in simple mathemati-
cal models that include asymptotic freedom and bound states in a renormal-
ization group procedure for Hamiltonians [42]. Similar limitation of gλ is also
suggested in phenomenology of non-perturbative running couplings based
on AdS/QCD ideas and LF holography [43]. New theoretical information
about the size of gλ at small λ is expected to follow from a non-perturbative
RGPEP equations described in Appendix C.

4.3. W1 for quarks and gluons

According to Eq. (29), the first-order term in W = 1 + gλW1 + O(g2
λ),

is given by

W1 = {(fλ − fλc)HI∞1}H0
, (31)

where H0 is the term independent of the bare coupling constant g and HI∞1

is a regulated interaction term proportional to the first power of g in the
canonical LF QCD Hamiltonian, H∞ = H0∞+gHI∞1+O(g2), derived using
gauge A+ = 0 from the Lagrangian for QCD, L = ψ̄(i6D−m)ψ− 1

2TrFµνFµν .
Thus,

H∞ =
∫
dx−d2x⊥

[
h0∞ + ghI∞1 +O

(
g2
)]
, (32)

where the Hamiltonian density terms independent of g are

h0∞ = 1
2 ψ̄γ

+−∂⊥ 2 +m2

i∂+
ψ − TrA⊥

(
∂⊥
)2
A⊥ , (33)

and the interaction terms order g are

hI∞1 = ψ̄6Aψ + 2iTr ∂αAβ
[
Aα, Aβ

]
, (34)

with SU(3) color notation A = Aata, [ta, tb] = ifabctc, Tr(tatb) = 1
2δ
ab.

The calculation of W1 starts with the above expressions and proceeds as
described in Appendix B.

Appendix B also argues that W for λ & λc ∼ ΛQCD contains all the
terms in Hλ that change the number of particles. This means that W
can create a coherent slew of the effective Fock components at scale λ in
Eqs. (12) and (13) that are implied by the 2 or 3 constituent quark wave
functions at λc in Eqs. (10) and (11). In turn, this means that the result of
action of W is fully encoded through the Hamiltonian in the wave functions
ψλc(1, 2) and ψλc(1, 2, 3) that correspond to the CQM. These wave functions
are solutions to the eigenvalue problem for Hλc , which does not change the
number of constituents. But the larger λ the closer Hλ to the canonical LF
Hamiltonian of QCD and the more complex the states generated by W in
Eqs. (12) and (13).
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5. Eigenvalue problem for light hadrons

According to previous sections, the same eigenvalue problem for light
hadrons can be written in different ways when one uses different Hamilto-
nian expressions that correspond to different values of λ. Three values are
distinguished in further discussion: λ =∞, λ & λc, and λ = λc. The corre-
sponding eigenvalue problems are equivalent if RGPEP equations are solved
exactly. However, since exact solutions are not available, one is forced to
guess plausible candidates for the Hamiltonian expressions at different values
of λ.

At large λ, insight comes from the perturbative expansion of RGPEP,
using regulated canonical LF QCD Hamiltonian with counterterms to start
with at λ = ∞ and taking advantage of asymptotic freedom. At small λ,
one has to guess a first approximation. Phenomenology suggests that some
form of a Hamiltonian for constituent quarks bound in a potential well is
a good candidate for a first approximation to the QCD Hamiltonian with
λ = λc for hadron states of smallest masses.

These two extreme regions of λ need to be connected to each other within
the RGPEP framework in terms of some interpolation11. The size of calcu-
lable corrections to any first approximation constructed this way will even-
tually tell us how far from a true RGPEP solution such first approximation
can be. The candidate for the first approximation that is developed in this
article suggests that the concept of a gluon condensate may be interpreted
in a new way.

5.1. Three ways of writing the eigenvalue problem

The first of the three ways, which uses the regulated canonical Hamil-
tonian for LF QCD with all due counterterms, H∞, amounts to formal
writing of the eigenvalue problem in terms of Fock states created by prod-
ucts of operators b†∞, d†∞, and a†∞ from the vacuum state |0〉 in the limit of
regularization being removed

H∞|ψ〉 = P−h |ψ〉 . (35)

In this equation, a reasonably accurate description of the eigenstate |ψ〉
presumably requires a very large number of wave functions for many sig-
nificant bare-particle Fock components. The number of such components is
expected to grow when the regularization is lifted. Although the full struc-
ture of |ψ〉 is not known precisely, one can assume some model for one part
of it, such as a Fock sector with a smallest possible number of bare particles

11 A similar reasoning applies also in the case of Yukawa theory, which is not asymptoti-
cally free, when one considers a limited range of scales and effective coupling constant
is sufficiently small from theoretical point of view to use perturbative RGPEP [44].
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in a meson or a baryon, and try to determine another part, such as a compo-
nent with one additional gluon, using perturbation theory. Such approach
is useful in description of exclusive processes that involve large momentum
transfers [45]12.

The second of the three ways is designed for the opposite end of the scale
for λ in RGPEP, i.e., when λ = λc. The same Hamiltonian is expected to be
expressible there in terms of operators for constituent quarks. In this case,
one has the eigenvalue equation of the form

Hλc |ψ〉 = P−h |ψ〉 , (36)

in which the state |ψ〉 of a single light hadron is represented by Eq. (10)
for mesons and Eq. (11) for baryons. This means that the light hadron
eigenstates are described by only one wave function, ψc(1 . . . n), with n =
2 or n = 3. These wave functions appear in the Fock states built using
creation operators b†λc

and d†λc
. There are no components with effective

gluons or additional quark–anti-quark pairs. In other words, the complexity
of structure of light hadrons in QCD is encapsulated in the structure of
constituent quarks. This means that the operators b†λc

and d†λc
in Eqs. (10)

and (11) are complex combinations of products of operators b†∞, d†∞, a†∞ and
their conjugates.

Using Eqs. (5), (10) and (11), the eigenvalue problem of Eq. (36) for the
n = 2 or n = 3 constituents is obtained in the form(

n∑
i=1

p−i + Vcn/P
+
h

)
λc〈1 . . . n|ψ〉 = P−h λc〈1 . . . n|ψ〉 . (37)

The unknown element in this form is the interaction potential term Vcn. In
order to derive the structure of Vcn in mesons and baryons, we shall em-
ploy the third way of writing the same eigenvalue problem using RGPEP.
The third way suggests the reinterpretation of gluon condensate that is the
subject of this article. When all gluons considered in the third way are in-
corporated in the constituent quarks at λc, one is left only with the potential
Vcn, see Appendix D.

12 A different way from RGPEP to attack the eigenvalue problem of a LF Hamiltonian
for QCD head on is to use discretized light-cone quantization (DLCQ) in which one
introduces a finite minimal unit of p+ momentum, ε+, which is the inverse of the size
of a periodicity box for fields as functions of the position variable x− on the LF. Since
the total P+ of an eigenstate of H∞ is conserved, the unit ε+ naturally limits the
number of bare particles in an eigenstate from above by the ratio P+/ε+ [46,47,48].
Additional cutoffs need to be imposed in DLCQ in order to limit transverse momenta
of constituents that may appear in an eigenvalue problem with some simultaneously
fixed eigenvalues of the total momentum components P+ and P⊥.
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The third way of writing the same eigenvalue problem uses Hλ with
λ & λc. The size of λ is assumed to be such that gluons are already some-
what active as participants in the dynamics while the effective quarks are
still heavy enough for a NR analysis to apply to their relative motion in a
light hadron. The NR approximation is thinkable for a slowly moving hadron
according to previous sections, since interactions in the effective Hamilto-
nian at scale λ & λc contain form factors. The effective particles of sizable
masses cannot change their momenta through interactions by large amounts.
Thus, an eigenvector corresponding to a slowly moving light hadron can be
expected to be described by the wave functions that have significant values
only for small momenta of the constituents.

The third picture at some scale λ & λc is considered a candidate for a
first approximation to hadrons in RGPEP. The corresponding Hamiltonian
will be proposed below using ideas motivated by gauge symmetry in its NR
form. Difference between this approximate NR form and the interactions
that can be systematically calculated using RGPEP in LF QCD, is to be
treated as a perturbation13. The approximate picture at λ & λc is described
in more detail in the next sections. Here we only suggest that RGPEP
provides a scheme that may be used in future calculations of Vcn in Eq. (37)
at λc by evolving the third-way picture at λ & λc down to λc and taking
advantage of the RGPEP reinterpretation of the gluon condensate that is
described in the next sections.

5.2. Light hadron states at λ & λc

When λ & λc, the meson and baryon states are described by Eqs. (12)
and (13), respectively. In these equations, the operator W acts on the Fock
components with 2 or 3 quarks of scale λ and creates additional components.
The meson state is simpler than the baryon state and it will be discussed
first.

13 This strategy is similar to the one described in Ref. [16] with an artificial linear poten-
tial. RGPEP introduces new elements: the dynamical transformation from bare to
effective particles available at different scales, construction of corresponding effective
fields, possibility of using NR approximation at λ & λc for identifying interactions
through gauge symmetry as indicated later in the text (instead of introducing an
artificial potential), extension beyond perturbation theory (see Appendix C), and
invariance with respect to 7 kinematical LF symmetries for the resulting interaction
terms and wave functions [31]. As a result, the first approximation potential is pro-
posed to be not a linear but a quadratic function of a relative distance between color
charges (see next sections). The quadratic potential is expected to cause creation of
additional particles when a distance between two colored particles increases and the
net linear increase of energy with distance must ultimately result from the energy of
particles created along a line that connects the two widely separated color charges.
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The meson state is

|ψM 〉 =
∑
12

ψλc(1, 2) W b†1λd
†
2λ|0〉 . (38)

From Eqs. (B.16), (B.18) and (B.22), it is clear that W shares properties
of the interaction Hamiltonian. For example, if HλI changes a group of
particles to another group, a similar change with additional factors results
from action of W . So, out of 2 effective quarks in a meson (3 in a nucleon)
more quarks and gluons are created. In order to use local gauge symmetry
to propose the approximate form of the state that results from action of W ,
it is useful to represent the state of Eq. (38) in position space. This is done
using quantum fields built from effective particle operators at scale λ.

The effective quantum fields are constructed using Eq. (B.1) for quarks
and Eq. (B.8) for gluons and replacing operators b, d and a with bλ, dλ and
aλ, respectively. Thus, the operator ψλ(x) on the LF is built in the same
way from bλ and d†λ as the canonical operator ψ(x) is built in Eq. (B.1) from
the operators b and d† that are equal b∞ and d†∞, respectively

ψλ(x) =
∑
σcf

∫
[k]
[
χcuλfkσbkσcfλe

−ikx + χcvλfkσd
†
kσcfλe

ikx
]
. (39)

The spinors uλfkσ and vλfkσ include corresponding vectors in flavor space.
Spinors might depend on λ if the effective quark masses in the field expansion
are allowed to depend on λ14. Similarly, operator Aµλ(x) on the LF is built
from aλ and a†λ as the canonical operator Aµ(x) is built in Eq. (B.8) from
the operators a and a† that are equal a∞ and a†∞, respectively. Gluon
polarization vectors do not depend on λ.

Aµλ(x) =
∑
σc

∫
[k]
[
tcεµkσakσcλe

−ikx + tcεµ∗kσa
†
kσcλe

ikx
]
. (40)

As a consequence, the dynamically independent components, ψλ = Λ+ψλ
and A⊥λ in A+ = 0 gauge on the LF x+ = 0 have the same commutation
relations as in a canonical theory.

With particle operators at λ = λc, an effective constituent quark field
operator is constructed in the same way. When this field is used to describe
a slowly moving meson, it is useful to write the field as

ψλc =
[
Uλc(~x )
Vλc(~x )

]
, (41)

14 Note that the independent field components, ψ+ = Λ+ψ, Λ+ = (1/2)γ0γ+, are
independent of the quark masses, and inclusion of effective masses in spinors is merely
a way of useful notation for some effects of interactions.
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where the upper two-component field Uλc annihilates quarks and the lower
two-component Vλc creates anti-quarks15.

Thus, by inverting the Fourier transforms through integration over the
LF hyperplane and using conventions explained in Appendix B, the state in
Eq. (10) for a meson of momentum Ph can be written as

|ψ〉M =
1√
3

∫
d3x1 d

3x2

4m2

∫
[12] 16π3P+

h δ
3(Ph − k1 − k2)

×e−i(k1x1+k2x2) U †λc
(x1)ψ2×2

(
~k12

)
Vλc(x2)|0〉 , (42)

where ψ2×2(~k12) denotes the 2 × 2 matrix wave function of relative motion
of the quarks. The three-vector ~k12 can be defined as a relative momentum
of the quarks in the CRF. Details of the definition of ~k12 are not essential
at this point but later discussion will include relevant details.

In order to obtain analogous position representation of the meson state
in Eqs. (12) or (38), one needs to apply W to the expression in Eq. (42).
The result is

|ψ〉M =
1√
3

∫
d3x1 d

3x2

4m2

∫
[12] 16π3P+

h δ
3(Ph − k1 − k2)

×e−i(k1x1+k2x2)W U †λ(x1)ψ2×2

(
~k12

)
Vλ(x2)|0〉 . (43)

A similar expression is generated in terms of three quark fields and W for
baryons. Integration over momenta in these expressions generates position
wave functions as coefficients in the expansion of meson or baryon states into
basis states that are created from the LF vacuum by action of a product of
two or three quark fields at scale λ and W .

Continuing with the meson states, the central hypothesis about action
of W is that gauge symmetry forces the result of action of W on a state of
two quarks at scale λ to have the form

W

∫
d3x1d

3x2 U
†
λ(x1)ψ(x1, x2)Vλ(x2)|0〉 (44)

=
∫
d3x1d

3x2d
3x0 U

†
λ(x1)W (x1, x2, x0)Vλ(x2)|0〉 , (45)

15 The three-vector notation ~x or ~k refers here to the LF co-ordinates (x−, x⊥) in position
space. A similar notation is sometimes also used for momentum variables (k+, k⊥).
However, when we proceed later to the Schrödinger eigenvalue problem for effective
Hamiltonians for light hadrons, the same notation will be adopted also for three-
vectors built from ⊥ and + or − components in such a way that the standard three-
dimensional notation respecting rotational symmetry will be natural.
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where the operatorW (x1, x2, x0) is responsible for creating components gen-
erated by W . These components can be of two kinds. One kind is formed
by operators that carry the color of initial two quarks. For example, if W
generates a gluon from a quark, the generated gluon and the emerging quark
together carry the color of the initial quark. The other kind is formed by
colorless operators. For example, W may cause emission of two gluons by a
quark and the gluons may form a color singlet.

These two kinds of contributions are encapsulated in W (x1, x2, x0) by
writing

W (x1, x2, x0) = ψ(x1, x2, x0)T (x1, x2)G†(x0) , (46)

where ψ(x1, x2, x0) denotes a new wave function at scale λ & λc, G†(x0)
denotes the colorless component of the state, and

T (x1, x2) = P exp

−ig x1∫
x2

dxµAµ(x)

 , (47)

is the color-transport factor along a straight line between quarks that main-
tains local gauge symmetry by bringing in required gluon fields16. This
factor is constructed in analogy with Ref. [17].

The operator that generates the colorless component of a hadron state,
G†(x0), will provide the contribution in dynamics of quarks that is associated
with gluon condensation in hadrons, rather than in a vacuum. Namely,
instead of the vacuum expectation values of operators considered in Ref. [17],
such as 〈Ω|AiAj |Ω〉 with i, j = 1, 2, the Schrödinger equation for the wave
function ψ(x1, x2, x0) will involve expectation values

〈
AiAj

〉
G

=
〈G|AiAj |G〉
〈G|G〉

, (48)

|G〉 = G†(x0)|0〉 . (49)

A similar reasoning is followed regarding baryons. In the case of baryons,
one has to deal with three color-transport factors that are constructed in

16 In the LF gauge A+ = 0, one may expect only transverse separation between quarks
to count. However, the dependent (constrained) components of fields, ψ− and A−,
contribute to the effective interactions in a non-trivial way and one has to keep in mind
that the complete effective theory at small λ should have full rotational symmetry
restored. Therefore, a complete RGPEP expression for W must account for the
dynamics along x−1 − x

−
2 as well as along x⊥1 − x⊥2 . This issue will be addressed later

by introducing effective interactions that respect rotational symmetry inside slowly
moving hadrons through a new definition of three-dimensional relative momenta of
constituents to which the minimal gauge coupling rule can be applied in a rotationally
symmetric way.
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analogy to Ref. [17]. The operator G† in baryons generates the state G†|0〉
that plays the same role that the vacuum state |Ω〉 played in Ref. [17]. It is
assumed that the colorless components of mesons and baryons are approxi-
mately the same. The issue of universality of expectation values such as in
Eq. (48) for mesons will be further discussed below when we come to the
construction of the effective Hamiltonian.

In summary, the claim of gauge symmetry regarding the colorless basis
states of quarks and gluons at scale λ from which mesons and baryons are
made, is that they are of the form (all fields are effective at scale λ & λc)

|~x1, ~x2, ~xG〉 =
∑
ab

δab√
3

(
u†1λT1

)a (
T †2v2λ

)b
G†|0〉 , (50)

|~x1, ~x2, ~x3, ~xG〉 =
∑
abc

εabc√
6

(
u†1T1

)a (
u†2T2

)b (
u†3T3

)c
G†|0〉 , (51)

where

Ti = e
−ig

R xi
x dxµAµ , (52)

and x = (~x1 + ~x2)/2 in a meson and x = (~x1 + ~x2 + ~x3)/3 in a baryon. The
factor T is defined here along a straight path in such a way that it reproduces
the color-transport factor in mesons in Eq. (47). The path dependence is
ignored as an unnecessary complication at the level of mean-field approx-
imation. The operator G with argument ~xG represents the white energy
density background called glue. It is assumed to be a scalar boson field with
corresponding commutation relations.

There is a trouble on the LF with non-locality of the boson commuta-
tion relations in the direction of x−, which requires a solution. However,
the effective dynamics that will be constructed in next sections will explic-
itly circumvent this difficulty by using an operator G that is a function of
a three-dimensional position space variables associated with slowly moving
hadronic constituents in a slowly moving hadron. Thus, the problem ulti-
mately requiring a solution is not so much the non-locality of a scalar field
but how LF QCD can generate a rotationally symmetric effective theory for
light hadrons. The construction offered in next sections proposes to treat
G as a field depending on a suitable three-dimensional position variables in
which it can be local in a way that respects rotational symmetry.

The quanta of G are meant to represent excitations of the states of
gluons condensed inside hadrons. The quanta of G are not point-like. Their
size is characterized by 1/λ and can be considered roughly on the order of
1/ΛQCD, i.e., the quantum extends over the volume of an entire hadron17.

17 The effective glue degree of freedom represents contributions of all white Fock sectors
of effective particles that share the hadron momentum to a varying degree as λ varies.
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There exists a possibility to associate vector or even higher spin nature with
G, contributing to the hadron spin, but there is no need to do so here.

The basis states are orthonormal in the sense that, for all quarks being
different

〈~x1, ~x2, ~xG|~x1′ , ~x2′ , ~xG′〉 = δ11′δ22′δGG′ , (53)
〈~x1, ~x2, ~x3, ~xG|~x1′ , ~x2′ , ~x3′ , ~xG′〉 = δ11′δ22′δ33′δGG′ (54)

and δkk′ includes δ3(~xk − ~xk′)18. If quark quantum numbers besides color
are not different (this comment concerns only the baryon case), one has to
adjust the normalization of basis states by including all permutations that
contribute to the scalar products.

In the abbreviated notation used in the remaining part of the article

|~x1, ~x2, ~xG〉 = |12G〉 , (55)
|~x1, ~x2, ~x3, ~xG〉 = |123G〉 . (56)

In these abbreviated notation, the meson and baryon states read

|ψ〉M =
∑
12G

ψ(12G) |12G〉 , (57)

|ψ〉B =
∑
123G

ψ(123G) |123G〉 . (58)

5.3. Preliminaries concerning Hamiltonian density at λ & λc

Using the concept of effective quark and gluon fields, one can propose
that the LF Hamiltonian at λ & λc be expressible, by analogy to the canon-
ical theory, in terms of an integral over the LF of a density that is a function
of the fields. Thus,

Hλ =
∫

LF

(h0λ + hIλ) , (59)

where the density h0λ is bilinear in the fields and renders single-particle
operators while the density hIλ describes interactions in terms of products of
at least three fields (the interactions involve at least three effective particles).

Using power-counting [16], the bilinear density at scale λ can be assumed
in the form (all fields at x+ = 0)

h0λ = 1
2 ψ̄λγ

+−∂⊥ 2 +m2

i∂+
ψλ + TrA⊥λ

(
−∂⊥ 2 +m2

g

)
A⊥λ + CTIλ , (60)

18 With the qualification that locality in the x− direction requires proper definition
of z-components in a rotationally invariant effective theory to be discussed in next
sections.
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where the masses correspond to λ. The symbol CTIλ denotes mass-like
terms needed to make the mass parameters m and mg to count as masses in
the eigenvalue equations for light mesons and baryons. In other words, CTIλ
are by construction canceled by self-interactions in light colorless states19.

The interaction density hIλ in Eq. (59) must be non-local in the sense
that it involves products of fields at different points20. In particular, the
minimal coupling between quarks and gluons, which in the canonical gauge
theory is of the form

HMC∞ =
∫
d3xhMC∞(x) , (61)

with

hMC∞(x) = g ψ̄(x) 6A(x)ψ(x) , (62)

in the effective theory must take a non-local form that in a lowest-order
approximation is of the type [31]

HMCλ =
∫
d3x1 d

3x2 d
3x3 hMCλ(x1, x2, x3) , (63)

with

hMCλ(x1, x2, x3) = gλfλ(x2 − x1, x3 − x1) ψ̄λ(x1) 6Aλ(x2)ψλ(x3) . (64)

This non-local interaction term appears with other non-local terms in the
Hamiltonian obtained from RGPEP at scale λ. The dependent and inde-
pendent components of the fields are grouped in Eq. (64) according to a
free theory. The dependent components involve the inverse of i∂+, which is
a non-local operator. This non-locality is of the same type as in a canonical
theory and the RGPEP non-locality appears here on top of the canonical
one.

The non-local interaction terms with small λ can be simplified consider-
ably if the domain of action of the Hamiltonian is restricted to slowly moving
effective quarks. Namely, consider again the case of Eqs. (63) and (64) and
introduce a gradient expansion of the form

19 There is no need to specify these terms further here. Such terms can be identified
explicitly in perturbation theory, e.g., proceeding in a similar way to how it is done
in the eigenvalue problem for heavy quarkonia in Ref. [18].

20 The non-locality discussed here is due to the RGPEP vertex form factors of width λ
in momentum space. The RGPEP-induced non-locality must not be confused with
the canonical non-locality of LF Hamiltonians in which the dependent parts of fields,
such as ψ− = Λ−ψ and A−, involve inverse powers of i∂+, which is a non-local
integral operator.
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hMCλ(x1, x2, x3) = gλfλ(x2 − x1, x3 − x1) ψ̄λ(x1)
× [6Aλ(x1) + ∂ 6Aλ(x1)(x2 − x1) + . . .]
× [ψλ(x1) + ∂ψλ(x1)(x3 − x1) + . . .] . (65)

The three dots indicate terms with higher derivatives. If all effective particles
move slowly and the derivative terms are small, the Hamiltonian can be
approximated by the first term in the expansion

HIλ =
∫
d3x1 d

3x2 d
3x3 hIλ (66)

∼ gλ

∫
d3x ψ̄λ(x) 6Aλ(x)ψλ(x)

∫
d3y d3z fλ(y, z) + . . . . (67)

This means that the non-local effective interaction in a slowly moving, NR
system still looks like a local one except that its strength is determined not
solely by the coupling constant gλ but also by the integral of the non-local
form factor on the LF hyperplane

g̃λ = gλ

∫
d3y d3z fλ(y, z) . (68)

The point is that the effective Hamiltonian density at λ & λc may partly
resemble a Hamiltonian of local gauge theory in its terms that couple quarks
with gluons even though the actual effective interactions are non-local, pro-
vided that one limits the domain of the Hamiltonian to slowly moving
hadrons. In this case, construction of approximate candidates for the LF
Hamiltonian density of coupling between quarks and gluons, before they are
corrected using RGPEP, may proceed in analogy to QED [51]. This means
that one uses the gauge A+ = 0. The derivative i∂⊥ in the quark kinetic
energy in Eq. (60) is supplied with the minimal coupling addition of gA⊥
(the product of derivatives is separated by the inverse of i∂+, which is not
altered). In addition, one includes terms dictated by constraints that imply
the result of Eq. (62) for the quark–gluon coupling.

Much less is understood about the gluon part of the effective Hamil-
tonian density for light hadrons at λ & λc. The lack of understanding of
the Hamiltonian is reflected in the lack of understanding of the gluon com-
ponents in its eigenstates. One would have to calculate the operator Hλ

precisely in order to uncover the information it contains about how to build
a model approximating light hadrons in LF QCD. While RGPEP provides
tools for such calculations, the remaining part of the paper is only devoted
to deriving the model that can be treated as a first approximation.
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A simple candidate for an approximate Hamiltonian for light hadrons in
LF QCD is constructed in the next section assuming that: (1) the result
of action of W in RGPEP can be represented by inclusion of the color-
transport factors T that maintain local gauge symmetry of hadronic states,
(2) the operator G represents the condensation of gluons inside hadrons,
(3) a mean field approximation can be applied to the gluon field operator
A in the minimal coupling of effective quarks to the gluons condensed in a
hadron, and (4) the effects of quark and gluon binding that are not treatable
in the mean field approximation can be included by an ad hoc Gaussian
approximation to the wave function of relative motion of constituent quarks
with respect to the condensed gluons.

5.4. Mass squared with minimal coupling at λ & λc

The leading idea is that the approximate LF Hamiltonian for 2 or 3
quarks at scale λ & λc in light hadrons should have a form compatible with
minimal coupling between quarks and gluons and it should respect Poincaré
symmetry. Realization of the idea employs the four assumptions listed at
the end of the previous section in the following way.

The LF Hamiltonian eigenvalue problem at λ & λc for a light hadron
built from 2 or 3 quarks and condensed gluons,

Hλ|ψ〉 =
M2 + P⊥ 2

h

P+
h

|ψ〉 , (69)

can be written in terms of the eigenvalue equation for the effective invariant
mass operator of the hadron,M2

λ, in the form

M2
λ|ψ〉 = M2|ψ〉 . (70)

One can think about the operator on the left-hand side of this equation in
terms of the invariant mass squared of free particles plus interaction terms.

For a free quark of mass m1 and a free anti-quark of mass m2, one has

M2
free =

(√
m2

1 + ~p 2
1 +

√
m2

2 + ~p 2
2

)2

− (~p1 + ~p2)2 . (71)

For slowly moving particles, neglecting terms smaller than the ones that are
quadratic in momenta, the NR approximation renders

M2
free = (m1 +m2)2 +

m1 +m2

m1
~p 2

1 +
m1 +m2

m2
~p 2

2 − ~P 2
qq̄ , (72)
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where ~P denotes the total momentum of the two quarks. Using

β1 =
m1

m1 +m2
, (73)

β2 =
m2

m1 +m2
(74)

one has

M2
free = (m1 +m2)2 +

1
β1
~p 2

1 +
1
β2
~p 2

2 − ~P 2
qq̄ . (75)

According to the gauge rule of minimal coupling, the interaction of quarks
with the condensed gluons should be described by

M2
minimal = (m1 +m2)2 +

(
~p1 − g ~A1

)2

β1
+

(
~p2 − g ~A2

)2

β2
− ~P 2

qq̄ , (76)

where ~Ai is an abbreviation for ~A(xi). Analogous reasoning in the case of
baryons yields

M2
minimal =

(
3∑
i=1

mi

)2

+
3∑
j=1

(
~pj − g ~Aj

)2

βi
− ~P 2

3q , (77)

where βi = mi/(m1 +m2 +m3).
For all quarks having the same mass m, βM = β1 = β2 = 1/2 in mesons

and βB = β1 = β2 = β3 = 1/3 in baryons. Assuming these simplifications,
the minimal coupling terms in Eqs. (76) and (77) can be interpreted follow-
ing Ref. [17] in the context of standard Hamiltonian dynamics as resulting
from the Hamiltonian operator with a proper β, i.e., βM in mesons and βB
in baryons

Hmin =
1
β

∫
d3x : ψ̄(~x )

[
−i~∇x − g ~A(~x )

]2
ψ(~x ) : . (78)

5.5. Reinterpretation of the gluon condensate

Using Eqs. (57), (58), and (78), one can consider the eigenvalue problems

Hmin

∑
12G

ψ(12G) |12G〉 = M2
qq̄

∑
12G

ψ(12G) |12G〉 , (79)

Hmin

∑
123G

ψ(123G) |123G〉 = M2
3q

∑
123G

ψ(123G) |123G〉 , (80)
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for quark subsystems in mesons and baryons and project them on the corre-
sponding basis states. The calculation proceeds in a similar way to the one
in Ref. [17], with three exceptions.

The first difference is that the eigenvalues M2
qq̄ and M2

3q refer only to the
qq̄ subsystem in mesons, instead of the entire meson mass squared, and to
the 3q subsystem in a baryon, instead of the entire baryon mass squared.
Note also that the eigenvalue equations considered in Ref. [17] were for
usual energies while we now consider the invariant mass squared operators
that include the quark free invariant mass squared and minimal coupling
interactions. The second difference is that the vacuum state |Ω〉 is replaced
by the state of gluons condensed in a hadron,

|G〉 = G†(~xG)|0〉 . (81)

The vacuum state |0〉 does not develop any condensate. The third difference
is that in the mean-field approximation for the gluon field21,

~A(~x) = 1
2
~B(~xG)× (~x− ~xG) , (82)

one introduces the color magnetic field operator at the center of the gluon
component G of a hadron, ~B(~xG), instead of the vacuum operator ~B at an
arbitrary point ~x0. However, these differences do not change the formal cal-
culation of the matrix elements. The field ~B(~xG) is assumed factorized into
a product of vectors, one with space and the other with color components
as in Ref. [17]. This assumption is meant to reflect the assumed lack of cor-
relation between position space and color space directions in the mean-field
approximation and it renders a simple, Abelian form of the approximate
model for the effective Hamiltonian. Matrix elements of terms linear in A
are set to zero because they change under gauge transformations whereas
the white component of a hadron does not.

The matrix elements one obtains for a qq̄ pair in a meson and 3q in a
baryon read22

〈12G|Hmin|ψ〉M =
1
βM

2∑
i=1

{
−∆i +

g2

3
Tr
〈G| (A1 −A2)2 |G′〉

〈G |G′〉

}
〈12G|ψ〉 ,(83)

〈123G|Hmin|ψ〉B =
1
βB

3∑
i=1

(−∆i)〈123G|ψ〉B +
1
βB

3∑
i=1

g2

3

×Tr
〈G|

(
Ai−A j+k

2

)2

+ 1
12 (Aj−Ak)2 |G′〉

〈G|G′〉
〈123G|ψ〉B .(84)

21 This approximation replaces the Schwinger gauge formula for the background gluon
field that reproduces QCD sum rules for heavy quarkonia in the LF Hamiltonian
formulation of the theory [52].

22 Eq. (14) in Ref. [17] misses the factor 1/3 in front of the condensate term that is
correctly printed here in Eq. (83).
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All gluon field matrix elements contain squares of differences of the effective
gluon field operator at different points. Therefore, the position of the gluon
body, ~xG, drops out. In the mean-field approximation, one has

~A(~x )− ~A(~y ) = 1
2
~B × (~x− ~y ) , (85)

where ~B = ~B(~xG). Consequently,

Tr〈G| g
2

4π2

(
~Ax − ~Ay

)2 ∣∣G′〉 = 2 (~x− ~y )2 Cglue

〈
G|G′

〉
(86)

with 〈
G|G′

〉
= δGG′ . (87)

The expectation value Cglue plays here the same role that the vacuum gluon
condensate value Cvacuum = ϕ2

vacuum/96 with

ϕ2
vacuum = 〈Ω|(α/π)GµνcGcµν |Ω〉 , (88)

plays in Ref. [17]. Replacement of the constant Cvacuum by the constant
Cglue = ϕ2

glue/96, implies our reinterpretation of the phenomenologically
useful quantity ϕvacuum on the order of ΛQCD as coming from the quantity
ϕglue that originates according to the RGPEP model in the gluon conden-
sation only inside a hadron instead of the entire space. Hence,

〈12G|Hmin|ψ〉M =
1
βM

(−∆1 −∆2) 〈12G|ψ〉M

+
1
βM

(πϕglue

3

)2 r2
12

2
〈12G|ψ〉M , (89)

〈123G|Hmin|ψ〉B =
1
βB

(−∆1 −∆2 −∆3)〈123G|ψ〉B

+
1
βB

5
8

(πϕglue

3

)2
(
r2

12

2
+

2r2
3

3

)
〈123G|ψ〉B , (90)

where

r12 = x1 − x2 , (91)
r3 = x3 − (x1 + x2)/2 . (92)

The results for Hmin with new interpretation of the gluon condensate inside
hadrons are used in the next section to construct candidates for effective
LF Hamiltonians of light mesons and baryons as first approximations to
solutions of RGPEP in QCD.
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5.6. Approximate LF Hamiltonian for quarks at λ & λc in light hadrons

Candidates for approximate Hamiltonians for light hadrons can be ob-
tained starting from inclusion of results in Eqs. (83) and (84), or (89) and
(90), in Eqs. (76) and (77), correspondingly. The meson case is simpler than
the baryon case and explains the leading idea of constructing the effective
Hamiltonians using the minimal coupling dictated by gauge symmetry. We
have

M2
qq̄ = (m1 +m2)2 − (~p1 + ~p2)2

+
1
β1

[
~p 2

1 +
〈
g2

3
Tr
(
~A1 − ~A2

)2
〉
G

]
+

1
β2

[
~p 2

2 +
〈
g2

3
Tr
(
~A1 − ~A2

)2
〉
G

]
. (93)

Using the variables
~P12 = ~p1 + ~p2 , (94)
~k = β2~p1 − β1~p2 , (95)

~p1 = β1
~P12 + ~k , (96)

~p2 = β2
~P12 − ~k (97)

one arrives at

M2
qq̄ = (m1 +m2)2 +

1
β1β2

[
~k 2 +

〈
g2

3
Tr
(
~A1 − ~A2

)2
〉
G

]
. (98)

The LF counterpart of this result is obtained by considering three-vectors
with + and ⊥ components instead of z and ⊥. So, one writes

P+,⊥
12 = p+,⊥

1 + p+,⊥
2 , (99)

x1 = p+
1 /P

+
12 , x2 = p+

2 /P
+
12 , (100)

κ⊥ = x2p
⊥
1 − x1p

⊥
2 , (101)

p⊥1 = x1P
⊥
12 + κ⊥ , (102)

p⊥2 = x2P
⊥
12 − κ⊥ . (103)

These are standard expressions in LF description of relative motion of two
constituents carrying the total momentum P . Using these variables for two
free particles named 1 and 2, one obtains their free invariant mass squared
in the form

M2
12 =

κ⊥ 2 +m2
1

x1
+
κ⊥ 2 +m2

2

x2
(104)

= (m1 +m2)2 +
1

x1x2

[
κ⊥ 2 + (m2x1 −m1x2)2

]
. (105)
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Comparison with Eq. (98) identifies the relative momentum ~k

k⊥ =
√
β1β2

x1x2
κ⊥ , (106)

kz =
√
β1β2

x1x2
[m2x1 −m1x2] . (107)

This is a new way of parameterizing relative motion of two constituents in LF
approach to quantum mechanics and field theory. The new variables match
non-relativistic relative momenta that include effects of particle masses. On
the other hand, it is known that in the relativistic relative motion of two
constituents the mass parameters appear not significant. For example, the
standard relative momentum, in which k⊥ = κ⊥, has length

~k 2
standard =

1
4M2

12

[
M2

12 − (m1 +m2)2
] [
M2

12 − (m1 −m2)2
]
, (108)

and a relatively complicated expression is obtained for kz if one insists on the
identification k⊥ = κ⊥. But whenM12 is large, one has ~k2

standard =M2
12/4

independently of the quark masses. At the same time, the variable kzstandard

depends on κ⊥. The length of the standard relative three-momentum in the
constituent rest frame differs from the length of the new one,

~k 2
standard =

~k 2

4β1β2

[
1− (m1 −m2)2

M2
12

]
, (109)

and the angular orientations of the three-vectors ~kstandard and ~k also differ.
This means that the new choice of LF three-momentum variables in rela-
tivistic cases involves rotation by some polar angle (the azimuthal angles are
the same). Analysis of rotational symmetry is influenced in the sense that in
order to recover a simple NR quantum mechanical picture of hadrons from
quantum field theory one is motivated by the effective picture in RGPEP
to use the new variable ~k rather than ~kstandard as arguments of potentials
for constituent quarks. One should also remember that when a change of
variables is made in the expressions involving effective quark wave functions,
the new variables produce Jacobian factors in phase-space integration.

Using Eq. (89), one obtains〈
g2

3
Tr
(
~A1 − ~A2

)2
〉
G

=
1
2

(πϕglue

3

)2 r2
12

2
, (110)

where ~r12 should be the relative position variable that is canonically conju-
gated to ~k. This means in quantum mechanics that

~r12 = i
∂

∂~k
. (111)
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Thus, the LF mass squared for a constituent quark–anti-quark pair at scale
λ & λc interacting in a gauge minimal way with gluons condensed inside a
meson and treated in a mean-field approximation, has the form

M2
qq̄ = (m1 +m2)2 +

1
β1β2

[
~k 2 +

1
2

(πϕglue

3

)2 1
2

(
i
∂

∂~k

)2
]
, (112)

where the vector ~k is defined by Eqs. (106) and (107).
In particular, the effective quarks u and d are expected to have practically

the same mass m order ΛQCD in the RGPEP scheme. For them, β1 = β2 =
1/2 and the associated Jacobi variables are

~ρ = ~r12/
√

2 , (113)

~pρ = ~k
√

2 . (114)

In terms of these variables,

M2
qq̄ = 4m2 + 2 p2

ρ + 2
(πϕglue

3

)2
ρ2 . (115)

For small relative momenta and corresponding distances, this result approx-
imately matches the NR oscillator dynamics,

Mqq̄ = 2m+
p2
ρ

2m
+

1
2
m
(πϕglue

3m

)2
ρ2 , (116)

with frequency ωM = πϕglue/(3m).
On the one hand, this result relates the RGPEP reasoning to the CQM

phenomenology since the reinterpreted value of the gluon condensate pro-
duces physically reasonable frequency ωM [17]. On the other hand, the
variables ~k and ~r identified here include the characteristic factor

√
x(1− x)

that is required in AdS/QCD holographic variables [24,25,26]. Thus, it be-
comes plausible that also the RGPEP reasoning regarding the λ-dependence
of effective interactions may provide insight into the significance of soft wall
(SW) models [27] of hadron spectrum.

As a result of analogous reasoning in the baryon case, we obtain

M2
123 − (m1 +m2 +m3)2 =

1
β3(1− β3)

~Q 2 +
1− β3

β1β2

~K 2 , (117)

where

xi = p+
i /P

+
123 , (118)
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βi =
mi

m1 +m2 +m3
, (119)

p⊥3 = x3P
⊥
123 + q⊥ , (120)

p⊥2 = x2P
⊥
123 −

x2

1− x3
q⊥ − k⊥ , (121)

p⊥1 = x1P
⊥
123 −

x1

1− x3
q⊥ + k⊥ , (122)

Q⊥ =

√
β3(1− β3)
x3(1− x3)

q⊥ , (123)

Qz =

√
β3(1− β3)
x3(1− x3)

[(m1 +m2)x3 −m3(x1 + x2)] , (124)

K⊥ =

√
β1β2

x1x2

1− x3

1− β3
k⊥ , (125)

Kz =

√
β1β2

x1x2

1− x3

1− β3

(
m2

x1

1− x3
−m1

x2

1− x3

)
. (126)

For slow relative motion of constituents, the new momentum variables ~K
and ~Q match the non-relativistic three-momenta used in quark models, but
in fact they apply in the entire range of relativistic kinematics of motion
of constituents inside baryons, and for arbitrary motion of baryons as a
whole, thanks to the kinematical symmetries of LF formulation of the theory.
However, one needs to remember that the lengths and angular orientations
of the new momentum variables differ from the standard LF variables among
which, in particular, q⊥12 and q⊥3 (see below) could be thought directly usable
for obtaining some effective constituent picture for baryons from LF QCD.

The LF mass squared for 3 constituent quarks of one and the same mass
m at scale λ & λc interacting in a gauge minimal way with gluons condensed
inside a baryon in a mean-field approximation, has the form

M2
3q = 9m2 + 6 ~K 2 +

9
2
~Q 2 − 3m2

(πϕ
3m

)2 5
8
∆2
K

2
+

2∆Q

3
. (127)

We identify relations
~K = ~q12 = ~pρ/

√
2 , (128)

−i ∂
∂ ~K

= ~r12 =
√

2 ~ρ , (129)

~Q = ~q3 = −
√

2/3 ~pλ , (130)

−i ∂
∂ ~Q

= ~r3 = −
√

3/2~λ , (131)
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in terms of the Jacobi co-ordinates for 3 quarks with equal masses, ~ρ, ~pρ, ~λ,
and ~pλ. One has

P123 = p1 + p2 + p3 , q12 = (p1 − p2)/2 , (132)
P12 = p1 + p2 , q3 = (2p3 − P12)/3 , (133)
P12 = 2P123/3− q3 , p3 = P123/3 + q3 , (134)
p1 = P12/2 + q12 = P123/3 + q12 − q3/2 , (135)
p2 = P12/2− q12 = P123/3− q12 − q3/2 , (136)
p3 = P/3 + q3 . (137)

p2
1 + p2

2 + p2
3 = P 2

123/3 + 2q2
12 + 3q2

3/2 . (138)

R123 = (x1 + x2 + x3)/3 , r12 = x1 − x2 , r3 = x3 −R12 , (139)
x3 = R123 + 2r3/3 , R12 = (x1 + x2)/2 = R123 − r3/3 , (140)
x1 = R12 + r12/2 = R123 − r3/3 + r12/2 , (141)
x2 = R12 − r12/2 = R123 − r3/3− r12/2 . (142)

3∑
i=1

pixi = P123R12 + q12r12 + q3r3 . (143)

In the case of the same masses, the relativistic LF result for three quarks in
a baryon reads,

M2
3q = 9m2 + 3 ~p 2

ρ + 3 ~p 2
λ + 3m2

(πϕ
3m

)2 5
8

(
~ρ 2 + ~λ 2

)
. (144)

In the NR limit,

M3q = 3m+
~p 2
ρ

2m
+
~p 2
λ

2m
+

1
2
m

5
8

(πϕ
3m

)2 (
~ρ 2 + ~λ 2

)
, (145)

which matches precisely the result of Ref. [17], and

ω2
B = 5

8 ω
2
M . (146)

This numerical relation is in a reasonable agreement with phenomenology
of constituent quark models [21, 22, 23], as noticed already in Ref. [17] (see
also Sec. 6.4).
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5.7. Dynamics of quarks and glue in hadrons at λ & λc

The constituent models do not, however, include the gluon component G.
Model potentials are also not assigned energy or momentum, while gluons
do carry energy and momentum. Bag models do include a bag in terms of
boundary conditions on quark wave functions on the bag walls and a constant
contribution of the bag to the total hadron energy, but the bag is not placed
yet in the context of QCD [53]. The author does not know how to interpret
results of lattice formulation of QCD regarding the constituent model and
the gluon component in terms of hadronic wave functions. Summarizing, it
is not clear how the addition of G will affect phenomenology familiar through
the CQMs without G, although some foreseeable changes appear welcome
(see the next section).

Regarding the contribution of mass of G to the mass squared of the whole
hadron, one cannot say anything but hypothesize that the mass of G may
depend on λ. It can be small, due to interactions that hold gluons among
themselves in the form of G. The mass of G may even decrease when λ
drops down to λc. A graphical picture that makes this idea plausible as a
result of overlapping of quarks of size 1/λ (a quark and an anti-quark in a
meson or three quarks in a baryon) and G in position space, is described in
Appendix D. However, a simple concept of a constituent G may be insuf-
ficient in the case of π-mesons, considering that π-mesons may differ from
other hadrons as a consequence of their relationship to chiral symmetry and
its breaking. The symmetry breaking can be addressed in LF QCD [16] but
it is not addressed in this article. Such discussion requires reinterpretation
of the quark condensate and G built from gluons alone is not sufficient.

Regarding the motion of the glue component G inside a hadron, one may
observe that if the state G†|0〉 in RGPEP is to correspond to the vacuum in
the instant dynamics way of thinking and G is associated through RGPEP
with a hadron in an effective theory of scale λ & λc, the effective quarks at
this scale should not be free to move farther away from xG than about 1/λ
(see also Appendix D). The mean field approximation misses the fact that
the gluon component has a size comparable with a hadron. The Schwinger
gauge expression for the gluon field potential Aλ(x) with only one term
linear in ~x− ~xG and ~B(~xG), Eq. (82), must be missing important effects at
distances comparable with the diameter of a hadron, cf. [52]. This means
that the gauge transport factors T (x, x) cannot be approximated well in the
entire volume of a hadron using the Schwinger gauge with a linear term alone.
Thus, the mean-field calculation does not report well on what happens at
the boundary of the glue or the boundary of a hadron. While one cannot
determine in advance what will eventually result from RGPEP calculations
of effective Hamiltonians and eigenvalue problems for these Hamiltonians,
one should certainly expect that there will be forces that keep the center of
the quarks and the glue together.
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There is no simpler choice for the needed interaction term between the
quarks and G than a quadratic function of the distance between x and xG.
Such distance is easy to write in NR quantum mechanics. However, one has
to carefully define its analog in the hadron mass squared operator on the LF.
Solution of this technical issue described here, is found by looking at hadrons
as built only from two constituents. One constituent is the effective quarks
treated as one particle of mass resulting from eigenvalues ofM2

qq̄ in mesons
or M2

3q in baryons. The other constituent is G treated as a particle. The
mass of G is unknown, may depend on λ, and is free to adjust in a process
of defining a first approximation to hadrons at λ & λc. With this setup,
one applies the same method for constructing the LF mass squared operator
that we used for a quark and an anti-quark treated as two constituents in
a harmonically bound state. There is no minimal gauge coupling to use for
the colorless state of quarks interacting with a white G, and a large degree
of ambiguity must be confronted without clear guidance from QCD23. But
there is no problem now with introducing the appropriate oscillator potential
operator using the distance that is quantum-mechanically conjugated to a
relative momentum.

The first-approximation to LF Hamiltonian for light hadrons at λ & λc

is suggested to have the form

Hλ&λc
=
M2

quarks + P⊥ 2
quarks

P+
quarks

+
M2

G + P⊥ 2
G

P+
G

+
M2

qG

P+
hadron

. (147)

In order to define a suitable candidate for the last term, one can introduce

P+,⊥
hadron = P+,⊥

quarks + P+,⊥
G , (148)

xq = P+
quarks/P

+
hadron , (149)

xG = P+
G /P

+
hadron , (150)

κ⊥q = xGP
⊥
quarks − xqP⊥G , (151)

P⊥quarks = xqP
⊥
hadron + κ⊥q , (152)

P⊥G = xGP
⊥
hadron − κ⊥q . (153)

In terms of these variables, the hadron mass squared reads

M2
hadron =

M2
quarks + κ⊥ 2

q

xq
+
M2

G + κ⊥ 2
q

xG
+M2

qG , (154)

23 It is precisely this type of ambiguity at small energies that RGPEP is meant to
eventually help in resolving.
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whereM2
quarks is now to be identified with the eigenvalue M2

q for the mass
squared of the quark subsystem in a hadron and MG is set to the corre-
sponding eigenvalue M2

G, which could be considered to have a ground state
value or an excited value, if the condensed gluons were in an excited state.
The constant M2

q is either 4m2 or 9m2 plus an appropriate number times
mω with ω = ωM or ω = ωB, respectively. Having introduced

βq =
Mq

Mq +MG
, (155)

βG =
MG

Mq +MG
, (156)

one can define

k⊥h =

√
βqβG
xqxG

κ⊥q , (157)

kzh =

√
βqβG
xqxG

[MGxq −MqxG] . (158)

Proceeding as in the case of two quarks in a meson, Eq. (112), one establishes

M2
qG =

1
βqβG

1
2

(πϕh
3

)2 1
2

(
i
∂

∂~kh

)2

−M2
ϕ , (159)

M2
hadron = (Mq +MG)2 −M2

ϕ

+
1

βqβG

[
~k 2
h +

1
2

(πϕh
3

)2 1
2

(
i
∂

∂~kh

)2
]
, (160)

where two new parameters, ϕh and Mϕ, are introduced.
The parameter ϕh is used in the similar way to how ϕglue is used in the

invariant mass of quarks in mesons. However, ϕh serves merely the purpose
of notation for the unknown quantity of binding between quarks and G
whose value must be adjusted in the process of correcting the candidate for
the first approximation. In RGPEP, ϕh can be expected to depend on λ.
Intuitive arguments are offered in Appendix D. This candidate for a first
approximation will only be satisfying if it turns out in future calculations
in RGPEP that some optimal value of ϕh can be adjusted as a function of
λ/ΛQCD and the corresponding coupling constant, assuming that the light
quark mass parameters do not matter at small λ where the effective quark
masses are on the order of ΛQCD anyway and do not vary with λ so rapidly
that no average constituent picture can correspond to QCD. Assuming that



Reinterpretation of Gluon Condensate in Dynamics of Hadronic . . . 1971

ϕh does not vary from hadron to hadron, one can introduce

ωh =
πϕh
3µh

, (161)

µh =
MqMG

Mq +MG
. (162)

The parameter µh is the reduced mass for the two-body system quarks-G.
It depends on a hadron as far asMq depends on a hadron, assumingMG can
be considered universal in the first approximation. Thus, the mass-squared
eigenvalues for the whole hadron takes the form

M2
h = (Mq +MG)2 −M2

ϕ +
µh
βqβG

(nh + 3/2)ωh , (163)

where nh denotes the excitation quantum number in relative motion of
quarks with respect to the gluon condensate in a hadron, being zero in
a ground state. Thus the momentum width of relative motion of quarks
with respect to G is of the order of ϕh.

The mass parameter Mϕ is introduced by fiat and brings in another
considerable degree of ambiguity. Physical motivation forMϕ is that for the
gluon condensation to occur in hadrons it must be favorable energetically.
If one just added the free energy of G and a harmonic quarks-glue potential
energy to the energy of quarks, the condensation of gluons would only add
energy to the system of quarks. The effect of condensation should rather
be opposite: the concept of condensation of gluons inside hadrons implies
thinking that the mass of a hadron state is lowered by condensation of
gluons in comparison with a state in which condensation is absent. Since
the kinematical minimum of energy of quarks and glue is Mq + MG, which
corresponds to κ⊥q = 0 and xq = βq, the interaction mass parameter Mϕ

may be estimated by inspecting the condition

M2
q > (Mq +MG)2 + 3

2(Mq +MG)ωh −M2
ϕ . (164)

Assuming that the resulting lower bound on Mϕ provides an estimate of its
likely magnitude in QCD, we obtain

M2
ϕ ∼ MqMG

(
2 +

MG

Mq
+

3ωh
2µh

)
, (165)

where 3 signifies the number of spatial dimensions. Assuming thatMq equals
nucleon mass mN , and MG ∼ ωh ∼ mN/3, one obtains Mϕ ∼ 1.2mN . If
MG ∼ Mq ∼ mN and ωh ∼ mN , we have Mϕ ∼ 2.4mN . This means that
Mϕ can be adjusted to obtain a hadron mass as coming mainly from the
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quark mass eigenvalue Mq provided that Mϕ is quite sizable. Such sizable
energy benefit from gluon condensation eliminates a large contribution of G
to a hadron mass and sustains the possibility that a simple oscillator quark
model without any glue can reproduce masses of light hadrons assuming
that the effective quark masses are on the order of ΛQCD

24.
We wish to stress that Eq. (159) does not imply one and the same in-

teraction between quarks and glue G in all hadrons even if the parameters
concerning G are assumed the same for all hadrons. Different hadrons are
actually having different Hamiltonians characterized by different quantum
numbers of their quark component, such as radial and orbital excitations
(elementary spin effects are discussed in the next section) and the mass
eigenvalue for the quarks, Mq, depends on these quantum numbers. This
mass enters the definition of ~kh and thus also the definition of harmonic
potential between the quarks and G that is defined in terms of ∂/∂~kh. As
a result, potentials between quarks and G vary from hadron to hadron in a
well-defined pattern: the higher excitation of quarks, the greater their mass
and the more momentum of a hadron carried by quarks25. For example,
quarks in excited nucleons are expected to carry a larger fraction of the res-
onance momentum than quarks carry in a ground-state nucleon. And vice
versa, an excitation of the gluons condensed in a hadron increases MG and
the fraction of a hadron momentum they thus carry. Nevertheless, a CQM
for light hadrons should be viewed as corresponding to nh = 0 when λ & λc

is actually lowered to λc. As suggested in Appendix D, when λ is lowered
to λc, the role of G may be imagined taken over entirely by the content
of extended constituent quarks that overlap each other heavily, so that no
separate glue component can exist in hadron besides what is already con-
tained in the extended effective quarks. Instead of the speculation, however,
the proper problem is what will result from attempts to solve the RGPEP
equation for the effective Hamiltonian at λ = λc. Strictly speaking, nothing
is known currently about the solution.

6. RGPEP in QCD and phenomenology

The discussion that follows is limited to the case of all effective quarks
having the same mass m. The common mass is expected to be a reasonable
approximation for quarks u and d at λ ∼ λc. Calculational complications
due to differences in mass between these quarks are not discussed.

24 If the condensation mass advantage, −M2
ϕ, were associated also with condensation

of quark–anti-quark pairs, one might expect a pronounced reduction in masses of
the hadron states in which a bilinear effective quark field expectation value plays a
significant role in the dynamics, with π mesons being the primary candidates.

25 Provided that the first-approximation quantity Mϕ is kept constant.
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Assuming that ϕglue is on the order of Λ2
QCD, which means that it has

a similar value to the values obtained in QCD sum rules for ϕvacuum, one
obtains phenomenologically attractive values of ωM and ωB [17]. Eqs. (112),
(127), (154), (159), and (160), imply together eigenvalues and wave functions
for light hadrons in the form of harmonic oscillator solutions that include
the glue component G. The generic oscillator eigenvalue problem for two
particles has the form (

~p 2

2m
+

1
2
mω2~r 2

)
ψ = E ψ (166)

with eigenvalues En = (n+ 3/2)ω and the ground-state wave function ψ0 =
N exp [−~p 2/(2mω)] for n = 0, where ~p and ~r are canonically conjugated
variables.

For two effective constituent quarks in mesons, using Eq. (116) that
explains what happens in the LF eigenvalue equation forM2

qq̄ in terms of a
NR approximation toMqq̄, Eq. (115) implies the first LF approximation of
the form

M2
qq̄ n = 4m2 + 4(n+ 3/2)mωM , (167)

ψqq̄ 0 = Nqq̄ 0 exp
[
−~k 2/(mωM )

]
(168)

= Nqq̄ 0 exp
{
− 1

4mωM

[
κ⊥ 2 +m2

x(1− x)
− 4m2

]}
, (169)

with frequency ωM = πϕglue/(3m) and wave functions of excited states,
ψqq̄ n, generated by building harmonic oscillator excitation operators from
the vector ~k and gradient ∂/∂~k in a standard way and applying them to the
ground state wave function ψqq̄ 0.

For three effective constituent quarks in baryons, using Eq. (145) that
explains what happens in the LF eigenvalue equation forM2

3q in terms of a
NR approximation toM3q, Eq. (144) implies the first LF approximation of
the form

M3
3qn1n2

= 9m2 + 6(n1 + n2 + 3)mωB , (170)

ψ3q 0 = N3q 0 exp
{
− 1

6mωB

[
9
2
~Q 2 + 6 ~K 2

]}
(171)

= N3q 0 exp
{
− 1

6mωB

[
(1− x3) k⊥ 2

x1x2
+

q⊥ 2

x3(1− x3)

+ m2

(
1
x1

+
1
x2

+
1
x3
− 9
)]}

, (172)
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with baryon oscillator frequency ωB =
√

5/8 ωM and wave functions of
excited states, ψ3q n1n2 , generated in a standard way by building harmonic
oscillator excitation operators from the vectors ~K and ~Q and gradients ∂/∂ ~K
and ∂/∂ ~Q and applying them to the ground state wave function ψ3q 0. The
LF momentum variables are defined in Eqs. (118), (120), (121) and (122).

In summary, the factor in a hadron ground-state wave function that
depends on the relative motion of n quarks has the form

ψnq 0 = Nnq 0 exp

− 1
2nmωn

( n∑
i=1

pi

)2

− (nm)2

 , (173)

with n = 2 for mesons, n = 3 for baryons, ω2 = ωM , ω3 = ωB, and pi the
on-mass-shell four-momentum for quark number i.

Exponentials of an invariant mass squared of quarks are popular as wave
functions in phenomenological studies. Here such exponentials are related
to gauge symmetry and reinterpretation of the gluon condensate as a part
of a hadron.

The spectrum of light hadron masses in Eq. (163), i.e., the spectrum
corresponding to the ground state of relative motion of quarks with respect
to the glue G, becomes equal to the spectrum of masses of the quark com-
ponent alone when the estimate (165) is adopted for the benefit of the gluon
condensation in a hadron. This result reproduces success of the constituent
quark models26.

At the same time, when the relative motion of quarks with respect to the
glue part is described by Eq. (160), the hadron mass is given by Eq. (163)
and the corresponding wave function is generated from the ground-state
wave function

ψh = ψnq 0 ψqG 0 , (174)

ψqG 0 = NqG 0 exp
[
−(Pq + PG)2 − (Mq +MG)2

2(Mq +MG)ωh

]
, (175)

in a standard way for harmonic oscillators, first for the quark component
and then, using the quark component mass eigenvalue, for the whole hadron

26 The oscillator functions of relative quark motion are independent of quark spins.
A Coulomb part of the wave function must depend on spins. For small λ, effective
quark spin wave function can be treated as a separate factor in the oscillator part of
the wave function. Spin factors can be constructed in a boost-invariant way using
LF spinors and following the example of heavy quarkonia [18] in the case of mesons
or Ioffe currents [34] in the case of baryons. However, in contrast to models not
related to QCD, RGPEP provides a scheme for systematic study of spin-dependent
corrections to the first oscillator approximation.
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if the quarks are excited in their motion with respect to G. Thus, the in-
variant mass squared of quarks and G together, (Pq + PG)2 is evaluated in
a standard way using their LF momenta and their minus components calcu-
lated using quark mass eigenvalue Mq and the glue mass MG, respectively.
Normalization factors are fixed by normalizing probability to 1, or fixing the
charge to the appropriate value (if the charge is not zero these normalization
conditions are the same).

6.1. Form factors

The relative motion of quarks with respect to the glue G smears the
quark observables that follow from the quark factor in the hadron wave
function alone. Consider the ground state of quarks’ motion with respect
to G. Calculation of the baryon form factor at a small momentum transfer
q, q2 = −Q2, 0 ≤ Q2 ≤ Λ2

QCD, is represented graphically in Fig. 1. Meson
form factor calculation involves 2 instead of 3 quarks but otherwise proceeds
in the same way.

Fig. 1. The RGPEP calculation of a baryon form factor at λ ∼ λc.

Using the Breit frame with q+ = 0, which makes q− that depends on
masses irrelevant, one has Q2 = q⊥ 2 and

Fh
(
Q2
)

=
∫

dxqd
2κ⊥q

16π3xq(1− xq)

×ψ∗qG 0

[
xq, κq + (1− xq)q⊥

]
F3q

(
Q2
)
ψqG 0(xq, κq) , (176)

with normalization condition

1 =
∫

dxqd
2κ⊥q

16π3xq(1− xq)
|ψqG 0(xq, κq)|2 . (177)

Using the wave function in Eq. (174) and changing variables to x = xq and
κ⊥ = κ⊥q + (1− x)q⊥/2, one obtains

Fh(Q2) = F3q

(
Q2
)
f(Q) , (178)

f(Q) =
∫

dx d2κ⊥

16π3x(1− x)

∣∣∣ψ∗qG 0

(
x, κ⊥

)∣∣∣2 e− 1−x
x

Q2

4(Mq+MG)ωh . (179)
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After integration over κ⊥, one is left with

f(Q) =

1∫
0

dx e
−a
„
M2
q
x

+
M2
G

1−x+ 1−x
x

Q2

4

«

1∫
0

dx e
−a
„
M2
q
x

+
M2
G

1−x

« , (180)

where a−1 = (Mq + MG)ωh. It is now visible that f
(
Q2
)
is hardly differ-

ent from 1 for small Q2: the inclusion of the glue component G does not
significantly alter the result for a form factor calculated as if the glue com-
ponent was absent. Moreover, in the picture discussed in Appendix D, the
glue component may disappear in favor of overlapping constituent quarks
when λ is lowered below λc. The momentum fraction carried by the quarks,
x = xq, becomes very close to 1 and the factor f(Q2) becomes 127.

At large Q, much greater than a hadron mass, the hadron state needs to
be represented in terms of the Fock components created by quark and gluon
operators at λ comparable with Q itself, in order to obtain a simple picture
based on the smallness of an asymptotically small coupling constant that
determines the strength of interactions which are responsible for distribut-
ing the large momentum transfer q to a minimal set of constituents required
to build a hadron. The minimal quark component may carry practically the
whole momentum of a hadron, xq → 1. When this configuration dominates
the transition amplitude, the whole hadron is turned from the total momen-
tum P to P ′ = P + q in a combination of two mechanisms. One is xq → 1,
and the other is the distribution of q in the quark component. The former
contributes to soft effects, and the latter is responsible for hard exclusive
processes, cf. [45].

6.2. Structure functions

The transition amplitude for deep inelastic lepton–hadron scattering is
illustrated in Fig. 228. A hard photon or other boson is suddenly absorbed
by a constituent characterized by the scale Q. The new element RGPEP
introduces is the possibility of using the transformation WQλ of Sec. 4 to
calculate the probability amplitude for finding such constituent in a hadron.

27 Even if the component G contained quark–anti-quark pairs, and were used to account
for the quark condensate inside hadrons [20], its neutrality would imply a small
contribution to form factors of charged hadrons, such as proton. It might, however,
contribute a detectable piece for chargeless hadrons, such as neutron.

28 The lepton is not shown. Also, Fig. 2 ignores the possibility that the impinging boson
is absorbed by a constituent inside the component G, which may be thought here to
be only made of gluons. If G included quark–anti-quark pairs, it would contribute to
the sea parton distributions as well as the quark condensate in hadrons, cf. [20].
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The scale λ refers to the particle operators in terms of which the hadron wave
function is obtained from the eigenvalue problem. The scale Q refers to the
hard boson. The final state in Fig. 2 is made of many constituents produced
by WQλ. Fig. 2 does not show that WQλ actually acts on all constituents.

Fig. 2. The RGPEP calculation of a baryon structure function.

The final state in Fig. 2 is in fact a virtual state whose evolution factor
into observable particles is assumed to amount to unity. The energy, or P− of
the constituents that appear in the final state in Fig. 2, is dominated by the
constituent at scale Q that absorbs the boson. This situation corresponds to
the leading operator expansion terms, i.e., hand-bag diagrams that are more
important than cat-ears diagrams. One can use the Hamiltonian HQ(bQ) to
account for P− of the virtual state. This Hamiltonian is actually the same
as Hλ(bλ). Therefore, HQ(Q) may count the energy of particles in the final
state including the interactions that are responsible for grouping constituents
at scale Q into spectators at scale λ. Thus, the inclusive sum over final states
may be replaced by summing over a relatively small number of spectators
at scale λ and a potentially large number of constituents at scales between
λ and Q. The operator WQλ in RGPEP is hence expected to describe the
evolution of structure functions with Q2.

The above qualitative reasoning must be verified by new type of calcula-
tions using RGPEP evolution equations in place of other evolution equations
in Q2 [54,55,56]. Since it is known that RGPEP incorporates the well-known
splitting functions in QCD [29], there is no obvious reason for expecting that
RGEPEP evolution will significantly differ from known results where they
apply. On the other hand, RGPEP provides the framework for combining
the perturbative evolution with a non-perturbative hadron wave functions
obtained by solving eigenvalue problem for Hλ(bλ). The eigenvalue problem
describes saturation at small λ. But the evolution parameter λ determines
dependence of wave functions on invariant masses of constituent states. The
invariant masses depend on transverse momenta and fractions x of longitu-
dinal momentum in a specific way. One can thus expect that the evolution
in x [57, 58] is uniquely related in RGPEP with the evolution in Q2.
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6.3. Other processes

The approximate picture of a hadron at scale λ & λc as built from the
effective quark component and from G treated as a scalar boson suggests
thinking that the dynamics of G can be further approximated by suitable
effective Hamiltonian interaction terms. These terms would result in pro-
cesses in which quanta of type G participate in strong interactions, softened
by RGPEP form factors in vertices. Nothing can be said at this point about
physical relevance of the approximate concept of quanta of the type G be-
ing exchanged between hadrons. In particular, it is not excluded that an
exchange of such quanta may contribute to diffractive processes in hadron–
hadron collisions [59], or even in photon–hadron scattering [60] if a photon
were allowed to contain its own glue component coupled to quarks.

6.4. Connection with AdS/QCD

The NR form of minimal coupling in LF Hamiltonians at small λ appar-
ently leads to variables and harmonic oscillator potentials that are similar
to the ones that Brodsky and Teramond [24, 25, 26] identified as providing
a correspondence between formulae for hadronic form factors in LF QCD
and in field theory in 5-dimensional AdS space [61, 62]. The new variables
~k for mesons, Eqs. (106) and (107), and ~K and ~Q for baryons, Eqs. (123),
(124), (125), (126), differ from standard LF relative three-momenta of con-
stituents in the CRF29. For example, ~kstandard in Eq. (108) differs in length
and direction from ~k. But there is no difference between these momentum
variables when they are small in comparison to masses. Thus, the new vari-
ables are identical to standard variables in the NR dynamics at λ & λc. In
addition, they fully describe a relativistic relative motion of constituents, al-
ways providing an exact representation of their free invariant mass, but in a
different way than the standard momentum variables do. Standard variables
kzstandard, K

z
standard, and Q

z
standard

30, depend on the transverse relative mo-
menta. The new variables kz, Kz, and Qz, are defined using the constituent
masses and fractions x of their total P+, independently of the transverse
relative momenta. At the same time, the transverse relative momenta are
scaled by mass ratios and

√
x(1− x). The square-root factor is precisely

the one that appears in Brodsky–Teramond holography [26].
To illustrate the possibility of correspondence between the reinterpreted

gluon-condensate induced harmonic potential in LF QCD and a soft-wall
potential in Brodsky–Teramond AdS/QCD holography, we use example of

29 In LF dynamics, CRF differs from the bound state rest frame because conservation
of P+ implies that P 3 is not conserved by interaction terms in LF Hamiltonians.

30 E.g., see Ref. [34].
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a meson form factor. The discussion is far from complete and raises many
questions regarding interpretation of simple equations. However, it is needed
for showing similarities and differences among different approaches.

Let the struck quark and the spectator quark carry nearly whole hadron
momentum. The glue componentG provides additional smearing in the form
factor expression, Eq. (176), unless it is totally absorbed in the constituent
quarks31. Let us assume here that the latter option holds and all one needs
to consider is two constituent quarks.

In terms of the new variables,

k⊥ = κ⊥/
√

4x(1− x) , (181)

kz = (x− 1/2) 2m/
√

4x(1− x) , (182)

the LF eigenvalue equation for a meson of mass M reads(
4m2 + 4~k 2 + κ4~r 2

)
ψ = M2 ψ , (183)

where κ2 = mωM and ~r = i∂/∂~k. Using a factorized wave function,
ψ(k⊥, kz) = Nφ(k⊥) fη(x), where fη is an eigenfunction of the oscillator
in z-direction,

fη(x) = Hη(kz) e
− k

2
z
κ2 = Hη

[
m(x− 1/2)
κ
√
x(1− x)

]
e
−m

2(x−1/2)2

κ2x(1−x) , (184)

one arrives at the eigenvalue equation for φ(k⊥),[
4m2 + 4k⊥ 2 + κ4r⊥ 2 + (4η + 2)κ2

]
φ = M2 φ , (185)

which is the eigenvalue problem to compare with the Brodsky–Teramond
holographic eigenvalue problem, e.g., Eq. (10) in [26]. We denote quantities
used by Brodsky and Teramond with subscript ‘BT’, except for their ζ,

k⊥ = k⊥BT/2 , (186)
r⊥ = 2ζ⊥ . (187)

Eq. (185) can be written using κBT =
√

2κ as(
k⊥ 2

BT + κ4
BTζ

⊥ 2
)
φ = M2

BT φ , (188)

M2
BT = M2 − 4m2 − (2η + 1)κ2

BT , (189)
31 See Appendix D.
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where k⊥ 2
BT = −

(
∂/∂ζ⊥

)2. For angular momentum around z-axis equal lz,
using ζ = |ζ⊥|, one has[

− ∂2

∂ζ2
− 1
ζ

∂

∂ζ
+
l2z
ζ2

+ κ4
BTζ

2

]
φ = M2

BT φ . (190)

Defining φ = φBT/
√
ζ, we arrive at[

− ∂2

∂ζ2
− 1− 4l2z

4ζ2
+ κ4

BTζ
2 + (2η + 1)κ2

BT

]
φBT =

(
M2 − 4m2

)
φBT ,

(191)

which by comparison with Eq. (11) in [26] for massless quarks renders

U(ζ) = κ4
BTζ

2 + (2η + 1)κ2
BT , (192)

as a counterpart of the potential U(ζ) in Ref. [26], with

κ2
BT = 2mωM =

2π
3
ϕglue . (193)

The role of quark masses on the right-hand side of Eq. (191) requires expla-
nation. A sound explanation is currently not available in the sense that it is
not clear why the quark mass is set to 0 in Eqs. (10) and (11) in Ref. [26].
But it is plausible for constituent quarks that the condensate mass-advantage
constant Mϕ in Eq. (163) can be considered a result of incorporation of G
in the constituent quarks entirely. Mϕ may be so large that it reduces the
contribution of the quark masses to the hadron mass and thus reduces the
term −4m2 in the eigenvalue.

On the other hand, the SW model eigenvalue Eq. (12) in Ref. [27] reads

− ψ′′ +
[
z2 +

λ2
z − 1/4
z2

]
ψ = Eψ , (194)

E = 4nz + 2λz + 2 . (195)

By dividing Eq. (191) by κ2
BT, and using variable z = κBTζ, one obtains

− φ′′BT +
[
W (z) +

l2z − 1/4
z2

]
φBT = E φBT , (196)

E =
M2 − 4m2 − (2η + 1)κ2

BT

κ2
BT

. (197)
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Comparing this result with the SW model result, Eq. (194), and identifying
λz with lz, one obtains

W (z) = z2 . (198)

The SW model quadratic potential appears to have a coefficient given by
the gluon condensate inside hadrons, Eq. (193).

If η = 0, which means no excitation along the LF, only −κ2
BT enters the

eigenvalues. This is a sizable term (see below) and its compensation is not
guaranteed by Mϕ.

Baryon form factors are described in terms of an active constituent and
spectators. The analysis proceeds in a similar way to the case of a meson
built from two constituents of different masses. This simplification is avail-
able because the free LF invariant mass can be written in terms of the active
constituent and the rest of a hadron as if the rest of a hadron was a single
particle with its mass equal to the invariant mass of the rest of a hadron.
The closest analogy to consider is that a baryon form factor and eigenvalue
problem can be represented in terms of a quark and a di-quark.

It should be stressed, however, that it is far too early for drawing a
firm conclusion regarding connection between gluon condensation in hadrons
and SW models on the basis of a pure RGPEP calculation. The reason
can be seen using power counting [16]. Besides uncertainties concerning
x− and inverse of i∂+, spin-independent quark–anti-quark interaction term
in a LF Hamiltonian density with a quadratic potential, which is absent in
canonical QCD, may have a coefficient proportional to Λ2

QCD, to compensate
the dimension of x⊥ 2. There also exists a possibility [31] that a dimensionless
square of a product rµPµ is used instead of x⊥ 2, where r is the relative
position of arguments of two field operators on the LF, r+ = 0, and P is the
momentum carried by a product of two quark fields, i.e., two constituents
interacting by the potential. This possibility implies that the harmonic
potential does not necessarily requires a factor Λ2

QCD because a gradient
cancels dimension of a distance. Another Λ2

QCD may be needed to cancel
the dimension of additional integration measure d2x⊥. Still, the potential
term must vanish when λ → ∞. If it vanishes as 1/λ2, another Λ2

QCD
may be expected in the coefficient. There always exists a possibility to use
quark masses as dimensionfull quantities. Together, one may need powers
of ΛQCD as high as 6. Such terms may be hard to establish quickly in any
renormalization group procedure.

In any case, the above results certainly allow one to entertain the possi-
bility that the small-λ RGPEP picture of hadrons, at strong coupling, can
actually be the one that corresponds to the AdS picture, including the SW
model [27]. On the other hand, even if the SW model does correspond to
the Brodsky–Teramond LF holographic picture with a harmonic oscillator
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potential between an active constituent and spectators (in transverse direc-
tions), and even if these pictures can be related to the gluon condensation
in hadrons, how is RGPEP to explain emergence of the 5-th dimension in
the AdS/QCD analogy on the QCD side?

It has been pointed out that the 5-th dimension in AdS may correspond
to a renormalization group scale in gauge theory [63, 64]. More recent cal-
culations, such as [65, 66], also point in this direction. We observe in this
context that RGPEP provides an opportunity to explicitly introduce a 5-th
dimension in QCD with a simple physical interpretation. Namely, Eqs. (39)
and (40) for effective fields can be rewritten using the observation that λ
corresponds to the inverse size of effective particles. The effective particles
exhibit this size in their interactions; the effective interactions contain vertex
form factors whose momentum width is determined by the RGPEP parame-
ter λ. It is convenient to think about the size of the effective particles using
variable s = 1/λ32.

So, instead of labeling the field and particle operators with λ, we can
label them with s that corresponds to the size of effective particles. The
effective fields on the LF can be rewritten according to a rule

ψs(x) =
∫∑

[k] bs(k) eikx = ψ(x, s) . (199)

In this rule, the 5-th argument of the quantum field is the RGPEP size
of effective particles. This size plays the role of a renormalization group
parameter in RGPEP.

While the AdS dual picture involves its own renormalization issues
[67,68,69,70], and RGPEP methodology may eventually find applications in
these issues, too, the 5-th dimension of particle size makes QCD a priori a
5-di-mensional theory, with scale invariance broken by ΛQCD. The structure
of such a theory may or may not be similar to an AdS field theory. On the
other hand, RGPEP is certainly available for studying the 5-dimensional
QCD.

The issue that emerges immediately is that in order to evaluate observ-
ables in renormalized Hamiltonian formulation of LF QCD one in principle
can use just one value of the RGPEP parameter s, or λ. This means that
there is no need for integration over the renormalization group parameter
in QCD. Instead, to evaluate observables, one can use a Hamiltonian that
corresponds to an arbitrarily chosen value of s, or λ. So, if the RGPEP pa-
rameter were to correspond to the 5-th dimension in the AdS picture, what
would it mean in LF QCD that one integrates over this parameter?

32 The particle size parameter s enters the non-perturbative RGPEP equations through
replacement of the derivative d/dλ−4 on the left-hand side of Eq. (C.1) by d/ds4.
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The Brodsky–Teramond LF holography for hadronic form factors sug-
gests that the integration over the 5-th dimension in AdS field theory cor-
responds to integration over relative transverse momentum of an active
hadronic constituent with respect to spectators. But RGPEP suggests that
the LF wave functions have the form shown in Eq. (174), which is Gaussian
in invariant mass of the hadronic constituents. Integration over the trans-
verse relative momenta in form factors amounts to integration over invariant
mass, with a proper rescaling by

√
x(1− x). The invariant mass appears in

ratio to a square of the width parameter λ or, equivalently, in product with
the square of the effective particle size parameter s = 1/λ. The challenge of
understanding integration over the AdS 5-th dimension using RGPEP is to
explain how the integration over M can be turned into integration over λ
or s = 1/λ in renormalized LF QCD.

Although we do not provide here the ultimate response to this challenge,
we offer a qualitative argument that suggests where one can look for the
solution in future studies. Consider a fixed scale of an observable, such as
Q in a form factor. For a given λ = 1/s, one can evaluate the observable
in QCD by integrating wave functions over M. But if the wave functions
are functions of M/λ = sM, they are constant on hyperbolas defined by
the condition that sM is fixed. One can consider a plane of variables M
and s and plot a wave function in a perpendicular direction, forming a
3-dimensional plot of the wave function. Select a value of s = 1/Q and draw
a profile of the 3-dimensional plot for the selected value of s as a function
ofM. Draw another profile as a function of s forM = Q. These two profiles
are identical for all wave functions that only depend on the variablesM and
s through their product t. In such circumstances, integration over relative
motion of quarks of fixed size Q is equivalent to integration over all sizes s of
quarks that have fixed invariant mass Q. In QCD, this pure scaling picture
for lightest quarks must be broken by the scale set through ΛQCD.

The small-λ, or large-s picture of hadrons in RGPEP appears in accor-
dance with expectations that there exists a low-energy regime with a stable
strong coupling constant [71]33. In the stabilization region, the gluon con-
densation parameter ϕglue inside hadrons is considered constant as a function
of λ. The hadronic wave functions are Gaussian in the invariant mass with
the width provided by quark masses and ϕglue. The overall result is that
at small λ the effective parameters are frozen at values comparable with
ΛQCD. On the other hand, when λ increases, and s decreases, the Hamilto-
nian changes and it is expected to eventually simplify to the QCD canonical
form with counterterms at λ → ∞, i.e., for point-like quarks and gluons,
s → 0. Therefore, the wave functions of hadronic eigensolutions change

33 RGPEP may be used to seek a precise definition of such coupling constant us-
ing quark–gluon, three-gluon, and inter-quark potential terms in the corresponding
Hamiltonians, cf. [42, 29].
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with λ, or s. One may expect that when the wave function width in mo-
mentum space increases and the sizes of effective quarks and gluons decrease,
the invariant mass dependence turns from Gaussian to a power-law behavior
at large virtuality, perhaps as indicated by perturbation theory for exclusive
processes in a collinear approximation [45].

Finally, regarding the Brodsky–Teramond holography and SW models,
we wish to mention that one considers different values of the SW parameter
κ4 in front of ζ2 in the AdS equations for masses of mesons (M) and baryons
(B) [72]. Namely, κM ∼ 0.54–0.59 GeV and κB ∼ 0.49 GeV, with

κM
κB

∼ 1.15± 0.5 . (200)

In the reinterpreted gluon condensate image for hadrons, assuming a uni-
versal value of mass for u and d constituent quarks, one has

κM
κB

=
(

8
5

)1/4

∼ 1.125 . (201)

This agrees quite well with the phenomenological result.

7. Conclusion

Reinterpretation of the gluon condensate in RGPEP has several impli-
cations that matter in theory of hadrons. Instead of the entire vacuum, the
gluons condense only inside hadrons. If this option were actually realized in
QCD, there would be no need anymore to construct the quantum vacuum
state in Minkowski space that satisfies fundamental requirements of invari-
ance with respect to Poincaré transformations, a construction that so far
eluded theoreticians. At the same time, the LF Hamiltonian formulation of
QCD would become free from any obligation to produce a non-trivial vac-
uum that is commonly assumed to provide physically important expectation
values. When reinterpreted, the same expectation values come from distri-
bution of matter that is limited to the interior of hadrons. Simultaneously, it
becomes not clear how one should interpret expectation values that are mea-
sured in lattice formulation of gauge theories; they might also correspond
to the hadron interior rather than a state of infinite volume. In any case,
the reinterpretation is available within the RGPEP that provides tools for a
close inspection what actually happens. Thus, the picture of hadrons that
is sketched here in the context of reinterpretation of gluon condensate, pro-
vides an idea about how the CQMmay emerge as an approximate solution to
QCD when one applies RGPEP to it and, simultaneously, the RGPEP itself
is developed here as a method to the extent that is sufficient for undertaking
attempts at verifying this idea numerically.
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The constituent picture based on gauge symmetry dictates Gaussian LF
wave functions that are exponentials of free invariant masses of constituents.
The associated oscillator frequencies are in agreement with quark models
phenomenology when the gluon condensate inside hadrons is set to the value
found in phenomenology using QCD sum rules. The corresponding eigen-
value problems appear naturally in terms of variables in which AdS/QCD
models are developed, especially the SW model. The ratio of baryon and
meson oscillator frequencies in SW models agrees with the ratio implied by
the reinterpreted gluon condensate in RGPEP.

This article provides no comparable evidence for reinterpretation of the
quark condensate. But one may hope that RGPEP can generate constituent
quark masses when λ is lowered to values comparable with ΛQCD and shed
this way some light on the mechanism of absence of chiral symmetry in
hadronic spectrum and the nature of π-mesons as nearly Goldstone particles.

The author’s opinion that RGPEP provides a method for verifying the
reinterpretation of the gluon condensate and solving for hadronic structure
in QCD is mainly based on the fact that RGPEP is now available in both
perturbative and non-perturbative versions, both being boost invariant. The
step beyond perturbation theory maintaining boost invariance is seen as a
chance for simultaneously taking advantage of knowledge about hadrons in
the constituent picture and in the parton picture, while RGPEP appears ca-
pable of generating required scale dependence dynamically. Seen this way,
RGPEP provides an operator calculus for deriving quark and gluon wave
functions of hadrons in the LF Fock space and unify calculations of the
hadron mass spectrum and partonic distributions inside hadrons. At the
same time, new variables identified in the reinterpretation of the gluon con-
densate, relative momentum three-vectors ~k in mesons and ~K and ~Q in
baryons, provide a frame of reference in which LF solutions can be classified
in terms of well-known angular momentum classification of constituent wave
functions. The same transverse variables occur in LF AdS/QCD holography.
Longitudinal variables are new and require further testing.

A summary of RGPEP program for verifying the reinterpretation of
gluon condensate is following. Start with canonical QCD. Set up regu-
lated HQCD on the LF. Apply RGPEP to lower the scale parameter λ to-
ward ΛQCD. Find counterterms in HQCD and evaluate effective Hλ. Solve
eigenvalue problem of Hλ and see if the gluon-condensate induced oscillator
picture is reproduced by gluon components in hadronic states. So far, the
RGPEP scheme is known to work only in some crudely approximate calcu-
lations in QCD for heavy quarkonia. Studies of hadrons built in QCD from
light quarks require breaking an entirely new ground.
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Appendix A

Universality in RGPEP

This appendix explains the RGPEP scheme in which CQMs can be
sought as limited representatives of the universality class which QCD is
thought to belong to as a quantum field theory with a Hamiltonian acting
in a Hilbert space, cf. [8]. The scheme is composed of two interrelated parts.

In the first part of RGPEP, one constructs a sequence of rotations Uλ for
creation and annihilation operators in order to discover counterterms in H∞
and obtain the effective Hamiltonian Hλ. The second part involves solving
the eigenvalue problem of Hλ. Solutions to the eigenvalue problem of Hλ

are needed to fix finite parts of counterterms in H∞ [73, 74].
The first part of the RGPEP calculation involves dealing with ultraviolet

divergences. Instead of standard renormalization group procedure based
on Gaussian elimination in linear problems [75, 76], RGPEP is based on a
unitary transformation of field or particle operators. In terms of matrix
elements of a Hamiltonian, this means that one rotates the basis states like
in the similarity renormalization group approach (SRG) [73,74].

Formulation of RGPEP in terms of operators for effective particles orga-
nizes otherwise un-intelligible variety of Hamiltonian matrix elements in a
physically motivated way; one traces coefficients of specific operators instead
of only calculating matrix elements to which many operators may contribute.
It also provides the concept of effective quantum field; see Eqs. (39), (40),
and below. The operator structure of RGPEP results in unitarity features
in the calculated interactions that are absent in the general formulation of
SRG, since SRG applies also to Hamiltonians that cannot be written in terms
of creation and annihilation operators. For example, Uλ(b∞) = Uλ(bλ). The
operator structure is also helpful in demonstrating a connection between
the momentum space formulation of the theory in terms of quanta (effec-
tive particles) and position space formulation in terms of quantum fields
(effective fields). The interaction terms in effective Hamiltonian densities
are non-local. RGPEP provides a method for calculating the effective non-
local interactions that correspond to renormalized canonical theories [31].

In contrast to the first part of the RGPEP scheme that is akin to the SRG
scheme, the second part resembles the standardWilsonian procedure because
it involves Gaussian elimination, in the mathematical sense as part of solving
a linear problem. However, in sharp distinction from the standard procedure,
the second step of RGPEP does not involve ultraviolet divergences. These
are eliminated in the first step.

The RGPEP differential equation for Hλ in its generic form reads

d

dλ
Hλ = Fλ [Hλ] , (A.1)
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where Hλ denotes Hλ(b∞) and Fλ is a suitable functional34. The solution
is thus also of the generic form

Hλ = H∞ +

λ∫
∞

dλ′Fλ′ [Hλ′ ] . (A.2)

Hλ(bλ) is obtained by replacing b∞ in Hλ by bλ.
Irrespective of the theory one considers, for λ much greater than the reg-

ularization parameter ∆2/ε (see Sec. 2) times the largest allowed number of
creation or annihilation operators in any product of them in the initial inter-
action Hamiltonian, Fλ[Hλ] is exponentially close to zero. The reason is that
the regulated interactions are exponentially close to zero when the invariant
mass of interacting particles is grater than allowed by the regularization.

So, one can always introduce some Λ � ∆/
√
ε and arrange a series of

cutoffs λ0 = Λ, λ1 = Λ/2, λ2 = Λ/4, etc., until one reaches λ = λn = Λ/2n
for some large n35. This is done in analogy to Refs. [75,76] for the purpose of
sequencing the RGPEP procedure of evaluating Hλ into manageable steps
that are free from huge terms resulting from ultraviolet divergences of the
local theory. Namely, step number k in the sequence that builds up the
integral in Eq. (A.2), contains only integration over scales between λk+1 to
λk. When one evaluates effects of interactions that allow changes of invariant
masses only in the range between λk+1 and λk, the ratio λ0/λn → ∞ does
not contribute. Moreover, one can carry out each and every one of the finite
steps using well-known techniques, such as perturbation theory or numerical
methods.

Although the sequence one obtains is analogous to the sequence consid-
ered in Wilsonian renormalization group procedure [76], it differs consider-
ably because no states are eliminated from the domain of the Hamiltonian.

34 E.g., see [77]. Appendix C provides a non-perturbative definition of Fλ[Hλ]. One
needs to adjust the dimension of parameter λ to dimensions of the Hamiltonian Hλ
and functional Fλ [Hλ]. The parameter λ is defined in terms of a momentum scale
that plays the role of width in momentum-space vertex form factors, denoted also by
λ, or by the inverse of the width. The inverse of λ corresponds to the size of effective
particles that they exhibit in the interactions. The inverse is denoted by letter s that
refers to the word size.

35 Instead of the factor 2, one can choose e or any other similar number. The exponen-
tial spacing of λs in the sequence of cutoffs is introduced for the purpose of handling
logarithmic singularities. In the case of simple models in which one can easily intro-
duce an exponential grid in momentum space, such as the NR Schrödinger equation
for one particle in a δ-function potential, it is most convenient to use a grid in which
the chosen factor for cutoff reduction, similar to 2 or e above, is also equal to an
integer power of the constant used in the grid, i.e., if pk = p0a

k in the grid, then
Λn/Λn+1 = al with an integer l such that al equals 2, e, or some other convenient
factor chosen for the cutoff reduction. This relates the value of a chosen for the
exponential grid in momentum variables with the RGPEP cutoff reduction factor in
terms of an integer l.
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The RGPEP steps are automatically free from the dependence on eigenval-
ues that appear in Gaussian elimination in matrix notation for eigenvalue
problems and there is no need for an additional (and in principle deter-
mined only up to a nearly arbitrary rotation of basis) procedure required for
maintaining formal hermiticity of effective Hamiltonians36.

The ratio of subsequent parameters, λk+1/λk does not depend on k and
one can seek regularity in how successive integrations transform Hλk to
Hλk+1

. Every element in the resulting sequence of Hamiltonians can be
written in terms of dimensionless momentum variables y⊥ = p⊥/λk instead
of momenta p⊥. Creation and annihilation operators also require rescaling
in order to keep their commutation relations in terms of variables y⊥ inde-
pendent of the step number k. In principle, such rescaling corresponds to
scale-dependent renormalization constants for fields in standard perturba-
tive formulation of quantum field theory. The coefficients cλk of products
of creation and annihilation operators bλk in Hλk can be studied as func-
tions of y⊥ and x. These functions evolve in k. Their evolution can be
classified in terms of characteristic dominant behavior associated with uni-
versality classes, presumably associated with fixed points, limit cycles, and
even chaotic behavior. Such analysis is also expected to help in identify-
ing dominant effects due to small-x cutoff parameter δ in gauge theories
quantized on the LF (see Sec. 2). No farther comments are offered here
regarding the evaluation of Hλ, except for stressing that the establishment
of finite parts of ultraviolet counterterms eventually requires a reference to
the second part of the RGPEP scheme.

The second part involves solving for the spectrum of Hλn . This is facili-
tated using techniques similar to the ones used in Ref. [78] with the following
qualitative distinction. The HamiltonianHλn = H0λn+HIλn is so narrow on
energy (invariant mass) scale (defined by eigenvalues of H0λn), that the wave
functions of its eigenstates are typically exponentially suppressed outside the
range of energies (invariant masses) that are similar in size to the observ-
able energies (invariant masses) one is interested in [79]. Therefore, one is
no longer in need to solve the severe ultraviolet renormalization problem
when carrying out calculation that removes residual (exponentially small)
cutoff effects using a procedure such as in [78]. This suggests, for example,
that the non-linear operators that produce corrections to scaling in Wegner’s
sense [80] only lead to small corrections to the scaling properties (if any are
obtained) that result already from the first step of the RGPEP scheme.

The expectation of lack of significant sensitivity of the second part of
RGPEP scheme to the actual values of smallest eigenvalues can be forecast
by analogy with (and it is confirmed in) an elementary model of a harmonic
oscillator with an additional potential proportional to the fourth power of

36 In Ref. [76], the operation chosen to maintain Hermiticity is denoted by R, Eq. (4.1).
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distance (a Higgs-like field dynamics in zero dimensions) [81]. Excited states
of the pure oscillator (excited by multiples of ~ω) serve as a model of the
Fock space basis with different numbers of effective particles, each of mass
m = ~ω. The Hamiltonian with the quartic term models Hλn after the
entire first part of RGPEP scheme is completed. Namely, the interaction
is narrow on the energy scale because it is able to change the number of
particles only by 0, 2, or 4, which means that the size of energy changes due
to interactions is limited from above by 4~ω, or 4m. The result of numerical
computation of eigenstates in that model [81] is that for obtaining smallest
eigenvalues accurately it is sufficient to use Gaussian elimination assuming
that the smallest eigenvalues are simply zero. One can come down this way
to cutoffs on energy of basis states not much greater than about 10 times
~ω, or 10m. This holds even for quite large values of the coupling constant
that characterizes the size of the quartic coupling.

Since the entire RGPEP procedure is in fact a sequence of successive
approximations with an increasing space of variables when regularization is
lifted, both parts of it, the rotation and solution, need to be iterated, in
the sense of Wilsonian triangle of renormalization, until a stable result is
established. The iteration involves finite parts of counterterms. They are
fixed by comparison with data in the solution part. But the finite parts
influence the rotation in the first part. This is why the two parts of the
procedure are interrelated and neither the part using unitary rotation of
particle operators nor the solution part with elimination of states can be
distinguished as determining the path of successive approximations for the
Hamiltonian on the triangle. As a result, the evolution of a Hamiltonian
on the triangle is neither purely unitary nor a plain solving of an a priori
specified eigenvalue problem. In other words, the ultimate self-consistent
solution to the triangle of renormalization defines the theory one is interested
in solving to explain observables.

RGPEP requires extensive studies in order to verify if it can produce
a universal low-energy theory that explains success of the CQMs starting
from the Lagrangian for QCD. In addition, all of these models could also be
subjected to RGPEP or SRG as long as they can be written in a Hamiltonian
form37. Therefore, there arises a question if all CQMs that do reproduce
a considerable number of observables for smallest-mass states in hadronic
spectrum actually converge on a single, universal model with some specific
shape of quark potential. Then, the question would be if a universal model,
if it is obtained, matches the effective theory obtained from QCD using
RGPEP.

37 This is not immediately obvious in the case of approaches based on the Dyson–
Schwinger and Bethe–Salpeter equations.
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It should be stressed, however, that the procedure outlined here is not
limited to RGPEP for quarks and gluons in LF QCD. It can be applied to
studies of universality in all Hamiltonians that can be expressed in terms
of creation and annihilation operators acting in some Fock space and, even
more generally, to all Hamiltonians that require renormalization and can be
subject to the SRG procedure [73,74]. In particular, one can apply the same
procedure when using beautiful Wegner’s flow equation [82, 83, 84, 85], and
the latter can also be suitably altered in order to improve weak-coupling
expansion that may apply in the case of asymptotically free theories [49,50].

Appendix B

Calculations of W

Assuming that ΛQCD formally tends to 0 in comparison to quark masses,
so that gλ can be treated as extremely small when λ is comparable with the
masses,W could be calculated in RGPEP using perturbative formulae given
in Sec. 4.3 and expanding LF quantum fields into bare creation and annihila-
tion operators. In this case, the dominant term besides 1 is gλW1. However,
for a realistic value of ΛQCD, which is much larger than u and d quark mass
parameters in the SM, and for λ ∼ λc that is expected to correspond to the
CQMs, perturbative expression cannot be considered reliable on the basis of
smallness of gλ. Nevertheless, perturbative calculations described here illus-
trate the structure of W that carries over to values of λ comparable with λc

for as long as H∞ as an initial condition in RGPEP equations is replaced by
the corresponding Hλ and λ is sufficiently near in magnitude to λc so that
W is not violently different from 1. The key argument is that the strength
of the interaction is not fully determined by gλ alone. Namely, when the
RGPEP form factor fλ is narrow as function of momentum variables, the
net strength of the interaction is suppressed and the interaction can be weak
even if gλ is sizable. Thus, the calculation given below illustrates not only
how the lowest-order perturbative W looks like in the case of small gλ but
also how the structure of W is related to the structure of Hλ that is weak
because λ is small, even though Hλ is expected to significantly differ from
H∞ when λ approaches λc ∼ ΛQCD for light quarks.

For the canonical quark field, we have on the LF

ψ =
∑
σcf

∫
[k]
[
χcufkσbkσcfe

−ikx + χcvfkσd
†
kσcfe

ikx
]
x+=0

. (B.1)

The momentum and spinor notation involves (e.g., see Ref. [18])

[k] = θ
(
k+
)
dk+d2k⊥/

(
16π3k+

)
, (B.2)
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ufkσ = B(k,mf )ufσ , (B.3)
vfkσ = B(k,mf )vfσ , (B.4)
vfσ = Cu∗fσ , (B.5)

ufσ =
√

2mf ζf χσ , (B.6)

where ζf is a normalized vector in flavor space, χσ is a spinor that corre-
sponds to one of two spin states of a fermion at rest, both normalized to 1
and orthogonal to each other, C is the charge conjugation matrix,

B(k,m) =
1√
k+m

[
Λ+k

+ + Λ−

(
m+ k⊥α⊥

)]
(B.7)

is the LF boost matrix, and Λ± = 1
2γ0γ

±. For the canonical gluon field, we
have

Aµ =
∑
σc

∫
[k]
[
tcεµkσakσce

−ikx + tcεµ∗kσa
†
kσce

ikx
]
x+=0

, (B.8)

εµkσ =
(
ε+
kσ = 0, ε−kσ = 2k⊥ε⊥σ /k

+, ε⊥σ

)
. (B.9)

The same expansions can be used for effective quantum fields in which
creation and annihilation operators correspond to some scale λ [31]38, see
Eqs. (39) and (40).

To evaluate W1 using Eq. (31), one first needs to evaluate HI∞1 and
H0 = H0∞. According to Eq. (32),

H0∞ =
∫
dx−d2x⊥ h0∞ , (B.10)

HI∞1 =
∫
dx−d2x⊥ hI∞1 . (B.11)

Using Eq. (33) and the field expansions, one obtains the normal-ordered
expression for H0,

H0 =
∑
σcf

∫
[k]

k⊥ 2 +m2
f

k+

[
b†kσcfbkσcf + d†kσcfdkσcf

]
+
∑
σc

∫
[k]

k⊥ 2

k+
a†kσcakσc . (B.12)

38 In order to relate the above notation to the one introduced in Ref. [31], one needs to
treat d† with positive k+ as b with negative k+, and a† with positive k+ as a with
negative k+, taking into account the well-known constraint relations for fermion field
ψ− = Λ−ψ and gauge boson fields A− [51, 86,87,88,16].
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Similarly, using Eq. (34), one obtains HI∞1,

HI∞1 =
∑
123

∫
[123] 2(2π)3δ3(Pc − Pa) r∆δ(1, 2, 3)

[
ū2 6ε∗1u3 t

1
23 b
†
2a
†
1b3

− v̄3 6ε∗1v2 · t132 · d
†
2a
†
1d3 + ū1 6ε3v2 · t312 · b

†
1d
†
2a3

+ Y123 a
†
1a
†
2a3 + h.c.

]
, (B.13)

where Pc denotes the total momentum of created particles, Pa denotes the
total momentum of annihilated particles, r∆δ(1, 2, 3) denotes the regulariza-
tion factors described in Sec. 2, taij = χ†ict

aχjc,

Y123 = if c1c2c3
[
ε∗1ε
∗
2 · ε3κ− ε∗1ε3 · ε∗2κ

1
x2/3

− ε∗2ε3 · ε∗1κ
1
x1/3

]
, (B.14)

with ε ≡ ε⊥ and κ = k⊥1 −k
+
1 k
⊥
3 /k

+
3 , and h.c. denotes Hermitian conjugation

of the 4 explicitly written terms in the square bracket in Eq. (B.13).
The result forHI∞1 needed in Eq. (31), can be written in an abbreviated

form

HI∞1 =
∑
123

∫
[123] 2(2π)3δ3(Pc − Pa) r∆δ(1, 2, 3) {1, 2, 3} , (B.15)

where {1, 2, 3} denotes the 4 + h.c. terms with b∞, d∞, and a∞ replaced
by bλ, dλ, and aλ, respectively. Using this notation, the exact perturbative
result for W1 in RGPEP reads

W1 =
∑
123

∫
[123] 2(2π)3δ3(Pc − Pa) r∆δ(1, 2, 3)

fλ − fλc

P−a − P−c
{1, 2, 3} , (B.16)

where P−a and P−c are eigenvalues of H0 and f denotes the RGPEP form
factor,

fλ = e−(P 2
c −P 2

a )2
/λ4

, (B.17)

in which the squares of invariant masses of created particles, M2
c = P 2

c ,
and annihilated particles,M2

a = P 2
a , are evaluated using eigenvalues of H0

associated with the particle momentum components k+
i and k⊥i for i = 1, 2, 3

in every term [31].
The structure of {1, 2, 3} implies that W1 can replace a quark by two

particles: a quark and a gluon. It can replace a gluon by a quark–anti-quark
pair, or by two gluons. Reversed changes are also possible.
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According to Eq. (30), evaluation of W2 involves action of HI∞1 twice
and HI∞2 once. This means thatW2 can replace one virtual particle by 3, or
vice versa, change the number of virtual particles by 1, or do not change their
number at all but only alter their individual momenta and other quantum
numbers as dictated by HI∞.

When one evaluates W for λ and λc using expansion in powers of gλ,
creation and annihilation operators in Eq. (B.16) being those corresponding
to λ, the coefficient (fλ−fλc)/(P

−
a −P−c ) only appears with first power of gλ.

Higher powers involve different coefficients and the entire sum of the series
in powers of gλ is not known. Moreover, a complete answer may contain
dependence on ΛQCD that perturbation theory cannot identify. Therefore,
the question is what structure of W one can expect for λ ∼ λc ∼ ΛQCD.
In particular, seeking a connection between CQMs and QCD, one needs to
estimate the structure of W that is responsible for changing the number of
effective particles, since CQMs do not include such interactions.

When λ is near λc, one knows that W is near 1 irrespective of the size
of both λs and gλ, because W is 1 when λ = λc. However, the deviation of
W from 1 is not the same for λ ∼ λc ∼ ΛQCD as in the perturbative case
discussed above for two λs that are much greater than ΛQCD. The significant
change inW in comparison to the perturbative result for large λs comes from
the difference between H∞ and full solution for Hλ. Nevertheless, if one
assumes certain particle-number changing interaction in Hλ for λ near λc,
W will put this structure ofHλ to action in a similar way to the one described
above. The reason is not the smallness of gλ but the presence of the form
factors fλ. They weaken the interaction by limiting the range of momenta
that interacting particles may have. Thus, one can look at a candidate for
Hλ for some value of λ near λc as an initial condition for integration over
a relatively small range of λ near λc and treat the whole interaction that
changes the number of particles as weak even if gλ appears large.

The weakness of particle-number changing interactions with small λ is
reinforced by the particle masses as described in Sec. 2. Both quark, m, and
gluon, mg, mass parameters in the region of λ ∼ λc may be sizable. Gluon
mass terms for effective gluons are not excluded by local gauge invariance of
Lagrangian for QCD because the interaction terms in LF QCD Hamiltoni-
ans with finite λ are not local and their non-locality is not of canonical type.
Since regularization of LF QCD Hamiltonian requires gluon mass countert-
erms and the latter have finite parts that are expected to depend on ΛQCD,
perturbation theory for scattering in femtouniverse [89] cannot be used to
argue that effective gluons cannot have sizable mass terms for λ ∼ λc. The
spectrum of masses of lightest hadrons, which is quite sparse in comparison
to the QED near-threshold atomic spectra with massless photons, suggests
instead that there is a considerable mass gap involved in excitation of gluon
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degrees of freedom. Since QCD is assumed to describe these data, it seems
reasonable to expect that RGPEP equations in QCD lead to massive effec-
tive gluons, instead of massless ones.

As an illustration of what one might expect of W in QCD in the range
of λ ∼ λc ∼ ΛQCD when one reasons by analogy with the perturbative solu-
tion at large λ, consider the structure of local three-gluon interaction term
that originates from the gauge-invariant Lagrangian density −TrFµνFµν/2
in canonical theory. The interaction causes splitting of a bare gluon into
two bare gluons. Its structure is given in Eq. (B.13), as the term with
Y123. In distinction from this local canonical term (in which λ = ∞), the
corresponding term in an effective Hamiltonian at small λ ∼ ΛQCD, is non-
local [31]. Suppose the complete non-local three-gluon vertex includes the
same structure Y123 and a vertex factor Vλ(1, 2, 3) times the form factor fλ.
Such structure is known to emerge through order g3

λ [29]. The corresponding
1-to-2-gluon term in W of lowest order in the effective interaction reads

WY 1 21 =
∑
123

∫
[123] 2(2π)3δ3(Pc − Pa)

fλ − fλc

P−a − P−c

×Y123 Vλ(1, 2, 3) a†λ1a
†
λ2aλ3 , (B.18)

where Vλ(1, 2, 3) plays the role of initial condition, instead of V∞(1, 2, 3)
that provided the initial condition in H∞. Note that now the regularization
factor r∆δ(1, 2, 3) is absent. This follows since the form factors fλ and fλc

entirely eliminate the ultraviolet divergences and they eliminate the small-
x divergences when one adopts the assumption that effective gluons are
heavy [16]. In these circumstances, the regularization factors are immaterial.

Suppose λc is smaller than the gluon mass mg at λc. In this case, for
λ ∼ λc, one can approximate P−a by m2

g/p
+
3 and P−c by 4m2

g/p
+
3 in the

difference in denominator while the form factors can be approximated using
(see [31] for details)

fλ = e−[M2
12−m2

g]
2
/λ4

, (B.19)

withM2
12 = 4(m2

g + ~k 2), rewritten as

fλ = e−(3m2
g/λ

2)2

e
−
~k 2 + 3m2

g/2

(λ/2)2
~k 2

(λ/2)2 . (B.20)

For λ smaller than mg, the relative momentum |~k | of gluons 1 and 2 is
smaller than λ/2 < mg/2 and the form factor can be very well approximated
by Gaussian

fλ = e−9m4
g/λ

4
e−24m2

g
~k 2/λ4

. (B.21)
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The exponential in front causes the form factor to vanish when λ is much
smaller that mg, as discussed in Sec. 2. This exponential is a part of the
mechanism by which the presence of RGPEP form factors suppresses inter-
actions that change the number of effective particles. The other part of the
mechanism is the Gaussian factor whose width decreases when λ decreases.
This factor causes the range of interaction in momentum space to decrease
and thus to diminish the net effect of it. For the form factor suppression
mechanism to work, the coupling constant gλ must not blow up to huge
values and compensate for the smallness of the form factor. However, such
compensation should not be expected in QCD if the theory is to explain the
phenomenological success of the CQMs.

For λc much smaller thanmg, one could literally set fλc to 0 in Eq. (B.18).
The resulting estimate for the structure of WY 1 21 reads

WY 1 21 = e−9m4
g/λ

4
∑
123

∫
[123] 2(2π)3δ3(P12 − p3)

e−24m2
g
~k 2/λ4

3m2
g/p

+
3

×Y123 Vλ(1, 2, 3) a†λ1a
†
λ2aλ3 . (B.22)

This term in W1 replaces a gluon with a pair of gluons. The relative motion
of the two emerging gluons corresponds to a Gaussian wave function of the
form e−c

~k 2/λ2 with c = 24m2
g/λ

2. Assuming that λ is comparable with
mg ∼ 1 GeV, the width of the Gaussian wave function is about λ/5 ∼
200 MeV, which is not unreasonable. Nevertheless, one has to remember
that the full vertex contains also the function Vλ(1, 2, 3) which causes that
the non-locality of WY 1 21 is not determined solely by the Gaussian factor
in Eq. (B.22).

Another illustration is provided by consideration of the first term in
{1, 2, 3}, i.e., the term that replaces a quark of scale λ by a quark and
a gluon of the same scale. The only new elements in the analysis of this
term, in comparison to the analysis described above in the case of gluons,
are different values of masses and spinor factors instead of Y . However, the
conclusion is similar: W changes a quark into a quark and a gluon.

The larger the difference between λ and λc, the more important particle-
changing interactions in Hλ. The full solution for W may replace a state
of two or three constituent quarks by a superposition of states with many
different numbers of gluons (and additional quark–anti-quark pairs created
from additional gluons) at λ, as dictated by the interaction terms in Hλ.

The perturbative calculation of W , and calculations for small difference
between λ and λc using assumed simple picture at λc and guesses concerning
interactions at λ & λc, can be replaced by non-perturbative solutions of
RGPEP equations, see Appendix C.
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Appendix C

RGPEP beyond perturbation theory

For the principles of renormalization group procedure for Hamiltoni-
ans [73] to apply in a boost-invariant LF dynamics, the right-hand side in
Eq. (A.1) must guarantee that matrix elements of Hλ vanish when changes
of the invariant masses exceed λ and become comparable with the invari-
ant masses themselves. This feature will be called narrowness in invariant
mass of interacting effective particles of width λ, or just narrowness. One
way of securing narrowness of width λ in perturbation theory is to work
with vertex form factors in RGPEP as described in Appendix B. While this
option is welcome in perturbative calculations [50], it involves a derivative
of the Hamiltonian in the definition of functional Fλ and the derivative is
not easy to calculate outside perturbation theory. The perturbative ap-
proach of Ref. [74] defines differential equations in which the functional Fλ
guarantees narrowness of width λ without depending on derivatives of the
Hamiltonian on the right-hand side, but the generator of the transformation
is again defined recursively in terms of a commutator of the generator with
the Hamiltonian. The recursion formally secures an expansion to all orders
in the coupling constants, but it is difficult to solve beyond perturbation
theory.

Non-perturbative formulation of RGPEP for operators in the Fock space
can be defined in the form of a double commutator [90,91,92] equation that
reads

d

dλ−4
Hλ = [[H0λ,HPλ],Hλ] . (C.1)

The Hamiltonian Hλ is obtained when b∞ in Hλ is replaced by bλ. The
required transformation Uλ is thus meant to be always incorporated with
accuracy dictated by the accuracy of solving Eq. (C.1). Strictly speaking,
nothing is known yet about the accuracy one can actually achieve this way
beyond perturbative RGPEP in QCD.

The structure of Eq. (C.1) resembles the beautiful equation for Hamil-
tonian matrices that Wegner proposed for solving theoretical problems in
condensed matter physics [82, 83, 84]39. In Wegner’s proposal, H0λ is a di-
agonal part of the Hamiltonian matrix, HIλ is the off-diagonal part, and
HPλ is the matrix HIλ itself. Attempts have been made to apply the Weg-
ner equation to Hamiltonian matrices obtained from quantum field theory
for the purpose of eliminating matrix elements that involve a change in the

39 To avoid a misunderstanding, it should be clarified that in his original work Wegner
did not relate his equation to renormalization group procedures in condensed matter
physics or quantum field theory.
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number of virtual particles. Such matrix elements are found in the initial
conditions set using interaction terms from canonical Hamiltonians in quan-
tum field theory. The Tamm–Dancoff truncation to a few Fock components
was used to define a sufficiently small Hamiltonian matrix for using Wegner’s
equation [93,94,95,96].

Wegner’s equation with matrix HPλ = HIλ implies that the matrix Hλ
with small λ is narrow with a width order λ on energy scale (it would be P−
scale in LF dynamics). However, Wegner’s equation for Hamiltonian matri-
ces does not agree with kinematical LF symmetries, including the Lorentz
boosts that are essential for explaining a connection between the constituent
picture and the parton model picture of hadrons. Also, one desires an equa-
tion for a Hamiltonian operator that in principle may act in the entire Fock
space rather than only in a severely truncated space in a Tamm–Dancoff
approach. These two issues will be addressed below by defining the opera-
tor HPλ and showing that the resulting equation leads to narrowness of Hλ
that respects all kinematical LF symmetries and is narrow in the entire Fock
space.

Boost invariance

The origin of the difficulty with LF boost symmetry in Wegner’s equation
is that the left-hand side in his equation is supposed to be a derivative of a
Hamiltonian with respect to a parameter, while the right-hand side is tri-
linear in a Hamiltonian, an object clearly depending on a frame of reference
in a different way than a Hamiltonian does. LF power counting [16] for
Hamiltonian terms suggests that a straightforward application of Wegner’s
equation in the SRG scheme may create a host of complex counterterms
required for restoring kinematical LF symmetries. An attempt to cure the
situation was undertaken [97,98] by assuming a double-commutator equation
for matrix elements of the invariant mass squared rather than a Hamiltonian.
It was assumed that the LF boost invariance could be maintained because
powers of the invariant mass are invariant with respect to boosts if the mass
itself is. However, invariant masses of Fock states depend on spectators,
resulting in effective interactions that depend on spectators. This means
that the resulting effective interactions require extra care to recover the
cluster decomposition principle [99] and it is not clear that they can help
in literally solving quantum field theory where this principle is expected to
be valid in effective theories, including effects of a complete renormalization
procedure.

The issue of LF symmetries in RGPEP was considered before [28]. Here,
the operator HPλ is defined using the Hamiltonian Hλ. Assuming that Hλ
conserves momentum and is of the form
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Hλ =
∞∑
n=2

∫∑
[1 . . . n]hλ(1, . . . , n) q†1 · · · qn , (C.2)

where q denotes annihilation operators b∞, the operator HPλ is defined to
be of the form

HPλ =
∞∑
n=2

∫∑
[1 . . . n]hλ(1, . . . , n)

(
1
2

n∑
k=1

p+
k

)2

q†1 · · · qn , (C.3)

and the symbol
∫
Σ denotes integration over momenta and summation over

discrete quantum numbers that label creation and annihilation operators
while p+

k denotes the +-component of momentum that labels the creation or
annihilation operator number k. In words, HPλ differs from Hλ by multipli-
cation of its terms by the square of +-component of total momentum carried
by the particles that enter a term, which is the same as the +-component of
total momentum carried by the particles that leave the term. In the resulting
Eq. (C.1), both sides behave in the same way with respect to operations of
kinematical LF symmetries, and the RGPEP width parameter λ is invariant
with respect to boosts of kinematical LF symmetry.

The operator H0λ in Eq. (C.1) is now set equal to a free-particle Hamil-
tonian H0, i.e., an operator built from products of one creation operator
and one annihilation operator per particle species. The notation H0λ = H0

also indicates that H0λ in Eq. (C.1) is chosen here to be independent of
λ40. It is a diagonal operator in the Fock space spanned by states created
by operators b∞ from the LF vacuum state. Diagonal matrix elements of H0

are not equal to the diagonal matrix elements of the full Hamiltonian. Typ-
ical Hamiltonians include interactions that contribute to diagonal matrix
elements41.

Non-perturbative narrowness in the Fock space

Eq. (C.1) is designed for operators that can act in the entire Fock space
(action on every state is well-defined). Eq. (C.1) with a constant H0 renders
λ-dependent interaction terms that die out when the change of the invariant
mass squared (evaluated using the kinematical momenta and eigenvalues of
H0) of particles involved in an interaction exceeds λ (spectators do not in-
fluence Hamiltonian interaction terms). The narrowness feature is obtained
through a universal mechanism for double commutator evolution equations.
The factors of P+ 2 in HPλ do not change the general mechanism.

40 This assumption simplifies the analysis that follows.
41 It is possible to include interactions in H0λ in Eq. (C.1) in the form of mass effects

(self-interactions) and beyond (potentials), but these options are ignored here for
simplicity.
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We start from the observation that Eq. (C.1) can be solved using a
method of successive approximations. An approximation is defined by how
many terms are kept in the Hamiltonian. In principle, a Hamiltonian with
finite λ contains infinitely many terms. The terms that are kept in an
approximation can be defined by the condition that they contain no more
than a prescribed number N of creation and annihilation operators in a
product. The number N labels the approximation. Terms that contain
more operators in a product are ignored in the approximation. Successive
approximations are labeled by increasing numbers N .

Suppose one wants H to contain at most N creators and at most N
annihilators42. Such Hamiltonian will be denoted by HλN . Using notation
corresponding to Eq. (C.2), this means that

HλN =
N∑

nc=1

N∑
na=1

∫∑
[1 . . . nc + na]hλNncna(1, . . . , nc + na) tncna , (C.4)

where

tncna =
nc∏
k=1

q†k

nc+na∏
l=nc+1

ql , (C.5)

nc is the number of creation operators, na is the number of annihilation
operators, and subscripts denote also all relevant quantum numbers of the
operators they label.

Suppose one wants to know the terms in HλN that contribute to the dy-
namics of a physical state that certainly contains a specified Fock component
|ψ〉 of the form

|ψ〉 =
∫∑

[1 . . . n]ψP (1, . . . , n)
n∏
k=1

q†k |0〉 , (C.6)

where P denotes the fixed total kinematical momentum of the state and
otherwise the wave function ψP (1, . . . , n) is not known. For example, in
the case of mesons one may select the state |ψ〉 that contains a quark and
an anti-quark, and in the case of a baryon a state |ψ〉 that contains three
quarks. But one could also consider a state that contains 1182 quarks and
many gluons and quark–anti-quark pairs in order to describe a collision of
two nuclei of gold neglecting all interactions but the strong.

42 One can limit the number of particle operators for different species of particles dif-
ferently. In this case N becomes a vector with natural components corresponding to
species.
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Having specified the set of operators that are included in HλN , with
nc ≤ N , na ≤ N , and unknown coefficients hλNncna , one can enumerate
forms of all possible states that can be generated from |ψ〉 by action of
HλN on it once. All these states are eigenstates of the total kinematical
momentum operator with one and the same eigenvalue P that characterizes
|ψ〉. Knowing the set of states that are obtained from |ψ〉 by acting on it
with HλN once, one can construct the set of all states that can be obtained
by acting with HλN on |ψ〉 twice, and so on.

We introduce the set of states, denoted by R, that can be generated
from |ψ〉 by acting with HλN on it τ times and are normalized in a limit of
infinite volume. Then we introduce a minimal subspace in the Fock space
(a space of smallest possible basis) that is sufficient to build the set R. This
subspace in the Fock space is denoted by RτψN . For example, if one starts
with a state of 3 quarks, action just one time by the HλN that is equal to
regulated canonical Hamiltonian of LF QCD, τ = 1 and N = 3, on |3q〉
produces states with 3 quarks, 3 quarks and a gluon, 3 quarks and a quark–
anti-quark pair, and 3 quarks and 2 gluons. The space R1 3q 3 is built from
the Fock space basis states that are needed to construct states with these
particles. Action twice, τ = 2, generates additional gluons and quark–anti-
quark pairs. The corresponding space R2 3q 3 is built by adding the Fock
space basis states that are needed to construct the additional states. When
one assumes that HλN has more terms than the canonical LF Hamiltonian
for QCD [16], the space RτψN is greater than in the canonical case. States
created from |ψ〉 with k particles by τ actions of HλN may contain up to
k + τ(N − 2) particles.

The set R of states one obtains for any τ is a priori infinite, because one
can have an arbitrary relative motion of particles in a state and the range of
relative momentum is infinite. The corresponding subspace in the Fock space
is also unlimited. This happens despite that a regulated Hamiltonian cannot
change a relative momentum by an arbitrarily large amount. The reason is
that the unknown wave function ψP (1, . . . , n) in Eq. (C.6) does not limit the
magnitude of relative momenta. For example, a square-integrable function,
such as Gaussian, quickly falls off as a function of relative momentum of two
particles but the range of relative momentum is infinite.

In order to introduce a space of states with a finite range of relative
momenta, we impose a cutoff ∆ on the invariant mass. Namely, we define
the space of states that are in RτψN and whose invariant massM < ∆. M is
calculated using kinematical momenta and eigenvalues of H0. The resulting
space with this cutoff is denoted by R∆τψN , or shortly R. We introduce
the projection operator on the space R and denote this projector also by R.
Hamiltonian HλN projected on the space R is denoted by

HλNR = RHλNR . (C.7)
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The successive approximation to Hλ order N in application to states of
the type |ψ〉 with accuracy to τ actions of Hλ on |ψ〉 with invariant mass
cutoff ∆ is obtained by solving equation

H′λNR = [ [H0, R HλNPR ], R HλNR ] , (C.8)

with initial conditions specified by the canonical Hamiltonian of LF QCD
with counterterms.

Structure of the counterterms is found by demanding that all matrix
elements of the effective Hamiltonian HλNR for a large ratio ∆/λ among
basis states with invariant masses much smaller than ∆ do not depend on
the regularization applied in the canonical Hamiltonian in the limit of this
regularization being removed [73].

The degree of dependence of the counterterms on N and τ that are used
in defining an approximation order N toHλ using τ actions on various states
|ψ〉 requires studies. Specific choices of states |ψ〉 may simplify identifica-
tion of structure of counterterms in the canonical LF Hamiltonian for QCD.
However, fixing all finite parts of the counterterms will require systematic
studies of symmetries that are expected to relate finite parts of different
counterterms, and input from phenomenology in order to fix mass parame-
ters as required, in addition to the value of ΛQCD. We proceed to showing
narrowness of HλNR that satisfies Eq. (C.8).

For notational brevity, Eq. (C.9) is written as

H ′ = [[H0, HIP ], H] , (C.9)

where

H = R HλNR , (C.10)
H0 = R H0R , (C.11)
HI = H −H0 = R HIλNR , (C.12)
HIP = R HIλNPR . (C.13)

Evolution in λ according to Eq. (C.8), or (C.9), preserves traces of
powers of H. Trace is defined by summing diagonal matrix elements in the
set R. The diagonal matrix elements are proportional to δ3(0) in momentum
space which has interpretation of volume and can be divided out. The
argument 0 corresponds to the conservation of total momentum.

Using the condition that the trace of H2 does not depend on λ, one has

0 = Tr
(
H2

0 + 2H0HI +H2
I

)′
. (C.14)

Since H0 is fixed, (
TrH2

I

)′ = −2 TrH0H
′
I . (C.15)
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Thus, using the basis in space R that is built from normalized eigenstates |m〉
of H0, with eigenvalues Em, so that H0|m〉 = Em|m〉 and Hmn = 〈m|H|n〉,
etc., we have (∑

mn

|HImn|2
)′

= −2
∑
m

EmH
′
Imm . (C.16)

But Eq. (C.9) implies that

H ′Imn = [[H0, HIP ], H0]mn + [[H0, HIP ], HI ]mn (C.17)
= −(Em − En)2P+2

mnHImn

+
∑
k

[
(Em − Ek)P+2

mk + (En − Ek)P+2
kn

]
HImkHIkn . (C.18)

The momentum P+
ij is the + component of the total momentum of the

particles that undergo interaction in the relevant matrix element 〈i|HI |j〉.
Momenta of the spectators of the interaction do not contribute to P+

ij . The
result needed on the right-hand side of Eq. (C.16) is

H ′Imm =
∑
k

(Em − Ek)
(
P+2
mk + P+2

km

)
HImkHIkm . (C.19)

Therefore, the sum on the right-hand side of Eq. (C.16) is∑
m

EmH
′
Imm =

∑
km

(Ek − Em)2|HIkm|2
(
P+2
mk + P+2

km

)
/2 , (C.20)

and(∑
mn

|HImn|2
)′

= −
∑
km

(Ek − Em)2|HIkm|2
(
P+2
mk + P+2

km

)
≤ 0 . (C.21)

This result leads to the following conclusion: The sum of moduli squared of
all matrix elements of the interaction Hamiltonian decreases with λ until all
off-diagonal matrix elements of the interaction Hamiltonian between states
with different free invariant masses vanish. Thus also: Matrix elements
of the interaction Hamiltonian on the diagonal and between states of equal
invariant masses and between states of small invariant masses as measured
by H0 may stay constant or even increase when λ decreases but only at the
expense of still faster decrease of the off-diagonal and large invariant mass
matrix elements and only until all off diagonal matrix elements between non-
degenerate states are eliminated.
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Another way of writing relation (C.21) is(∑
mn

|HImn|2
)′

= −2
∑
km

(
M2

km −M2
mk

)2 |HIkm|2 ≤ 0 , (C.22)

whereMab denotes an invariant mass of particles in state a that interact in
an action of HI once on particles in state b. This form concludes our demon-
stration that RGPEP provides effective Hamiltonians which are narrow in
the invariant mass of interacting particles beyond perturbative calculus. The
invariant masses result from cancellation of spectator contributions to P−
and multiplication only by P+ of particles that are involved in an interaction,
i.e., not including spectators.

Initial comparison between the non-perturbative RGPEP calculus de-
scribed in this appendix and perturbative RGPEP calculus described earlier,
can be done by solving Eq. (C.1) using expansion in powers of a coupling
constant, such as gλ in the case of QCD, and observing how results of one
way of calculating compare with the other for terms order gλ and g2

λ. Using
notation introduced earlier (e.g., see [29], Sec. III.C, or [100], Sec. II.B),
one rewrites Eq. (C.1) as

H′ac = −ac2 [HI ]ac +
∑
b

(pab ab+ pcb cb) [HI HI ]ac , (C.23)

where letters a, b, and c, denote configurations of particles. Using expansion

H = H0 + gH1 + g2H2 + . . . , (C.24)

one obtains for the first two terms equations

H′1ac = −ac2H1ac , (C.25)

H′2ac = −ac2H2ac +
∑
b

(pab ab+ pcb cb) [H1H1]ac . (C.26)

Using the particle size parameter s = 1/λ, one obtains the solutions

H1ac = e−ac
2s4 H1ac(0) , (C.27)

H2ac = e−ac
2s4 H2ac(0) +

∑
b

[H1(0)H1(0)]ac

×e−ac2s4 pba ba+ pbc bc

ba2 + bc2 − ac2

[
e−(ab2+bc2−ac2)s4 − 1

]
. (C.28)

The first-order result is Gaussian in the change of invariant masses squared,
identical to the first-order result in perturbatively defined RGPEP. The
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second-order result matches the perturbatively defined RGPEP, e.g., see
Eq. (2.22) in Ref. [100], when ac can be neglected in comparison to ab or
bc. When ac refers to a dominant Fock component and ba and bc refer to a
component with additional constituents, this condition may be satisfied very
well if the additional constituents introduce a significant contribution to the
invariant mass of the subsystem that counts. Such situation is encountered
in the dynamics of heavy quarkonia [18], where the additional constituent
is an effective gluon while kinetic energies of quarks cannot change by much
because quarks move slowly with respect to each other and their masses are
large in comparison to ΛQCD. This means that the non-perturbative formu-
lation of RGPEP can be directly applied to heavy quarkonia with arbitrary
motion as a bound state in QCD, and implies that the non-perturbative for-
mulation can be used to derive corrections to the harmonic oscillator force
in Ref. [18] beyond perturbation theory to describe the spectrum of charmo-
nium and bottomonium states that results from gluon dynamics neglecting
light quarks.

The procedure described here differs from truncation in powers of a bare
coupling constant g, truncation in the number of Fock sectors, and combi-
nations of both these truncations. Although we use the Fock space subspace
R for solving Eq. (C.8), and it is useful to use an expansion for Hλ in pow-
ers of the coupling constant gλ [16], the solutions provide in principle not
just the matrix elements of Hamiltonian terms in a limited space of states
but the matrix elements of Hamiltonian terms from which one extracts the
coefficients hλ of particle operators in the Hamiltonian terms that a priori
act in the entire Fock space. Neither the Fock space nor perturbation the-
ory limitations prevent us from seeking a non-perturbative solution for the
coefficients hλ.

Some comments are in order here. One can alter the generator in
Eq. (C.8) by introducing convergence-improving factors that are required for
perturbative approximations [49,50]. For bound states of low-mass hadrons
alone, the relative motion of constituents can be described using other basis
functions than plane waves, such as the oscillator basis. Scattering states of
hadrons may require a more elaborate basis in coupled channels. Reasoning
described in this appendix justifies methods used in nuclear physics with
only kinetic energy in SRG generator [101,102,103,104,105]43, including the

43 Note added in proof: The author has also shown that in the Wegner generator,
[D,V ], which generates a flow of the Hamiltonian matrix H = D + V , the diagonal
part, D, can be replaced not only by a constant matrix H0 = H − HI , such as the
kinetic energy matrix T used in the nuclear physics applications, but also by any
monotonically increasing function of H0, including examples described in Ref. [106],
and the mechanism that narrows Hamiltonian matrices still works. In the case of
a positive power p of H0 in the LF dynamics, a corresponding factor of (P+)p+1 in
HIP renders powers of the invariant mass squared, but the contribution of spectators
does not drop out for p 6= 1.
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impact of bound states [107]. The impact can only lead to increase of in-
teraction matrix elements that are small since the combined strength of all
interaction matrix elements must only decrease until it reaches a minimum.
This result extends the range of applicability of SRG with a kinetic energy
or a similar term in the generator. It suggests applications of simpler flow
equations than Wegner’s in relevant areas of physics.

Appendix D

Visualization of RGPEP scale dependence of hadronic structure

Quantum fields for effective particles of size s = 1/λ in RGPEP, see
Eqs. (39), (40), and (199), are the degrees of freedom from which one can
build effective Hamiltonian densities. An effective Hamiltonian at scale λ
describes a hadron only in terms of quarks of size s = 1/λ. Therefore,
when the scale parameter λ approaches λc ∼ ΛQCD, the size of quarks, as
measured by the strong interaction range in interaction vertices [31], becomes
comparable with 1/ΛQCD. This in turn means that the effective quarks
become as large as the whole hadron. Such quarks must nearly overlap
and this is how they form a white mixture. There is some imbalance of
color on the boundary, perhaps able to couple to π-mesons that form a
cloud around the quarks. Visualization of these circumstances is provided
in Figs. 3 and 4. When λ is near but greater than λc, the constituent quarks
become smaller and part of the color-active medium inside a hadron is no
longer fully overlapped by quarks. Therefore, when λ & λc, there must be
additional matter density involved in filling the volume of a hadron.

Fig. 3. The RGPEP image of a meson seen at λ near λc.

One can use an analogy with swarms of bees. For example, a baryon can
be seen at scale λc as built from three swarms. One swarm is made of red
bees, one of green, and one of blue. One of the three swarms corresponds to
one constituent quark. There is also a fourth swarm, built from bi-colored
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Fig. 4. The RGPEP image of a nucleon seen at λ near λc.

glue bees. But the four swarms overlap and in nearly every part of the
baryon volume one has one red, one green and one blue bee, or glue bees.
The regions where the three quark swarms are overlapping are locally white.

When one changes the scale λ = λc to a nearby λ & λc as described
in Sec. 5.1, the size s of each of the three swarms becomes smaller than
sc = 1/λc, but the medium around the quarks of size s remains filled with
the glue and quark bees that can still balance to white, too. When one
decreases λ below λc, the mass of the glue component may decrease toward
0 or stabilize while the constituent quarks fully saturate the volume of a
hadron.

In distinction from the parton model [11] and related scaling pictures
[108, 109], the new element of this visualization is that the constituent
swarms are much larger in size than the distances between their centers.
It seems to the author that this feature of RGPEP deserves a visualization
because none of the visualizations of hadrons known to the author has this
feature. Namely, common visualizations represent a baryon as made of three
constituent quarks that fly like apples in a bag, sometimes accompanied by
some strands of glue in some kind of a cavity of unspecified nature. Images
associated with an increase of momentum scale typically include more tiny
objects in two ways: either as finer pieces scattered around or as interaction
processes among quarks and gluons (such as on the cover of Ref. [110]). It
is hard to visualize the origin of constituent quarks and CQM potentials in
these ways.

In the context of RGPEP, the analogy with swarms of colored bees pro-
vides the following visualization for the mechanism of formation of poten-
tials. We start with a meson built from a quark and an anti-quark. A quark
has opposite color charge density to anti-quark. When the effective particles
are completely overlapping like two densities of opposite charges, their state
is locally neutral. This picture oversimplifies the non-Abelian picture to the
Abelian one but still offers some intuition. Imagine now that the centers
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of the initially overlapping swarms move a little bit apart. It is well known
that the Coulomb force between two spherically symmetric distributions of
opposite charges grows linearly with the distance between their centers for
as long as this distance is small in comparison to the individual sizes of
the distributions. Therefore, the potential energy of two nearly overlapping
spheres is described by a harmonic oscillator potential. It should be stressed
that the distance between the centers of the swarms is much smaller than
the size of each swarm. In the case of baryons, one needs to consider three
centers of three overlapping swarms being relatively close to each other.

Of course, this visualization has many drawbacks: it is classical, Abelian,
non-relativistic, and does not provide any insight concerning the difference
between quarks and gluons. But it does model the transformation W that
increases the number of quarks and gluons of decreasing size s when λ in-
creases. These smaller quarks and gluons form the medium that provides
the expectation value of the gluon field that is interpreted in this article as
a gluon condensate.
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