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We study CP violation and the contribution of the strong pion–pion
interactions in the three-body B± → π±π∓π± decays within a quasi two-
body QCD factorization approach. The short distance interaction ampli-
tude is calculated in the next-to-leading order in the strong coupling con-
stant with vertex and penguin corrections. The meson–meson final state
interactions are described by pion non-strange scalar and vector form fac-
tors for the S and P waves and by a relativistic Breit–Wigner formula for
the D wave. The pion scalar form factor is calculated from a unitary rel-
ativistic coupled-channel model including ππ, KK̄ and effective (2π)(2π)
interactions. The pion vector form factor results from a Belle Collabora-
tion analysis of τ− → π−π0ντ data. The recent B± → π±π∓π± BABAR
Collaboration data are fitted with our model using only three parameters
for the S wave, one for the P wave and one for the D wave. We find not
only a sizable contribution of the S wave just above the ππ threshold but
also under the ρ(770) peak a significant interference, mainly between the
S and P waves. For the B to f2(1270) transition form factor, we predict
FBf2(m2

π) = 0.098 ± 0.007. Our model yields a unified unitary descrip-
tion of the contribution of the three scalar resonances f0(600), f0(980) and
f0(1400) in terms of the pion non-strange scalar form factor.
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1. Introduction

Three-body charmless hadronic B meson decays offer one of the best
tools for studies of direct CP violation and provide an interesting testing
ground for strong interaction dynamical models. The present work, part of
a program devoted to the understanding of rare three-body B decays [1, 2,
3, 4], is motivated by the recent BABAR Dalitz-plot analysis of the B± →
π±π∓π± decays [5]. In an isobar model description, the authors of Ref. [5]
find evidence for the f0(1370) but, within the current experimental accuracy,
no significant signal for the f0(980). The f0(600), not explicitly included in
that analysis, could be part of the non-resonant background. Furthermore,
there is a small but visible contribution of the f2(1270) resonance [5].

Here, the aim is to provide a phenomenological analysis of the B± →
π±π∓π± decay channels relying on the QCD factorization scheme (QCDF) in
the ππ effective mass range from threshold to 1.64 GeV. The focus will be set
on the final state ππ interactions involved since a partial wave analysis of the
Dalitz plot should use theoretically and phenomenologically well constrained
ππ amplitudes.

Studies of B decays into two-body and quasi-two-body final states have
been performed in the QCDF framework [6, 7, 8, 9, 10, 11, 12]. The naive
factorization approach is a useful first order approximation which receives
corrections proportional to the strong coupling constant αs at scales mb

and
√
ΛQCDmb and in inverse powers of the b quark mass mb [13]. In the

present study, we propose an extension of these results to the three-body
decays B± → π± π+π−.

The role of the f0(600) (or σ) in charmless three-body decays ofB mesons
has been examined by Gardner and Meissner [8] in B0 → π+π−π0 decays.
Within QCD quasi two-body factorization approach their f0(600)π ampli-
tude is described by a unitary pion scalar form factor constrained by ππ
scattering and chiral dynamics. This is different from the relativistic Breit–
Wigner parametrization used in most experimental analyses and in some
theoretical studies, for example in [14]. This has led to improved theoretical
predictions; the contribution of the f0(600)π channel has been found to be
important in the range of the dominant ρ0π0 intermediate state. However,
in recent B0 → π+π−π0 Dalitz plot analyses [15, 16] no contribution from
B0 → f0(600)π0 channel has been found. This could be linked to the present
limited statistics in the low effective ππ mass region. Furthermore, such a
contribution could be hidden in the nonresonant amplitude introduced in
the experimental analysis. Nevertheless, we will show that the contribution
of the S wave is important in the B± → π± π+π− decays.
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Charmless three-body decays of B mesons have also been investigated by
Cheng, Chua and Soni [12] in the framework of quasi two-body factorization
approach using resonant and non-resonant contributions. In particular, they
have calculated the B− → π+π−π− branching fractions and CP asymmetries
and found a small rate for B− → f0(980)π−decay.

An achievement in the theory of B decays into two mesons is the confir-
mation of the validity of factorization as a leading order approximation. No
proof of factorization has yet been given for the B decays into three mesons.
However, three-body interactions are suppressed when specific kinematical
configurations with the three mesons quasi aligned in the rest frame of the
B meson are considered. This is the case in the effective π+π− mass region
smaller than 1.64 GeV in the Dalitz plot where most of the π+π− resonant
states are visible. Such processes will be denoted as B± → π±[π+π−], the
mesons of the [π+π−] pair moving more or less, in the same direction in the
B rest frame. Then, it seems reasonable to postulate the validity of factor-
ization for this quasi two-body B decay [17] assuming that the [π+π−] pair
originates from a quark–antiquark state.

In the factorization approach the B± → π±1 [π+
2 π
−
3 ] decay amplitudes

are expressed as a superposition of appropriate effective QCD coefficients
and two products of two transition matrix elements. The transition matrix
elements between the B± meson and the π±1 pion multiplied by the transition
matrix elements between the vacuum and the

[
π+

2 π
−
3

]
pion pair correspond

to the first of these products. Here, in the π+
2 π
−
3 center of mass frame,

the bilinear quark currents involved force the [π+
2 π
−
3 ] pair to be in S or in

P state. The second term is associated to the product of the transition
matrix elements between the B± meson and the [π+

2 π
−
3 ] pion pair in S,

P or D state by the transition matrix elements between the vacuum and
the π±1 pion. The [π+

2 π
−
3 ]S,P transition matrix elements to the vacuum

are proportional to the pion scalar and vector form factors. We assume
that the B± → π+

2 π
−
3 matrix elements are expressed as products of the

B± → [π+
2 π
−
3 ]S,P,D transition form factors by the relevant vertex function

describing the decay of the [π+
2 π
−
3 ]S,P,D state into the final pion pair. The

vertex functions are in turn assumed to be proportional to the pion scalar
form factor for the S wave, to the vector form factor for the P wave and to
a relativistic Breit–Wigner formula for the D wave. Here, a single unitary
function, namely the pion non-strange scalar form factor, describes then the
three scalar resonances, f0(600), f0(980) and f0(1400) present in the π+π−

interaction.
In Sec. 2 we present the model used in the analysis. Section 3 is devoted

to the construction of the pion scalar and vector form factors. The pertinent
observables and the fitting procedure are described in Sec. 4 while the results
are discussed in Sec. 5. A summary and some perspectives are outlined in
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the final Sec. 6. The detailed derivation of the decay amplitudes is presented
in the Appendix A while Appendix B gives the system of equations to be
solved to obtain the parameters fixing the low-energy behavior of the pion
scalar form factor to be that of one loop calculation in chiral perturbation
theory.

2. Decay amplitudes

The amplitudes for the non-leptonic decays of the B meson are given as
matrix elements of the effective weak Hamiltonian [6, 7]

Heff =
GF√

2

∑
p=u,c

λp

[
C1O

p
1 + C2O

p
2 +

10∑
i=3

CiOi + C7γO7γ + C8gO8g

]
+ h.c. ,

(1)
where

λu = VubV
∗
ud , λc = VcbV

∗
cd , (2)

the Vpp′ (p′ = b, d) being Cabibbo–Kobayashi–Maskawa quark-mixing matrix
elements. For the Fermi coupling constant GF we take the value 1.16637×
10−5 GeV−2. The Ci(µ) are the Wilson coefficients of the four-quark oper-
ators Oi(µ) at a renormalization scale µ. The Op1,2 are left-handed current–
current operators arising from W -boson exchange, Oi=3−10 are QCD and
electroweak penguin operators involving a loop with a u or c quark and a
W boson, O7γ and O8g are the electromagnetic and chromomagnetic dipole
operators [7].

Let pB be the four-momentum of the B± meson and p1 that of the
isolated π±. Let then p2 denote the four-momentum of the π+ and p3 that
of the π− of the interacting [π+π−] pair in the B rest frame. One has pB =
p1 + p2 + p3 and we introduce the invariants sij = (pi + pj)2 for i, j = 1, 2, 3
with i < j. For the B− → π− [π+π−]S,P,D amplitude, we work in the center
of mass frame of the π+π− pair of pions with respective four-momenta p2

and p3 (or p1 and p2 for the symmetrized amplitudes). These two pions
will be either in a relative S, P or D state. In the following we derive the
amplitudes for the B− → π− [π+π−]S,P,D processes. The transcription to
the B+ → π+ [π+π−]S,P,D processes is straightforward. Applying the QCD
factorization formula for the B− → π− [π+π−]S,P,D process, the matrix
elements of the effective weak Hamiltonian (1) can be written as [7]〈

π−(p1) [π+(p2)π−(p3)]S,P,D|Heff |B−(pB)
〉

=
GF√

2

∑
p=u,c

λp
〈
π− [π+π−]S,P,D|Tp|B−

〉
, (3)
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to which must be added the symmetrized term

〈π−(p3)[π+(p2)π−(p1)]S,P,D|Heff |B−(pB)〉 .

With M1 ≡ π− and M2 ≡ [π+π−]S,P or M1 ≡ [π+π−]S,P,D while M2 ≡ π−,
one has〈
π− [π+π−]S,P,D|Tp|B−

〉
= 〈π− [π+π−]S,P,D|{

a1(M1M2)δpu(ūb)V−A ⊗
(
d̄u
)
V−A

+a2(M1M2)δpu
(
d̄b
)
V−A ⊗ (ūu)V−A

+a3(M1M2)
∑
q

(
d̄b
)
V−A ⊗ (q̄q)V−A

+ap4(M1M2)
∑
q

(q̄b)V−A ⊗
(
d̄q
)
V−A

+a5(M1M2)
∑
q

(
d̄b
)
V−A ⊗

(
d̄q
)
V+A

+ap6(M1M2)
∑
q

(−2)(q̄b)sc−ps ⊗
(
d̄q
)

sc+ps

+a7(M1M2)
∑
q

(
d̄b
)
V−A ⊗

3
2eq(q̄q)V+A

+ap8(M1M2)
∑
q

(−2)(q̄b)sc−ps ⊗ 3
2eq
(
d̄q
)

sc+ps

+a9(M1M2)
∑
q

(
d̄b
)
V−A ⊗

3
2eq(q̄q)V−A

+ap10(M1M2)
∑
q

(q̄b)V−A ⊗ 3
2eq
(
d̄q
)
V−A

}
×|B−〉 , (4)

where apj are effective QCDF coefficients.
In Eq. (4), (q̄1q2)V∓A = q̄1γµ(1∓γ5)q2, (q̄1q2)sc±ps = q̄1(1±γ5)q2 and eq

denotes the electric charge of the quark q in units of the elementary charge e.
The sum on the index q runs over u and d and the summation over the color
degree of freedom has been performed. The notations ‘sc’ and ‘ps’ stand for
scalar and pseudoscalar, respectively.

At next-to-leading order (NLO) in the strong coupling constant αs, the
general expression of the api quantities in terms of effective Wilson coefficients
is [9]
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api (M1M2) =
(
Ci +

Ci±1

NC

)
Ni(M2) +

Ci±1

NC

CFαs

4π

[
Vi(M2)

+
4π2

NC
Hi(M1M2)

]
+ P pi (M2) , (5)

where the upper (lower) signs apply when the index i is odd (even), NC is
the number of colors, NC = 3 and CF = (N2

C − 1)/2NC . The sums over the
color degree of freedom have been performed in Eq. (4). Note that in the
leading-order (LO) contribution Ni(M2) = 0 forM2 = [π+π−]P and i = 6, 8,
otherwise Ni(M2) = 1. The NLO quantities Vi(M2) arise from one loop ver-
tex corrections, Hi(M1M2) from hard spectator scattering interactions and
P pi (M2) from penguin contractions. Here, the mesonM2 is the meson which
does not include the spectator quark of the B meson. The superscript p in
api (M1M2) is to be omitted for i = 1, 2, 3, 5, 7 and 9 since the penguin
corrections are equal to zero in these cases. In our calculation we shall not
include the NLO hard scattering corrections nor the annihilation contribu-
tions which require the introduction of four phenomenological parameters
to regularize end point divergences related to asymptotic wave functions [9].
Although we are aware that such contributions might be important, this
would bring, at this stage of analysis, too many free parameters.

In Eq. (4) the symbol ⊗ indicates that the different components of the
matrix elements 〈π− [π+π−]S,P,D|Tp|B−〉 are to be calculated in the factor-
ized form,〈
π−(p1)[π+(p2)π−(p3)]S,P,D |j1 ⊗ j2|B−(pB)

〉
≡
〈
[π+π−]S,P,D|j1|B−

〉 〈
π− |j2|0

〉
or

〈
π−|j1|B−

〉 〈
[π+π−]S,P |j2|0

〉
,(6)

since we neglect B− annihilation contributions which are expected to be
small [6]. Furthermore, as for the hard scattering corrections, their evalua-
tion [9] introduces two phenomenological parameters. In Eq. (6) j1 and j2
denote the appropriate quark currents entering in Eq. (4). Note that,
in our approach, in the evaluation of the long distance matrix element
〈[π+π−]S,P,D|j1|B−〉, we make the hypothesis that the transitions of B−
to the [π+π−]S,P,D states go first through intermediate meson resonances
RS,P,D which then decay into a π+π− pair. We describe these decays by a
vertex function modeled by assuming them to be proportional to the pion
scalar or vector form factors or to a relativistic Breit–Wigner formula, re-
spectively. For the short distance part of the decay amplitudes propor-
tional to a combination of the effective coefficients api (M1M2) it can be seen
that for terms coming from the first line of the right-hand side of Eq. (6)
M1 ≡ [π+π−]S,P,D, M2 ≡ π− and for those from the second line M1 ≡ π−
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while M2 ≡ [π+π−]S,P , the [π+π−]D transition to the vacuum being zero
with the involved bilinear quark current j2 in Eq. (6). In the following,
when M2 ≡ [π+π−]S,P , we assume that the NLO corrections Vi(M2) and
P pi (M2) are evaluated at the meson resonances RS,P position. Here, we take
RP ≡ ρ(770)0 and RS ≡ f0(980). A similar approximation has been applied
in Refs. [3,4] for the [Kπ]S,P states with RP ≡ K∗(892) and RS ≡ K∗0 (1430).

Introducing the following short distance terms, with L ≡ S, P,D and
with RD ≡ f2(1270),

u(RLπ−) = λu
{
a1(RLπ−) + au4(RLπ−) + au10(RLπ−)−

[
au6(RLπ−)

+au8(RLπ−)
]
rπχ

}
+ λc

{
ac4(RLπ−) + ac10(RLπ−)−

[
ac6(RLπ−)

+ac8(RLπ−)
]
rπχ
}
, (7)

v(π−RS) = λu
[
− 2au6(π−RS) + au8(π−RS)

]
+ λc

[
− 2ac6(π−RS)

+ac8(π−RS)
]
, (8)

and

w(π−RP ) = λu
{
a2(π−RP )− au4(π−RP ) + 3

2

[
a7(π−RP ) + a9(π−RP )

]
+1

2a
u
10(π−RP )

}
+λc

{
− ac4(π−RP )+ 3

2

[
a7(π−RP )+a9(π−RP )

]
+ 1

2a
c
10(π−RP )

}
, (9)

one obtains, from Eqs. (3), (4) and (6), the following S-, P - and D-wave
matrix elements∑
p=u,c

λp
〈
π−(p1)[π+(p2)π−(p3)]S |Tp|B−

〉
=XS u(RSπ−)+YS v(π−RS) , (10)∑

p=u,c

λp
〈
π−(p1)[π+(p2)π−(p3)]P |Tp|B−

〉
=XP u(RPπ−)+YP w(π−RP ) ,(11)∑

p=u,c

λp
〈
π−(p1)[π+(p2)π−(p3)]D|Tp|B−

〉
=XD u(RDπ−) . (12)

In Eq. (7) the chiral factor rπχ is given by rπχ = 2m2
π/[(mb +mu)(mu +md)],

mu and md being the u and d quark masses, respectively. The long distance
functions XS,P,D and YS,P , evaluated in Appendix A, read
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XS ≡
〈
[π+(p2)π−(p3)]S |(ūb)V−A|B−

〉 〈
π−(p1)

∣∣∣(d̄u)V−A∣∣∣ 0〉
= −

√
2
3 χS fπ

(
M2
B − s23

)
FBRS

0

(
m2
π

)
Γn∗1 (s23) , (13)

YS ≡
〈
π−(p1)

∣∣∣(d̄b)sc−ps

∣∣∣B−〉 〈[π+(p2)π−(p3)]S
∣∣∣(d̄d)sc+ps

∣∣∣ 0〉
=

√
2
3 B0

M2
B −m2

π

mb −md
FBπ0 (s23) Γn∗1 (s23) , (14)

XP ≡
〈
[π+(p2)π−(p3)]P |(ūb)V−A|B−

〉 〈
π−(p1)

∣∣∣(d̄u)V−A∣∣∣ 0〉
= NP

fπ
fRP

(s13 − s12) ABRP
0

(
m2
π

)
F ππ1 (s23) , (15)

YP ≡
〈
π−(p1)

∣∣∣(d̄b)V−A∣∣∣B−〉 〈[π+(p2)π−(p3)]P |(ūu)V−A|0
〉

= (s13 − s12)FBπ1 (s23)F ππ1 (s23) , (16)

XD ≡
〈
[π+(p2)π−(p3)]D|(ūb)V−A|B−

〉 〈
π−(p1)

∣∣∣(d̄u)V−A∣∣∣ 0〉
= − fπ√

2
FBRD

(
m2
π

) √
2
3

Gf2D(s12, s23)
m2
RD
− s23 − imRD

Γ (s23)
. (17)

The different quantities entering the above equations are discussed below.
The S-wave strength parameter χS (Eq. (13)) will be fitted together

with the correction P -wave parameter NP (Eq. (15). The deviation of NP

from 1 corresponds to the possible variation of the strength of this P -wave
amplitude proportional to fπ/fRP

(compare Eqs. (A.7) and (A.19)).
Three scalar-isoscalar f0 resonances, viz. f0(600), f0(980) and f0(1400),

are present in the ππ effective mass range, mππ, considered here. Since some
of them are wide, like f0(600), one could have a possible RS dependence
in χS . The transition form factor from B to RS , FBRS

0 (m2
π), could also

depend on mππ. However, one expects these dependences to be weaker
than the effective mass dependence of the pion scalar form factor, Γn∗1 (s23),
in which all these resonances are incorporated. Therefore we assume that
χS and FBRS

0 (m2
π) are constant. This hypothesis will be assessed by the

quality of the fit obtained with our model. We shall take RS ≡ f0(980) for
the evaluation of FBRS

0 (m2
π) and we use FBRS

0 (m2
π) = 0.13 [19].

For the pion decay constant we take fπ = 0.1304 GeV [18]. The RP
decay constant is denoted by fRP

and the B-meson mass by MB. Since the
π+π− P wave is largely dominated by the ρ(770) meson we choose fRP

=
fρ = 0.209 GeV [9]. The quantity B0 = −2 〈0|q̄q|0〉/f2

π is proportional to the
quark condensate. We calculate it as B0 ' m2

π/(mu+md). At the renormal-
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ization scale µ = mb/2 we use mb = 4.9 GeV and mu = md = 0.005 GeV.
For the transition form factor between the B meson and RP state we set
ABRP

0 (m2
π) = 0.37 [20].

For the Bπ scalar and vector transition form factors FBπ0 (s) and FBπ1 (s),
we use the following light-cone sum rule parametrization developed in
Appendix A of Ref. [21], viz.

FBπ0 (s) =
0.258

1− s/s0
, (18)

FBπ1 (s) =
0.744

1− s/M2
B∗
− 0.486

1− s/s1
, (19)

with s0 = 33.81 GeV2,MB∗ = 5.32 GeV and s1 = 40.73 GeV2. The pion non-
strange scalar and vector form factors Γn∗1 (s) and F ππ1 (s) will be discussed
in the next section. Note that [22]

Γn∗1 (s) =
√

3
2B0

〈
[π+π−]S |n̄n|0

〉
, (20)

with n̄n =
1√
2

(ūu+ d̄d).

The transition form factor between the B meson and the RD state
FBRD(m2

π) is not well known [23], so it will be taken as a free parame-
ter to be fitted. The expressions of the tensor angular distribution factor
D(s12, s23) and of the RD mass dependence width Γ (s23), similar to those
used for the f2(1270) contribution in the BABAR Collaboration Dalitz plot
analysis [5], are displayed in Sec. A of the Appendix A. The expression of
the f2(1270) coupling to ππ, Gf2 , is also given there.

In summary, from the S-, P - and D-wave matrix elements (10), (11) and
(12), we obtain the total symmetrized amplitude for the B− → π+π−π−

decay as

M−sym(s12, s23) =
1√
2

[
M−S (s12) +M−S (s23) +M−P (s12)(s13 − s23)

+M−P (s23)(s13 − s12) +M−D(s12)D(s23, s12) +M−D(s23)D(s12, s23)
]
, (21)

with

M−S (sij) =
GF√

3

[
− χSfπ

(
M2
B − sij

)
FBRS

0

(
m2
π

)
u(RSπ−)

+B0
M2
B −m2

π

mb −md
FBπ0 (sij)v(π−RS)

]
Γn∗1 (sij) , (22)
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M−P (sij) =
GF√

2

[
NP

fπ
fRP

ABRP
0

(
m2
π

)
u(RPπ−) + FBπ1 (sij)w(π−RP )

]
×F ππ1 (sij) , (23)

and

M−D(sij) = −GF√
3
u(RDπ−)

fπ√
2
FBRD

(
m2
π

) Gf2
m2
RD
− sij − imRD

Γ (sij)
.

(24)
For the fully symmetrized B+ → π+π−π+ decay amplitude we have

M+
sym(s12, s23) =

1√
2

[
M+

S (s12) +M+
S (s23) +M+

P (s12)(s13 − s23)

+M+
P (s23)(s13 − s12) +M+

D(s12)D(s23, s12) +M+
D(s23)D(s12, s23)

]
, (25)

with

M+
S,P,D(sij) =M−S,P,D

(
sij , λu → λ∗u, λc → λ∗c , B

− → B+
)
. (26)

3. Scalar and vector form factors

As shown in Ref. [24] the full knowledge of strong interaction meson–
meson form factors is available if the meson–meson interaction is known at
all energies. The calculation of the S- and P -wave amplitudes (22) and (23)
requires the values of the scalar and vector Bπ, B(ππ) and pion form factors.
The knowledge of the B → π and B → [ππ]S,P transition form factors is
needed far below the Bπ and B[ππ]S,P scattering region. One has then
to rely on theoretical models constrained by experiment, as we do here for
the B[ππ]S form factor, using the value (see above in the previous section)
determined in Ref. [19]. One could also use covariant light-front model, like
that of Ref. [25] or, if available, semi-leptonic decay analysis results. For the
Bπ form factors we take the QCD light-cone sum rule results of Ref. [21]
recalled above in Eqs. (18) and (19). The special case of the pion form
factors is developed below.

3.1. The pion scalar form factor

In the ππ case, the low-energy S wave being known and modeling the
high-energy part one can rely on the Muskhelishvili–Omnès equations [26] to
build up the pion scalar form factors. Their evaluation from these equations
has been discussed in Ref. [27] and followed and developed in Ref. [28]. How-
ever here, we shall use another approach, initiated in Ref. [22] and applied,
using a different ππ scattering matrix, in Ref. [1]. Extending this last work
by introducing three channels and keeping the off-shell contributions, the
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pion scalar form factor Γn∗1 (s) entering in the S-wave amplitude Eq. (22) is
modeled according to the following relativistic three coupled-channel equa-
tions

Γn∗i (s) = Rni (E) +
3∑
j=1

Rnj (E)Hij(E) , i = 1, 2, 3 , (27)

with

Hij(E) =
∫

d3p

(2π)3
Tij(E, ki, p)

1

E − 2
√
p2 +m2

j + iε

k2
j + κ2

p2 + κ2
, (28)

where E represents the total energy, i.e., in the ππ center of mass, E =
√
s

and p is the off-shell momentum. In Eqs. (27) and (28), the indices i, j =
1, 2, 3 refer to the ππ, KK̄ and effective (2π)(2π) channels, respectively. The
center of mass momenta are kj =

√
s/4−m2

j , with m1 = mπ, m2 = mK

and m3 = m(2π). The T matrix is the corresponding three-channel two-
body scattering matrix. Here, we use the solution A of the three-coupled
channel model of Refs. [29, 30], where the effective m(2π) = 700 MeV. The
functions Rni (E) are the production functions responsible for the formation
of the meson pairs before their scattering. From Eqs. (27) and (28) one can
check that

ImΓn∗i (s) = −
3∑
j=1

kj
√
s

8π
T ∗ji (E, kj , ki)Γn∗j (s)θ

(√
s− 2mj

)
. (29)

This is the same unitary relation as that of the corresponding Muskhelishvili–
Omnès pion scalar form factors constructed in Ref. [28] (see Eq. (28) therein).

In Eq. (28) the regulator function (k2
j + κ2)/(p2 + κ2), which reduces

to 1 on-shell (kj = p), ensures the convergence of the integral. The range
parameter κ will be fitted to data. The choice of a separable form for
the interaction yields analytic expressions for the T matrix elements. One
introduces a rank-2 separable potential in the ππ channel and a rank-1
separable potential in the KK̄ and in the (2π)(2π) ones. According to
the formalism developed in Ref. [31] and applied in Ref. [29] one has for the
T matrix elements:

T11(E, p, k1) = g0(k1)t00(E)g0(p) + g1(k1)t11(E)g1(p) + g0(k1)t10(E)g1(p)
+g1(k1)t01(E)g0(p) ,

T21(E, p, k1) = g0(k1)t02(E)g2(p) + g1(k1)t12(E)g2(p) ,
T31(E, p, k1) = g0(k1)t03(E)g3(p) + g1(k1)t13(E)g3(p) , (30)
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where

g0(k1) =
√

4π
mπ

1
k2

1 + β2
0

,

gj(ki) =
√

4π
mi

1
k2
i + β2

j

, j = 1, 2, 3 . (31)

The parameters βj , j = 0, 1, 2, 3, of the separable form of the scattering T
matrix are given in Table 1 of Ref. [29] (fit A).

One can extend the expressions of the reduced symmetric t(E) matrix
elements given in terms of the separable potential parameters in Appendix A
of Ref. [31] to the case of Ref. [29] which we use here. The Yamaguchi
form [32] of the g0(p) and gi(p) (31) in the T matrix elements (30) leads the
following analytic expression for Γn∗i (s) in Eq. (27)

Γn∗1 (s) = Rn1 (E) +Rn1 (E){[t00(E)g0(k1) + t01(E)g1(k1)]g0(k1)F10(k1)
+[t11(E)g1(k1) + t10(E)g0(k1)]g1(k1)F11(k1)}
+Rn2 (E)[g0(k1)t02(E) + g1(k1)t12(E)]g2(k2)F22(k2)
+Rn3 (E)[g0(k1)t03(E) + g1(k1)t13(E)]g3(k3)F33(k3) , (32)

where

F10(k1) =
I1,0(k1)

g0(k1)h0(k1)
,

F11(k1) =
I1,1(k1)

g1(k1)h1(k1)
,

F22(k2) =
I2,2(k2)

g2(k2)h2(k2)
,

F33(k3) =
I3,3(k3)

g3(k3)h3(k3)
, (33)

with

hi(ki) =
√

4π
mi

1
k2
i + κ2

, i = 1, 2, 3 ,

h0(k1) = h1(k1) , (34)

and

Ii,j(ki) =
∫

d3p

(2π)3
gj(p)

1

E − 2
√
p2 +m2

i + iε
hi(p) , (35)

where E = 2
√
k2
i +m2

i , i = 1, 2, 3. The analytical expression for these
integrals can be found in Appendix A of Ref. [31].
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As in Ref. [22] one constraints the Γn∗i (s) to satisfy the low energy behav-
ior given by next-to-leading order one loop calculation in chiral perturbation
theory (ChPT). One writes the expansion at low s as

Γni (s) ∼= dni + fni s , i = 1, 2, 3 , (36)

with real coefficients, Γni (s) being real below the ππ threshold. Using the
expressions obtained in NLO in ChPT for the Γn∗i (s) given in Refs. [22, 33]
one gets,

dn1 =

√
3
2

[
1 +

16m2
π

f2
(2Lr8 − Lr5) + 8

2m2
K + 3m2

π

f2
(2Lr6 − Lr4)

+
m2
π

36π2f2
+

m2
π

16π2f2
log

m2
π

ν2
− 1

96π2f2

(
m2
π

3
+m2

η

)
log

m2
η

ν2

]
,

fn1 =

√
3
2

[
4
f2

(2Lr4 + Lr5)− 1
16π2f2

(
1 + log

m2
π

ν2

)
− 1

64π2f2

(
1 + log

m2
K

ν2

)
− m2

π

192π2f2

(
1
m2
π

− 1
9m2

η

)]
, (37)

and

dn2 =
1√
2

[
1 +

m2
η

48π2f2
log

m2
η

ν2
+

16m2
K

f2
(2Lr8 − Lr5)

+8
6m2

K +m2
π

f2
(2Lr6 − Lr4) +

m2
K

72π2f2

(
1 + log

m2
η

ν2

)]
,

fn2 =
1√
2

[
4
f2

(2Lr4 + Lr5)− 1
64π2f2

(
1 + log

m2
η

ν2

)
−

m2
K

432π2f2

1
m2
η

− 3
64π2f2

(
1 + log

m2
K

ν2

)
− 3

64π2f2

(
1 + log

m2
π

ν2

)]
, (38)

ν being the scale of dimensional regularization and f = fπ/
√

2 . Further-
more, for the ChPT low-energy constants, Lrk, k = 4, 5, 6, 8, we use the
recent determinations of lattice QCD at ν = 1 GeV as given in Table X of
Ref. [34]. For f = 92.4 MeV, we obtain dn1 = 1.1957, fn1 = 3.1329 GeV−2,
dn2 = 0.7193 and fn2 = 1.6719 GeV−2. As in Ref. [28] we assume Γn3 (0) = 0
which leads to dn3 = 0 and we also assume fn3 = 0.

The real production functions are parametrized as

Rni (E) =
αni + τni E + ωni E

2

1 + cE4
, i = 1, 2, 3 , (39)
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the fitted parameter c controlling the high energy behavior. The other pa-
rameters, αni , τ

n
i and ωni are calculated by requiring that Γni (s) in Eq. (27)

has the low energy expansion Eq. (36). These nine parameters satisfy a
linear system of nine equations displayed in Appendix B. Their numerical
values, depending on the value of the range parameter κ (see Eq. (28)), will
be given in Sec. 5.

3.2. The pion vector form factor

As for the scalar case one could use the Muskhelishvili–Omnès equations
to built up the pion vector form factor. This was done in Ref. [3] for the Kπ
vector form factor. Here, noting that the knowledge of this form factor is
required to describe the τ− → π−π0ντ decay, we shall use the phenomeno-
logical model of the Belle Collaboration [35]. Fitting their high statistics
data, they built the pion vector form factor F ππ1 (s23) by including the con-
tribution of the three vector resonances ρ(770), ρ(1450) and ρ(1700). Here,
we use the parameters given in the third column of Table VII of Ref. [35].

4. Observables and data fitting

4.1. Physical observables

The symmetrized B− → π−1 π
+
2 π
−
3 amplitude (21) depends on the two

effective ππ masses, m12 =
√
s12 and m23 =

√
s23 of the Dalitz plot. In the

center of mass of π−(p1) and π+(p2), the pion momenta fulfill the equations

|−→p1| =
1
2

√
m2

12 − 4m2
π , |−→p2| = |−→p1| ,

|−→p3| =
1

2m12

√[
M2
B − (m12 +mπ)2

] [
M2
B − (m12 −mπ)2

]
, (40)

and the cosine of the helicity angle θ between the direction of −→p2 and that
of −→p3 reads

cos θ =
1

2|−→p2||−→p3|
[
−m2

23 + 1
2

(
M2
B −m2

12 + 3m2
π

)]
. (41)

For fixed values of the effective mass m12, the variables cos θ and m23 are
equivalent.

The double differential B− → π−π+π− branching fraction is

d2B−

dm12 d cos θ
=

1
ΓB

m12|−→p2||−→p3|
8(2π)3M3

B

∣∣M−sym(s12, s23)
∣∣2 , (42)
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where ΓB is the total width of the B−. Since the Dalitz plot is symmetric
under the interchange of m12 and m23, one can limit the integration range
on m23 to the values larger than m12; hence, the differential effective mass
distribution reads

dB−

dm12
=

cos θg∫
−1

d2B−

dm12 d cos θ
d cos θ , (43)

where cos θg corresponds to the value of cos θ in Eq. (41) with m12 = m23,
viz.,

cos θg =
1

4|−→p2||−→p3|
(
M2
B − 3m2

12 + 3m2
π

)
. (44)

The variable m12 in Eq. (43) is also called the light (or minimal) effective
mass mmin while m23 is the heavy (or maximal) effective mass, mmax. The
B− → π−π+π− branching fraction is then twice the integral of the differen-
tial branching fraction (43) over m12.

4.2. Data fitting

We aim at describing the experimental π+π− distributions obtained by
the BABAR Collaboration in the Dalitz plot analysis of the B± → π±π±π∓

decays [5]. Two different background distributions, related to the qq̄ and
the BB̄ components, are subtracted from Fig. 4 of Ref. [5]. Six light effec-
tive π+π− mass distributions are extracted for B+ and B− decays with a
subdivision of the data into positive and negative values of the cosine of the
helicity angle θ. For the B+ and B− distributions we reject two data points
corresponding to the π+π− effective masses equal to 485 and 515 MeV. Also
two points at 470 and 530 MeV for the four mass distributions with cos θ > 0
or with cos θ < 0 are not taken into account. This is done to exclude the
possible contribution of the decay processes B± → K0

Sπ
±.

As a by-product of the background subtraction, five data points, with a
small number of events, have negative values with small statistical errors.
For these five data points we increase their errors to values corresponding
to those of the points lying in a close vicinity. This is done at 1385 MeV for
the B− distribution, at 1475 MeV for the B+ one, at 290 and 1610 MeV for
the B− distribution with cos θ > 0 and at 1490 MeV for the B− one with
cos θ < 0.

We perform a χ2 fit to the 170 data points corresponding to the six
invariant mass distributions described above. In addition, we include the
experimental branching ratio for the B± → ρ(770)0π±, ρ(770)0 → π+π−

decay channel. The theoretical distributions are normalized to the number
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of experimental events in the analyzed range from 290 up to 1640 MeV. In
the fits, done for a fixed value of the range parameter κ entering Eq. (28) (see
Sec. 5), the following four parameters were varied: the production functions
Rni (E) (Eq. (39)) parameter c, the real S-wave strength parameter χS , the
real P -wave correction parameter NP (Eq. (15)) and the transition form
factor FBRD(m2

π) (Eq. (17)).

5. Results and discussion

In the fits to the selected BABAR data as described in the previous sec-
tion, the CKM matrix elements (see Eq. (2)) are calculated with λ = 0.2257,
A = 0.814, ρ̄ = 0.135 and η̄ = 0.349 [18] which leads to λu = 1.26× 10−3 −
i 3.27×10−3 and λc = −9.35×10−3−i 1.72×10−6. The LO contributions of
the Wilson coefficients to the api Eq. (5) are given in the second and fourth
columns of Table I. The sum of the leading order coefficient plus the next-to-
leading order vertex and penguin corrections for the api coefficients, entering
into u(RS,Pπ−) (Eq. (7)), v(π−RS) (Eq. (8)) and w(π−RP ) (Eq. (9)), are
displayed in columns three and five, respectively. It can be seen that the
NLO corrections are relatively small except for the coefficient a2 which,

TABLE I

Leading order (LO) and next-to-leading order (NLO) coefficients api (RS,Pπ
−),

api (π
−RS) (in parentheses) and api (π

−RP ) (see Eq. (5)) entering into u(RS,Pπ−)
(Eq. (7)), v(π−RS) (Eq. (8)) and w(π−RP ) (Eq. (9)), respectively. The NLO co-
efficients are the sum of the LO coefficients plus next-to-leading order vertex and
penguin corrections. Here the renormalization scale is µ = mb/2. The superscript
p is omitted for i = 1, 2, 3, 5, 7 and 9, the penguin corrections being zero for these
cases.

api (RS,Pπ
−) api (π

−RS,P )
LO NLO LO NLO

a1 1.039 1.071 + i0.03
a2 0.084 −0.041− i0.114
au4 −0.044 −0.032− i0.019 −0.044 −0.032− i0.019
ac4 −0.044 −0.039− i0.007 −0.044 −0.039− i0.007
au6 −0.062 −0.057− i0.017 (−0.062) (−0.075− i0.017)
ac6 −0.062 −0.062− i0.004 (−0.062) (−0.079− i0.004)
a7 0.0001 0.0 + i0.0001
au8 0.0007 0.0008 + i0.0 (0.0007) (0.0007 + i0.0)
ac8 0.0007 0.0008 + i0.0 (0.0007) (0.0007 + i0.0)
a9 −0.0094 −0.0097− i0.0003
au10 −0.0009 0.0006 + i0.0010 −0.0009 0.0006 + i0.0010
ac10 −0.0009 0.0006 + i0.0010 −0.0009 0.0006 + i0.0010
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however, has only a small contribution to the decay amplitude. The cor-
rections are calculated according to Refs. [7] and [9] using the Gegenbauer
moments for pions taken from the Table 2 of Ref. [7] and the correspond-
ing moments for the ρ meson from Table 1 of Ref. [36]. In the calculation
of the coefficients ap6(π−RS) and ap8(π−RS), contributing to v(π−RS), we
apply the method explained in Appendix A of Ref. [11]. Here, the renor-
malization scale µ = mb/2 and we take for the strong coupling constant
αs(mb/2) = 0.303.

There are five free parameters at our disposal. Two of them, the regulator
range κ and the high energy cut-off c of the production functions (Eq. (39))
are linked to the determination of the S-wave Γn1 form factor. The other
three, χS , NP and FBRD(m2

π) are related to the strength of the S, P and
D amplitudes, respectively. The range κ should be larger than 0.8 GeV
which is the on-shell pion momentum approximately equal to the half of the
effective mππ upper limit ∼ 1.64 GeV which we used. In our fits we find
that the total χ2 decreases slowly when κ decreases from the high value of
5 GeV. Here, we fix the range parameter κ to be 2 GeV. We perform two fits
for the full S + P + D-wave amplitude calculated with the NLO and with
the LO api coefficients. Hereafter the quoted results given inside parentheses
correspond to the numbers obtained in the second fit. The quoted errors on
our results come from the statistical errors in the experimental data.

A good overall agreement with BABAR’s data is achieved with c =
19.5 ± 4.2 (18.9± 4.1) GeV−4, χS = −19.4 ± 2.5 (−19.8 ± 2.6) GeV−1,
NP = 1.122 ± 0.034 (1.015 ± 0.035) and FBRD(m2

π) = 0.0977 ± 0.0070
(0.1010 ± 0.0072). The total χ2 is equal to 231.6 (233.5) for the 171 exper-
imental points of the fit. For both fits the branching fraction for the B± →
ρ(770)0π±, ρ(770)0 → π+π− decay is (8.1±0.5)×10−6, to be compared with
the BABAR Collaboration determination of (8.1 ± 0.5 ± 1.2+0.4

−1.1) × 10−6 ≈
(8.1±1.6)×10−6 from their isobar model analysis [5]. Note that for the LO
fit we explain essentially the BABAR Collaboration’s result without signif-
icant modification of the P wave normalization, the parameter NP ≈ 1.02
being close to 1. For the NLO fit, NP ≈ 1.12 ± 0.03 and one can compare
N2
P − 1 ≈ 25% with the average 20% error of the experimental branching

ratio.
The CP average total branching fraction of the B± → π±π∓π± decays

calculated in the NLO fit is equal to (15.2±1.1)×10−6 to be compared to the
measured value of

(
15.2± 0.6± 1.2+0.4

−0.3

)
× 10−6 (table III of Ref. [5]). The

branching fraction for the S wave equals to (2.3±0.4)×10−6 and that for the
D wave is (2.8± 0.4)× 10−6. The latter value is larger than the branching
fraction for the f2(1270)π±, (0.9 ± 0.2 ± 0.1+0.3

−0.1) × 10−6, determined in
Ref. [5]. In the experimental analysis the two resonances, namely f2(1270)
and f0(1370), overlap to a large extent, which makes their separation difficult
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and some part of the branching fraction obtained for one resonance could
have been attributed to the other one. The isobar model analysis of Ref. [5]
gives (2.9± 0.5± 0.5+0.7

−0.5)× 10−6 for the branching fraction of f0(1370)π±.
Then, the sum of the branching fractions for the two resonances equals
to 3.8 × 10−6. This value compares well with the branching fraction of
3.6×10−6 obtained by integrating our distribution in themππ range between
1.0 and 1.64 GeV in which both f2(1270) and f0(1370) give their dominant
contributions. In our model the D-wave contribution is dominant in this
range. Let us note that the value we obtain for the transition form factor
FBRD(m2

π) is 29% larger than the value 0.076 given in Table 1 of Ref. [23]
for the ISGW2 model. The S-wave contribution represents here as much as
15% of the total branching fraction. This contribution is of the same order
as that of the ρ(1450) and ρ(1700) which also represents 15% of the total
P -wave contribution.

Before comparing our effective mass distributions to the experimental
ones, we now give our result for the pion scalar form factor Γn1 (s). With the
fixed value of κ = 2 GeV used in the fits, one obtains for the αni , τ

n
i and

ωni , i = 1, 2, 3, entering into Eq. (39), the values given in Table II. Then, in
Fig. 1, we show the modulus of the pion scalar form factor obtained using
the NLO coefficients api for the fitted value of the parameter c = (19.5± 4.2
GeV)−4 together with its envelope when c varies within its error band. It is
also compared to that of the scalar form factor calculated by Moussallam [37]
solving the Muskhelishvili–Omnès equations [26] with a high-energy ansatz
starting at 2 GeV and the same low-energy three coupled-channel scattering
T-matrix as in our model (see Sec. 3.1). However, in his calculation the
off-diagonal matrix elements T13(E, ki, p) and T23(ki, E, p) are set to zero
in the unphysical region E < 2m3 = 1.4 GeV. Let us remind here that
the imaginary parts of these two pion form factors satisfy exactly the same
relation given by Eq. (29). The functional dependence of both Γn∗1 (s) moduli
is quite similar. It can be seen in Fig. 1 that, within our model, the needed
Γn∗1 (s) is relatively well constrained. If we fix κ = 3 GeV then the fit to
BABAR data gives c = (30.4± 6.6) GeV−4, χS = (−20.2± 2.9) GeV−1 with
a total χ2 of 234.1. In this range of variation of the strongly correlated κ and

TABLE II

Parameters of the production functions Rni (E) Eq. (39) for κ = 2 GeV.

i αni τni (GeV−1) ωni (GeV−2)

1 0.7095 −0.2707 1.6251
2 0.5759 −0.0032 1.4171
3 1.003 0.3724 2.7427
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c parameters, we have checked that the scalar form factor varies smoothly.
The corresponding values of the strength parameter χS , being very close to
−20 GeV−4, are not sensitive to these variations. For κ = 3 GeV the values
of the branching fractions for the different ππ waves stay within the error
bands of those for the κ = 2 GeV case.

Fig. 1. Modulus of the pion scalar form factor Γn1 (solid line), obtained in
our fit using the NLO api with κ = 2 GeV and for which the fitted parame-
ter c = (19.5 ± 4.2) GeV−4, compared to that calculated in Ref. [37] using the
Muskhelishvili–Omnès equations (double-dash-dotted line). The dash-dotted line
(for c = 15.3 GeV−4) and the dashed one (for c = 23.7 GeV−4) represent the
variation of the Γn1 modulus when c varies within its error band.

The threshold behavior of our pion form factor is governed by the chiral
perturbation expansion Eq. (36). These ChPT constraints, not explicitly
included in Moussallam’s case, lead to Γn∗1 (s) moduli of both approaches to
differ only slightly near the ππ threshold. Above the ππ threshold, there
is a maximum corresponding to the f0(600) resonance, then close to 1 GeV
a characteristic dip due to the f0(980) and finally, below the spike at 1.4
GeV related to the opening of the third channel, there is some enhance-
ment generated by the f0(1400) present in the ππ three-channel model used
here [29, 30]. The third threshold energy equal to 1.4 GeV is a parameter
representing twice the mass of the effective two-pion mass m(2π) used to
account for the four pion decays of scalar mesons (see Ref. [29]). Thus, in
nature there is no such sharp energy behavior. These characteristic features
of the pion scalar form factor Γn1 (s) are essential to obtain a good fit of the
experimental effective mass distributions of the B± to 3π decays.
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The results of the fit on the experimental distributions, obtained using
the NLO coefficients api in the B± → π±π∓π± amplitudes, are displayed in
Figs. 2, 3 and 4.

Fig. 2. The π+π− light effective mass distributions from the fit to the BABAR
experimental data [5], (a) for the B− decays and (b) for the B+ decays. The
long-dashed line represents the S-wave contribution of our model, the dotted line
that of the P wave, the short-dashed line that of the D wave, and the dot-dashed
line that of the interference term. The solid line corresponds to the sum of these
contributions.

Fig. 3. The same as in Fig. 2 but for the B− decays (a) with cos θ < 0 and (b) with
cos θ > 0.
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Fig. 4. The same as in Fig. 3 but for the B+ decays.

The ρ(770)-resonance contribution dominates the π+π− spectrum, but
that of the S wave is non negligible. As seen, the S wave part is sizable
near 500 MeV which is related to the contribution of the scalar resonance
f0(600), not explicitely included in the BABAR Dalitz plot analysis [5]. In
the 1 GeV range the f0(980) resonance is not observed as a peak in the
π+π− spectrum. This fact is easily explained in our model since the decay
amplitudes are proportional to the pion scalar form factor which has a dip
near 1 GeV as seen in Fig. 1. Around 1.3 GeV there is a maximum coming
from the contribution of the f2(1270) resonance. Near 1.4 GeV the f0(1400)
scalar resonance [29,30] gives only a tiny enhancement in the distributions.

Figure 2 exhibits a small CP asymmetry, the B− and B+ effective mass
distributions being very close. Summing the number of experimental events
in the mπ+π− range between 290 and 1640 MeV one finds 616 events for the
B− decay and 606 for that of the B+. This leads to a CP asymmetry of
(0.8±4.8)% which can be compared to the values of (1.7±0.2)% for the NLO
fit and (−0.06 ± 0.08)% for the LO fit. Taking into account the statistical
error of 4.8% and adding to it a few percent systematic error one sees that
both fits agree with experiment. Let us recall here the experimental value
of the CP asymmetry ACP =

(
3.2± 4.4± 3.1+2.5

−2.0

)
% for the total sample of

π±π∓π± events [5]. For the particular decay mode, namely for the B± decay
into ρ(770)0π±, ρ(770)0 → π+π−, the isobar model analysis gives ACP =(
18± 7± 5+2

−14

)
%, while from our model we get 3.6% ± 0.2% (−0.03% ±

0.001%). Note here that the asymmetries obtained for the fit corresponding
to the amplitudes calculated with the real LO api coefficients are quite small
as it could have been expected.
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Figures 3 and 4 show a spectacular feature, namely that the interference
term of the S, P and D waves is quite important under the ρ(770)0 max-
imum. Here the S-P interference dominates. The sign of this interference
term depends on the sign of cos θ, so the ρ peak is reduced for the neg-
ative values of cos θ and enhanced for the positive values. This is a clear
indication that the π+π− effective mass distribution cannot be reproduced
without the S-wave contribution. If we try to fit the data without the
S-wave amplitude then we obtain a poor fit with χ2 = 316.3. In this case
the effective mass distributions are not well described below 600 MeV and
also under the ρ maximum. One striking feature is that the interference
terms allow an extremely good representation of the separate cos θ < 0 and
cos θ > 0 spectra for the B+ decays (Fig. 4) and yield for the full spectrum
(Fig. 2 (b)) a χ2/point of 1.07. The fit of the separate B− spectra (Fig. 3)
is less satisfactory whereas that of the full spectrum (Fig. 2 (a)) is almost
perfect with a χ2/point of 1.2.

6. Summary and outlook

The present paper is a continuation of our efforts [1,2,3,4] in constraining
theoretically the meson–meson final state strong interactions in hadronic
charmless three-body B decays. If the strong interaction amplitudes are
sufficiently well understood then one can improve the precision of the weak
interaction amplitudes extracted from these reactions.

Our theoretical model for the B± → π±π∓π± is based on the application
of the QCD factorization [6, 7, 9, 13] to quasi two-body processes in which
only two of the three produced pions interact strongly, forming either an
S-, P - or D-wave state. One assumes that the third pion, being fast in
the B-meson decay frame, does not interact with this pair. This hypothesis
is mainly valid in a limited range of the π+π− effective mass, here taken
between the ππ threshold and 1.64 GeV.

The short-distance interaction part of the decay amplitudes describes
the flavor changing processes b → uūd and b → dd̄d. It is proportional to
Cabibbo–Kobayashi–Maskawa matrix elements multiplied by effective coef-
ficients calculable in the perturbative QCD formalism. This short-distance
amplitude is multiplied by a long-distance contribution expressed in terms
of two products. The first one is the product of the pion decay constant by
the B → ππ transition matrix element and the second one is the product of
the pion form factor by the B → π transition form factor. The parametriza-
tion (Eqs. (18), (19)) of the scalar and vector B to π transition form factors
follow from the light-cone sum rule study of Ref. [21].

The effective Wilson coefficients are calculated to next-to-leading order
in the strong coupling constant. They include vertex and penguin corrections
but neither hard-scattering ones nor annihilation contributions since these
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last two terms contain unknown phenomenological parameters related to
amplitude divergences [9]. We find that these vertex and penguin corrections
are small in comparison to the leading order term (see Table I). However,
they allow to generate some non-zero CP asymmetries.

We then assume the B to ππ transition matrix element to be equal to the
product of the B to intermediate meson transition form factor by the decay
amplitude of this meson into two pions being either in S, P or D wave. The
next step is to suppose the latter decay amplitude to be proportional to the
pion non-strange scalar or vector form factor depending on the wave studied.
For the S wave the proportionality factor is given by a fitted parameter χS
and for the P wave it is related to the inverse of the ρ decay constant. For
the limited range of the effective ππ mass, from ππ threshold to 1.64 GeV,
the B → ππ transition form factors are taken as constants given by the B →
f0(980) [19] and by the B → ρ(770) [20] transition form factors at q2 = m2

π.
The decay amplitude for the ππ D wave is described by a relativistic Breit–
Wigner formula and the not well known B to f2(1270) transition form factor
is fitted. We find FBf2(m2

π) = 0.098± 0.007.
The pion scalar form factor is modeled by the unitary relativistic three

coupled-channel equation (27) using the ππ, KK̄ and effective (2π)(2π)
scattering T matrix of Refs. [29,30]. This form factor depends on two fitted
parameters: the first one κ insures the convergence of the involved integrals
and the second one, c, controls the high-energy behavior of the production
functions accountable for the meson pair formation. The pion vector form
factor takes into account the contribution of the ρ(770), ρ(1450) and ρ(1700),
and follows from the parametrization of the Belle Collaboration in their
study of the semi-leptonic τ− → π−π0ντ decays. For the P -wave amplitude
we introduce a fitted correction factor NP .

We obtain a good fit to the ππ effective mass distributions of the BABAR
Collaboration data of the B± → π±π∓π± decays [5]. The value of the
branching fraction for the B± → ρ(770)0π± decays, (8.1 ± 0.7 ± 1.2+0.4

−1.1) ×
10−6, is well reproduced with the correction factor NP close to 1. This shows
that the QCD factorization gives the right strength of the B to ρπ decay am-
plitude. The π+π− spectra are dominated by the ρ(770)0 resonance but, at
low effective mass, the S-wave contribution is sizable. Here the f0(600) reso-
nance manifests its presence. Furthermore, one observes a strong interference
of the S and P waves in the event distributions for cos θ > 0 and cos θ < 0.
Here the f0(980) is not directly visible as a peak, since the pion scalar form
factor has a dip near 1 GeV. The surplus of events in the π+π− effective mass
close to 1.25 GeV is well described by the contribution of the f2(1270) res-
onance. The branching fraction for B± → f2(1270)π±, f2(1270) → π+π−

decay is found to be of (2.8±0.4)×10−6. At 1.4 GeV, the tiny maximum of
the S-wave distribution comes from the scalar resonance f0(1400) [29, 30].
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Our model yields a unified description of the contribution of the three
scalar resonances f0(600), f0(980) and f0(1400) in terms of one function:
the pion non-strange scalar form factor. This reduces strongly the number
of needed free parameters to analyze the Dalitz plot. The functional form of
our S-wave amplitude (Eq. (22)), proportional to Γn∗1 (s), could be used in
Dalitz-plot analyses and the table of Γn∗1 (s) values can be sent upon request.

The strong interaction phases of the decay amplitudes are constrained
by unitarity and meson–meson data. Their determination should help in
the extraction of the weak angle phase γ or φ3 equal to arg(−λ∗u/λ∗c). Of
course new experimental data with better statistics would be welcome. One
expects B± → π±π∓π± events from the Belle Collaboration, and probably,
in the near future, from LHCb and from the near term super B factories.

The authors are obliged to Bachir Moussallam for providing them with
the values of his pion scalar form factor Γn1 (s) and to Gagan Bihari Mohanty
for useful comments on the BABAR data. We are very grateful to Maria
Różańska, Bachir Moussallam, Eli Ben-Haim and José Ocariz for helpful
discussions. This work has been supported in part by the Polish Ministry
of Science and Higher Education (grant No N N202 248135) and by the
IN2P3–Polish Laboratories Convention (project No 08-127).

Appendix A

Long-distance functions XS,P,D and YS,P

The function XS from the S-wave amplitude proportional to BRS
transition matrix element

From Eq. (13) the function XS reads

XS ≡
〈
[π+(p2)π−(p3)]S |(ūb)V−A|B−

〉 〈
π−
∣∣∣(d̄u)V−A∣∣∣ 0〉

= GnRSπ+π−(s23)
〈
RS |(ūb)V−A|B−

〉 〈
π−
∣∣∣(d̄u)V−A∣∣∣ 0〉 , (A.1)

where the vertex function GnRSπ+π−(s23) describes the RS decay into a
[π+π−]S pair. TheB toRS transition matrix element reads (see e.g. Eq. (B6)
of Ref. [12])〈

RS(p2 + p3)|ūγµ
(
1− γ5

)
b|B−(pB)

〉
= i

{[
(pB+p2+p3)µ−

M2
B−s23

m2
π

pµ1

]
FBRS

1

(
m2
π

)
+
M2
B−s23

m2
π

pµ1F
BRS
0

(
m2
π

)}
,

(A.2)
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where FBRS
0 (m2

π) and FBRS
1 (m2

π) are the BRS scalar and vector form fac-
tors, respectively. The pion decay constant fπ is defined as〈

π−(p1)
∣∣d̄γµ(1− γ5)u

∣∣ 0〉 = ifπp1µ . (A.3)

The product of Eqs. (A.2) and (A.3) yields〈
RS |(ūb)V−A|B−

〉 〈
π−
∣∣∣(d̄u)V−A∣∣∣ 0〉 = −

(
M2
B − s23

)
fπF

BRS
0

(
m2
π

)
.

(A.4)
The vertex function GnRSπ+π−(s23), as in Ref. [2], is modeled by〈

[π+π−]S |n̄n|0
〉

= GnRSπ+π−(s23) 〈RS |n̄n|0〉 . (A.5)

An effective scalar decay constant fnRS
can be introduced with

〈RS |n̄n|0〉 = mRS
fnRS

. (A.6)

From Eqs. (A.5), (20) and (A.6) one obtains

GnRSπ+π−(s23) =
√

2
3 χS Γ

n∗
1 (s23) =

√
2
3

√
2B0

mRS
fnRS

Γn∗1 (s23) , (A.7)

with

χS =
√

2B0

mRS
fnRS

. (A.8)

The effective scalar decay constant has a role comparable to the RP decay
constant as can be seen comparing Eqs. (A.7) and (A.19). The product of
Eqs. (A.7), (A.2) and (A.3) gives

XS = −
√

2
3 χS fπ

(
M2
B − s23

)
FBRS

0

(
m2
π

)
Γn∗1 (s23) . (A.9)

The function YS from the S-wave amplitude proportional to Bπ
transition matrix element

From Eq. (14) one has

YS ≡
〈
π−
∣∣∣(d̄b)sc−ps

∣∣∣B−〉 〈[π+(p2)π−(p3)
]
S

∣∣∣(d̄d)sc+ps

∣∣∣ 0〉
=
〈
π−
∣∣d̄b∣∣B−〉 〈[π+(p2)π−(p3)

]
S

∣∣d̄d∣∣ 0〉 . (A.10)

From the Dirac equations satisfied by b(pB) and d̄(p1) one obtains〈
π−(p1)

∣∣d̄(p1)b(pB)
∣∣B−(pB)

〉
=
〈
π−(p1)

∣∣∣∣d̄(p1)
γ ·(pB−p1)
mb−md

b(pB)
∣∣∣∣B−(pB)

〉
.

(A.11)
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The B to π transition matrix element
〈
π−|(d̄b)V−A|B−

〉
, entering into the

above expression, can be written as (see e.g. Eq. (5) of Ref. [3])

〈π−(p1)|d̄γµ(1− γ5)b|B−(pB)〉

=
[
(pB + p1)µ −

M2
B −m2

π

q2
qµ
]
FBπ1

(
q2
)

+
M2
B −m2

π

q2
qµFBπ0

(
q2
)
, (A.12)

where FBπ0 (q2) and FBπ1 (q2) are the Bπ scalar and vector form factors,
respectively, and q = pB − p1 = p2 + p3. Using Eqs. (A.12) and (20) in
Eq. (A.10), yields

YS =
√

2
3 B0 Γ

n∗
1 (s23)

M2
B −m2

π

mb −md
FBπ0 (s23) . (A.13)

The function XP from the P -wave amplitude proportional to BRP
transition matrix element

From Eq. (15) one has for the function XP (see Eq. (3.1) of Ref. [12])

XP ≡
〈
[π+(p2)π−(p3)]P |(ūb)V−A|B−

〉 〈
π−
∣∣∣(d̄u)V−A∣∣∣ 0〉

=
GnRP π+π−(s23)

√
2

ε · (p2 − p3)
〈
RP |(ūb)V−A|B−

〉 〈
π−
∣∣∣(d̄u)V−A∣∣∣ 0〉 ,

(A.14)

where the RP decay into a [π+π−]P pair is described by the vertex func-
tion GnRP π+π−(s23). Here ε represents the polarization vector of the P -wave
meson RP . The factor 1/

√
2 comes from the fact that RP represents the

ρ(770)0. As seen from e.g. Eq. (B6) of Ref. [12] or Eq. (24) of Ref. [6]

〈
RP (p2 + p3)|(ūb)V−A|B−(pB)

〉
= −i 2mRP

ε∗ · pB
p2

1

p1 A
BRP
0

(
p2

1

)
+ other terms . (A.15)

The “other terms” do not give any contribution when multiplying this matrix
element by that given in Eq. (A.3). Plugging this expression into Eq. (A.14)
one has a product of polarization vectors and the sum over the three possible
polarization eigenvalues of the state RP should be done. From

∑
λ=0,±1

ελµ(p)ελ∗ν (p) = −
(
gµν −

pµpν
p2

)
, (A.16)
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one obtains ∑
λ=0,±1

ελ · (p2 − p3)ελ
∗ · pB = −p1 · (p2 − p3) . (A.17)

Then

XP = NP
fπ
fRP

(s13 − s12) ABRP
0

(
m2
π

)
F ππ1 (s23) . (A.18)

Above, as shown in Ref. [3] for the K∗(892)→ (Kπ)P decay case (see their
Eq. (D9)), we have parametrized the RPπ+π− vertex function in terms of
the pion vector form factor F ππ1 (s23). One has

GRP π+π−(s23) = NP

√
2

mRP
fRP

F ππ1 (s23) , (A.19)

fRP
being the charged RP decay constant. Above we have introduced a

parameter NP to take into account the possible deviation of the strength of
the P wave, here proportional to 1/fRP

.

The function YP from the P -wave amplitude proportional to the Bπ
transition matrix element

From Eq. (16)

YP ≡
〈
π−
∣∣∣(d̄b)V−A∣∣∣B−〉 〈[π+(p2)π−(p3)]P |(ūu)V−A|0

〉
. (A.20)

The pion vector form factor is defined by (see e.g. Eq. (36) of Ref. [6])

〈RP |(ūu)V−A|0〉 = 〈[π+(p2)π−(p3)]P |ūγµ(1−γ5)u|0〉 =− (p2−p3)µF
ππ
1

(
q2
)
.

(A.21)
The minus sign arises from the definition of the form factor F ππ1 (q2) which
contains a plus sign for a (d̄d)V−A current (similar to Eq. (A.12)), then as
ρ0 = 1/

√
2(uū− dd̄), there will be a minus sign for a (ūu)V−A current. The

product of Eqs. (A.12) and (A.21) gives

YP = −2 p1 · (p2 − p3)FBπ1

(
q2
)
F ππ1

(
q2
)

= (s13 − s12)FBπ1

(
q2
)
F ππ1

(
q2
)
.

(A.22)
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The function XD from the D-wave amplitude proportional to BRD
transition matrix element

From Eq. (17) one has

XD ≡
〈
[π+(p2)π−(p3)]D|(ūb)V−A|B−

〉 〈
π−(p1)

∣∣∣(d̄u)V−A∣∣∣ 0〉
=

1√
2
GRDπ+π−(s23)

2∑
λ=−2

εαβp
α
2 p

β
3

〈
RλD(pD)

∣∣(ūb)V−A∣∣B−〉
×
〈
π−(p1)

∣∣∣(d̄u)V−A∣∣∣ 0〉 , (A.23)

with pD = p2 + p3. The factor of 1/
√

2 is due to the quark content of the
resonance RD (the meson f2(1270)). The RD decay into a [π+π−]D pair is
described by the vertex function GRDπ+π−(s23). Here εαβ(λ) represents the
polarization tensor of the f2(1270) and λ is its spin projection (see Ref. [38],
p. 147). Taking Eq. (A3) for

〈
π−(p1)|(d̄u)V−A|0

〉
and Eq. (4) of Ref. [23]

for the transition matrix element
〈
RλD(pD)|(ūb)V−A|B−

〉
we obtain

XD = − fπ√
2
GRDπ+π−(s23)FBRD(m2

π)
2∑

λ=−2

εαβ(λ)pα2 p
β
3 ε
∗
µν(λ)pνBp

µ
1 . (A.24)

To be consistent with the choice of normalization of Eq. (A.2), we have
multiplied by i the right-hand side of Eq. (4) in Ref. [23]. One can show
that (see Eqs. (7.7) and (7.8) of Ref. [38], p. 73)

D(s12, s23) ≡
2∑

λ=−2

εαβ(λ)pα2 p
β
3 ε
∗
µν(λ)pνBp

µ
1 = 1

3(|−→p1||−→p2|)2−(−→p1·−→p2)2 , (A.25)

−→p1 and −→p2 being the momenta of the π−(p1) and the π+(p2) in the rest frame
of π+(p2) and π−(p3). One obtains, with m23 =

√
s23,

−→p1 · −→p2 = 1
4(s13 − s12) ,

|−→p2| = 1
2

√
m2

23 − 4m2
π , |−→p2| = |−→p3| ,

|−→p1| =
1

2m23

√[
M2
B − (m23 +mπ)2

][
M2
B − (m23 −mπ)2

]
,(A.26)

which allows to express Eq. (A.25) in terms of s12 and s23. The vertex
function entering into Eq. (A.23) is parametrized as being proportional to a
relativistic Breit–Wigner resonance formula, we write

GRDπ+π−(s23) =
√

2
3

Gf2
m2
RD
− s23 − imRD

Γ (s23)
, (A.27)
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where (see Ref. [38], p. 147)

Gf2 = mf2

√
60πΓf2ππ

q5
f2

, Γf2ππ = 0.848 Γf2 (A.28)

and the mass-dependent width Γ (s23) can be expressed as (see Eq. (7) of
Ref. [5])

Γ (s23) = Γf2

(
|−→p2|
qf2

)5 mf2

m23

X(|−→p2|)
X(qf2)

. (A.29)

Here Γf2 is the total width of the f2(1270) resonance, mf2 its mass and qf2
is the pion momentum in the f2 c.m. system. The Blatt–Weisskopf barrier
form factor is given by [5]

X(z) =
1

(zrBW)4 + 3(zrBW)2 + 9
, (A.30)

where the meson radius parameter rBW = 4 (GeV/c)−1. Finally, one has

XD = − 1√
2
fπF

BRD(m2
π)
√

2
3

Gf2D(s12, s23)
m2
RD
− s23 − imRD

Γ (s23)
. (A.31)

Appendix B

Linear system of equations for αni , τ
n
i and ωni

The linear system of nine equations satisfied by the nine production
function parameters αni , τ

n
i and ωni , i = 1, 2, 3, is

αni +
3∑
j=1

αnjHji(0) = dni ,

τni +
3∑
j=1

(
τnj Hji(0) + αnj

∂Hji(E)
∂E

∣∣∣∣
E=0

)
= 0 ,

ωni +
3∑
j=1

(
ωnjHji(0) + τnj

∂Hji(E)
∂E

∣∣∣∣
E=0

+ 1
2α

n
j
∂2Hji(E)
∂E2

∣∣∣∣
E=0

)
= fni . (B.1)
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