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A simple and direct, based on the equations of motion, derivation of the
variational principle and effective actions for a spherical charged dust shell
in general relativity is offered. This principle is based on the relativistic
version of the D’Alembert principle of virtual displacements and leads to
the effective actions for the shell, which describe the shell from the point
of view of the exterior or interior stationary observers. Herewith, sides of
the shell are considered independently, in the coordinates of the interior or
exterior region of the shell. Canonical variables for a charged dust shell are
built. It is shown that the conditions of isometry of the sides of the shell
lead to the Hamiltonian constraint on these interior and exterior dynamical
systems. Special cases of the “hollow” and “screening” shells are briefly
considered, as well as a family of the concentric charged dust shells.
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1. Introduction

The theory of spherically-symmetric thin shells plays the key role for
construction of the effective non-trivial models for the collapsing gravitating
configurations. Thin shells have been found to have widespread application
in different areas of the General Relativity, astrophysics and cosmology for
modeling of the extended objects whose thickness can be neglected. For
example, they are intensively used for the analysis of the basic problems
of a gravitational collapse, including its classical and quantum aspects. In
astrophysics, spherical shells are used for modeling the supernovas and other
variable cosmic objects. At larger scales, specific configurations of shells have
also been considered to construct cosmological models, to analyze phase
transitions in the early universe or to describe cosmological voids etc. (see
for reviews [1, 2]).
† vgladush@gmail.com
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The equations of motion of spherical shells have been obtained in [3], the
equations of motion of charged spherical shells have been found in [4,5,6,7].
The construction of the variational principle, as well as Lagrangian and
canonical formalism for the shells and branes were discussed in [8, 9, 10, 11,
12,13,14,15,16,17,18,19,20,21,22,23].

Note that in most of the works mentioned, the variational principle for
the shell is constructed based on the general variational principle containing
the standard Einstein–Hilbert term, the actions of the substance on the
world sheet of the shell and suitable surface terms. Subsequent reduction of
the action of the shell leads to the action, which is based on gauge fixing and
depends on the choice of the evolution parameter (generally, proper time).

The approach to the construction of the variational principle for spherical
dust shells in terms of the stationary interior and exterior observers was
developed on the basic principles in [22, 23]. This approach is based on
a procedure for reduction of the full action, which contains the Einstein–
Hilbert terms for the interior and exterior regions, the action for the dust
matter on the singular shell, the surface matching and normalizing terms,
the surface terms which are introduced to fix the metric on the boundary of
the considered region, and on the subsequent modification of the variational
procedure.

In series of paper by Kijowski and collaborators [18,19,20,21], the general
approach to the construction of the Lagrangian and Hamiltonian variational
principle for the composed “shell + gravity” system is proposed, starting
from first principles, without assuming any symmetry of the system.

In the case of a spherically symmetric shell in vacuum, this formulation
leads to a simple Hamiltonian system with 1 degree of freedom. The config-
uration variable is the area of the shell, whereas the canonical momentum
equals the hyperbolic angle between the surfaces tSchwarzschild = const. on
one side and the surfaces tMinkowski = const. on the other side of the shell.
The Hamiltonian of the system is explicitly calculated in terms of the “true
degrees of freedom”, i.e. as a function on the reduced phase space.

Note that the approaches mentioned above are based on a cumbersome
procedure for reduction of the full action, even in the case of spherical sym-
metry. It is even more complicated in the presence of an electric charge.
However, since the generalized Birkhoff’s theorem implies that spherically
symmetric gravitational field has no local degrees of freedom, one would ex-
pect that the system could be reduced to a single degree of freedom, the shell
radius, with a potential obtained by solving equations for the gravitational
and electromagnetic fields. Thus, at least for the region r > r+, where r+ is
the external event horizon of the Reissner–Nordström metric, we can study
dynamics of the charged shell in external or internal fixed gravitational and
electromagnetic fields, i.e. on the Reissner–Nordström geometries, instead
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of the dynamics of the “charged shell + gravity+ electromagnetism” system.
Fields inside and outside spherical shell are determined solely by the match-
ing terms on the shell and the asymptotic behavior at infinity. There is no
radiation, the full proper mass and charge of the dust shell are conserved,
so there is no problem with the surface density of mass and charge and no
need for detailed consideration of local values. In this case, one can use
the known equations of motion of a charged spherical shell [4, 5, 6] to con-
struct the effective actions. The construction of the effective actions for the
spherical dust shell based on the equations of motion is the ambiguous task
and leads to different results depending on the choice of evolution parame-
ter [25,26,27,28,29,30,31]. In the majority of works the variational principle
for shells is constructed in the co-moving frame of reference, or in one of vari-
ants of the freely falling frames of reference. In our opinion, the choice of the
exterior or interior remote stationary observer in the theory of gravitating
shells is the most natural and corresponds with the real physics. The natu-
ral Hamiltonian formalism of a neutral self-gravitating shell was considered
in [27,29], where the Hamiltonian of the shell was actually postulated.

In this paper we propose simple and direct construction of the varia-
tional principle for charged dust spherical shells in general relativity. This
procedure is based on the generalization of the relativistic version of the
D’Alembert principle of virtual displacements [32, 33]. It leads to two vari-
ational principles in the curvature coordinates for the internal and external
regions of the shell. As the result, the effective actions, Lagrangian and
Hamiltonian for a charged spherical shell in the curvature coordinates of the
interior and exterior regions of space-time are constructed, and the Hamil-
tonian constraint is obtained which plays the role of the integrals of motion.

Everywhere in this paper the gravitational constant k = 1 and the speed
of light c=1. The metric tensor gµν (µ, ν=0, 1, 2, 3) has signature (+−−−).

2. Spherically-symmetric space-time with a spherical shell

Let us consider a spherically-symmetric compound configuration
D = D− ∪ Σ ∪ D+ which is the union of concentric interior D− and
exterior D+ regions. These regions are matched together along time-like
spatially closed hypersurface Σ which forms world sheet of a spherical in-
finitely thin dust shell with dust density σ and charge density σe. Let
xi : {x2 = θ, x3 = α} (i, k = 2, 3) be the general angular, and xa±(a, b = 0, 1)
be the individual coordinates defined in regions D±. Then gravitational
fields in regions D± are generally described by metrics

(4)ds2± = (4)gµνdx
µdxν = (2)ds2± − r2dσ2 , (2.1)

(2)ds2± = γ±abdx
a
±dx

b
± , dσ2 = hijdx

idxj = dθ2 + sin2 θdα2 . (2.2)
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The two-dimensional metrics γ±ab and the scale factor r are functions of the
coordinates xa±. We have (2)ds+|Σ = (2)ds+|Σ = (2)ds+, as well as the
world line of the shell is set by the equation xa = xa(s). In the points on
hypersurface we will define orthonormal basis

{ua, na} , (uaua = −nana = 1 , uan
a = 0) , (2.3)

here ua is a tangent vector of the shell’s world line so ua±|Σ = dxa/(2)ds, and
na is the normal vector to the Σ which is directed from the region D− to
the D+. From the formula (2.3) we find the equalities

n0 =
√
−gu1 , n1 = −

√
−gu0 , (2.4)

u0 =
√
−gn1 , u1 = −

√
−gn0 . (2.5)

We used γ = det |γab|.

3. Equations of motion of a spherically-symmetric charged
dust shell

In the vacuum, spherically-symmetric gravitational field of a charged
source is described by the Reissner–Nordström metrics. In curvature coor-
dinates, we can write the metrics for the regions D− and D+ as follows

(4)ds2± = F±dt
2
± − F−1

± dr2 − r2
(
dΘ2 − sin2Θdα2

)
, (3.1)

where

F+ = 1− 2kM+

r
+
kQ2

+

r2
, F− = 1− 2kM−

r
+
kQ2
−

r2
. (3.2)

Here t+ and t− are Keeling time coordinates in the exterior D+ and interior
D− regions, accordingly; M+ and M− are the active masses; Q+ and Q−
are the electric charges. These charges also generate electric fields with
potentials ϕ± = Q±/r in regions D±.

For the spherically-symmetric charged dust shell the motion equations
have the form (e.g. see [5])

na
Dua

ds
|+ + na

Dua

ds
|− =

2
σ

[
Tαβn

αnβ
]
, (3.3)

na
Dua

ds
|+ − na

Dua

ds
|− = 4πκσ =

κm

r2
, (3.4)
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where Tαβ is the energy-momentum tensor,m = 4πσr2 is the rest mass of the
shell andDua = ua;bdx

b is the covariant differential relative to the metrics γab.
The symbol [Φ] = Φ|+−Φ|− denotes the jump of the quantity Φ on Σ. The
signs “|+” and “|−” indicate the marked quantities to be calculated as the
limit values when approaching the boundary Σ from inside and outside,
respectively. In our case (see [5])[

Tαβn
αnβ

]
=

q

8πr4
(Q+ +Q−) , q = Q+ −Q− , (3.5)

where q = 4πσer2 is the charge of the shell.
Two-dimensional equations of motion (3.3) and (3.4) allow us to obtain

independent equations of motion of the shell in the coordinates for each of
the two-dimensional areas D(2)

+ and D(2)
− separately. Taking into account the

relations (2.4), (2.5) and the equations (3.3), (3.4) we obtain the equations
of motion of the shell in terms of quantities with respect only to the D(2)

+ ,
or only to the D(2)

−

ua;bu
b|± =

Dua

ds
|± =

1
m

(
qQ±
r2
± κm2 − q2

2r2

)
na . (3.6)

We can see that regions D(2)
+ and D(2)

− , and their boundaries Σ(1)
± together

with the corresponding gravitational and electric fields can be considered
separately and independently, as manifolds D(2)

± with edges Σ(1)
± .

4. The variational principle for a spherically-symmetric charged
dust shell

Following [34], we rewrite the equations of motion for a shell (3.6) in
the form, which is similar to the equations of motion for a charge in an
electromagnetic field

ua;bu
b|± = −G±abu

b|± , (4.1)

where

G±ab = −G±ba , G±01 =
1
m

(
−qQ±

r2
± q2 − κm2

2r2

)
. (4.2)

To obtain this result the relation (3.5) has been used with the fact that for
the Reissner–Nordström metrics we have

√
−γ = 1. The motion equations

(4.1) define the trajectories xa± = xa±(s) corresponding to real motions of
the shell in the regions D(2)

± .
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Now, we will consider other possible trajectories x̃a± (s) = xa± (s) +
δxa± (s), which are sufficiently close to the real trajectory. From the re-
lation (4.1) it follows that((

ua;bu
b +Gabu

b
)
δxa
)
±

= 0 . (4.3)

This equation is a relativistic analogue of the D’Alambert principle of virtual
displacement when the time coordinate x0 = x0 (s) and the spatial one
x1 = x1 (s) are considered as the dynamic variables.

Let us multiply expressions (4.3) by (2)ds and integrate the result along
trajectories γ±, then we get∫

γ±

((
ua;bu

b +Gabu
b
)
δxa
)(2)

±
ds = 0 . (4.4)

First term in this formula can be transformed using the variational relation

δ|(2)
± ds|± = −

(
ua;bu

bδxa(2)ds
)
|± + d (uaδxa) |± . (4.5)

Second term in the formula (4.4) can be written as follows(
Gabu

bδxa
)(2)

±
ds =

(
G01

(
dx0δx1 − dx1δx0

))
± . (4.6)

In the regions D(2)
± , let us introduce the auxiliary continuous and invariant

one-forms β± = B±a x
a by means of the relations

dβ± = G±01

(
dx0 ∧ dx1

)
± . (4.7)

Here B±a = B±a
(
x0, x1

)
are the vector potentials of the gravitational and

electric self-actions, and G±ab ≡ B
±
b,a −B

±
a,b are its intensities in the exterior

and interior regions D(2)
± , respectively. Note that in two-dimensional space

the integrability condition for the relations (4.7) holds identically. Making
use of the definitions (4.7) and the formulae

d (Baδxa)± − δ (Baδxa)± = G±01

(
dx0δx1 − dx1δx0

)
± , (4.8)

we obtain second term in (4.4) as(
Gabu

bδxa
)
|(2)
± ds = (d (Baδxa)− δ (Badxa)) |± . (4.9)
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Substituting the expressions (4.5) and (4.9) into equation (4.4), we find the
following variational formulae

δ

∫
γ±

(
(2)ds−Badxa

)
±

+ {(ua +Ba) δxa}± |
B
A = 0 , (4.10)

where indices A and B indicate that corresponding quantities are taken in
the initial and final position of the shell. Hence, it follows that for all real
trajectories xa± = xa±(s) the integrals

I±sh = −m
∫
γ±

(
(2)ds−Badxa

)
±

= −m
∫
γ±

(
(2)ds− β

)
±

(4.11)

have stationary values
(
δI±sh = 0

)
with respect to arbitrary possible varia-

tions of the shell motions, when initial and final positions remain fixed, i.e.(
δxa±

)
|BA = 0. Thus, the requirement of stationarity δI+

sh = 0 and δI−sh = 0
with respect to the arbitrary variations of the coordinates δx+ and δx− yield
to the equations of motion of a charged dust shell (4.1) in the coordinates x+

and x−, respectively. Hence, it can be seen that I−sh is the effective action for
a charged dust shell defined only in the coordinates xa− (i.e. in the interior
region), and I+

sh is the effective action for a charged dust shell defined only
in coordinates xa+ in the exterior region.

The proposed procedure for the construction of the effective action is the
relativistic analogue of the classic method of deriving the integral Hamilton
principle from the D’Alembert principle of virtual displacements [32].

5. The effective actions and Lagrangians for a spherical charged
dust shell in curvature coordinates

The effective actions (4.11) for a spherical charged dust shell are obtained
in the invariant form. Using curvature coordinates, we choose common spa-
tial spherical coordinates {r, θ, α} in D±, and individual time coordinates
t± in D±, respectively. Then the world sheet of the shell Σ is given by
equations r = r− (t−) and r = r+ (t+), respectively.

In this case, from definitions (4.7) we obtain

dβ± =
(
G±01 (r) dt ∧ dr

)
± = −dt± ∧ dV ± = d ∧

(
V ±dt±

)
, (5.1)

where
mV ± = −qϕ± ± U , (5.2)

and

U =
q2 − km2

2r
(5.3)
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is the full effective potential energy of the gravitational and electromag-
netic self-actions of the shell. First term in (5.2) is the interaction energy
of the shell’s charge q and electric fields with potential ϕ± = Q±/r in re-
gions D(2)

± , respectively. The general solutions of the equations in exterior
derivatives (5.1) for each of two regions D(2)

± can be written in the forms

β± = V ±dt± + dψ± =
1
m

(−qϕ± ± U) dt± + dψ± , (5.4)

where ψ± = ψ± (t±, r) is a function which sets calibration of the vector
potential Ba in the regions D(2)

± . These functions can be chosen so that
one-form β will be continuous on the shell (namely β+|Σ = β−|Σ = β).

Substituting one-form (5.4) into the actions (4.11), we get the general
representation of the effective actions for the charged dust spherical shell in
the form

I±sh = −
∫
γ

{
m(2)ds+ (qϕ± ∓ U) dt−mdψ

}
|± . (5.5)

Making use of the gauge conditions ψ± = 0 in each of the regions D(2)
± the

effective actions for the charged dust spherical shell can be written as

I±sh =
∫
γ

L±shdt|± = I±sh = −
∫
γ

{
m(2)ds+ (qϕ± ∓ U) dt

}
|± . (5.6)

Here the effective Lagrangians have been introduced in the form

L±sh = −m

(
(2)ds

dt

)
±

− qϕ± ± U = −m
√
F± − F−1

± r2t± − qϕ± ± U . (5.7)

They describe dynamics of a charged dust spherical shell from the point of
view of the interior or exterior stationary observers. Here, for the sake of
simplification, the radial velocity is denoted by rt± = dr/dt±. Note that
one-form β± = ϕ± (t±, r) dt± is not continuous on the shell Σ anymore.

In the limiting case of small m and q, it can be formally put M+ =
M− = M , Q+ = Q− = Q and U = 0. Then the Lagrangians (5.7) will
describe the test charged shell with mass m and charge q, which moves in
the gravitational Reissner–Nordström field with parameters M and Q, and
in the electric field with potential ϕ = Q/r.
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6. The isometry condition and the Hamiltonian constraint

The effective actions I±sh independently determine dynamics of the shell
in the regionsD(2)

± . Therefore, the regions D(2)
± together with the boundaries

Σ
(1)
± and the corresponding fields can be considered separately and indepen-

dently. The boundaries Σ(1)
± acquire the physical sense of the different faces

of a dust shell with world sheet Σ(1) if regions D(2)
± are joined along these

boundaries. However, this requirement can be realized only if the condition
of the isometry for the boundaries Σ(1)

±

F+dt
2
+ − F−1

+ dr2 = F−dt
2
− − F−1

− dr2 = dτ2 (6.1)

is fulfilled. Here τ is the proper time of the shell. Herewith, Σ(1)
+ = Σ

(1)
− =

Σ(1), γ+ (t+) = γ− (t−) = γ.
It can be shown easily that the condition of isometry of the bound-

aries (6.1) leads to the Hamiltonian constraints. First of all, we have the
relationships for the velocities

F+

rt+
− 1
F+

=
F−
rt−
− 1
F−

, (6.2)

r2τ ≡
(
dr

dτ

)2

=
r2t±

F± − F−1
± r2t±

, r2t± ≡
(
dr

dt±

)2

=
F 2
±r

2
τ

F± + r2τ
. (6.3)

Further, from the Lagrangians (5.7) we find the momenta and Hamiltonians
for the shell

P± =
∂L±sh
∂rt±

=
mrt±

F±

√
F± − F−1

± r2t±

=
m

F±
rτ , (6.4)

H±sh =
√
F±
(
m2 + F±P 2

±
)

+ qϕ± ∓ U = E± . (6.5)

Here E± are the energies, which are conjugated to the coordinate times t±
and are conserved in the frames of reference of the respective stationary
observers (interior or exterior one). Eliminating the velocity rτ from (6.4)
and (6.5) , the condition of isometry for the boundaries Σ(1)

± can be written as

F+P+ = F−P− , (6.6)
(E+ − qϕ+ + U)2 −m2F+ = (E− − qϕ− − U)2 −m2F− . (6.7)

Substituting ϕ± = Q±/r into the last equation and making use of the equa-
tions (3.2), (5.3) we obtain

H+
sh = H−sh = M+ −M− = E . (6.8)
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Here E = E+ = E− denotes the total energy of the shell, which is conjugated
both to the coordinate times t+ and t−, and its value is independent of the
stationary observers position (inside or outside of the shell). It can be shown
that the momentum constraint (6.6) is a consequence of the relation (6.7).

Thus, the dynamic system described by the Lagrangians L±sh is not inde-
pendent. They satisfy the Hamiltonian constraint (6.8), which ensures the
isometry of the shell faces.

Hamiltonian constraint (6.8) can be rewritten using the relation (6.5) in
terms of momenta in square form

F−1
± (M+ −M− − qϕ± ± U)2 − F±P 2

± = m2 . (6.9)

Hence, taking into account P± = −dS±/dr we find the stationary Hamilton–
Jacobi equation

F−1
± (M+ −M− − qϕ± ± U)2 − F±

(
dS±
dr

)2

= m2 , (6.10)

where S is the reduced action.
Now, we derive the first-order differential equations of motion for the

charged dust shells. For this purpose we rewrite the Hamiltonian constraint
(6.8) using the formulae (6.5) and (5.3) in the form

m
√
F± + r2τ = [M ]− qQ±

r
± q2 − km2

2r
, (6.11)

or in the mixed form we have

m
√
F− + r2τ +m

√
F+ + r2τ = 2 (M+ −M−)− q (Q− +Q+)

r
, (6.12)

m
√
F− + r2τ −m

√
F+ + r2τ =

κm2

r
. (6.13)

Note that these formulae are reasonable outside the event horizon, where
the curvature coordinates are valid. Formally, we can use these formulas
under the horizon too, i.e. in T−- and T+-regions, assuming r to be the time
coordinate. It turns out that in order to use the simplicity and convenience
of the curvature coordinates and to conserve the information about the shells
in the region R−, it is sufficient to introduce an additional discrete variable
ε = ±1 and perform the replacement (2)ds± → ε

(2)
± ds± in the actions I±sh

(5.6) (for more details on the neutral shells, see [22, 23]). Here, ε± = 1
corresponds to the region R+, and ε± = −1 — to the region R−. Then, for
the extended system, Hamiltonians (6.5) take the form

H±sh = ε±

√
F±
(
m2 + F±P 2

±
)

+ qϕ± ∓ U . (6.14)
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7. Special cases of dust shells

7.1. Hollow and screening shells

The investigations of the shell in terms of interior or exterior frames
of reference are equivalent, due to isometry of the sides of the shell and
the Hamiltonian constraint. Therefore, we can choose the coordinates in
which the equations of motion have the most simple and most convenient
form. For example, the equations of motion of charged shells are greatly
simplified when one of the regions of space-time, inside or outside of the
shell, is flat. Thus, for “hollow” shell the coordinates of the interior region
are convenient, while for the “screening” shell the coordinates of the exterior
region are better.

In the first case, we have a self-gravitating shell, for which M− = 0 and
Q− = 0. Such a shell, in the interior coordinates of flat space-time, moves
only under the influence of the potential energy U of the gravitational and
the electric self-interactions (5.3), which depends only on the rest mass m
and charge q of the shell. Let us use the following notations M+ = M and
Q+ = Q. In this case, the exterior region D+ of the shell is described by
Reissner–Nordström metrics (3.1), where F+ = F = 1 − 2kM/r + kQ2/r2.
In terms of the coordinates {t+, r}, the Lagrangian, the Hamiltonian and
the Hamiltonian constraint can be written as

L+
sh = −m

√
F − F−1r2t+ −

qQ

r
+
q2 − km2

2r
, (7.1)

H+
sh =

√
F
(
m2 + FP 2

+

)
+
qQ

r
− q2 − km2

2r
= M , (7.2)

P+ =
mRt+

F
√
F − F−1R2

t+

, (7.3)

F−1

(
M − qϕ+ +

q2 − km2

2r

)2

− FP 2
+ = m2 . (7.4)

In the interior region D− we have F− = 1. In terms of the coordinates
{t−, r}, the Lagrangian, the Hamiltonian and the Hamiltonian constraint
are much simpler and they have the form

L−sh = −m
√

1− r2t− −
q2 − km2

2r
, (7.5)

H−sh =
√
m2 + P 2

− +
q2 − km2

2r
= M , P− =

mrt−√
1− r2t−

, (7.6)

(
M − q2 − km2

2r

)2

− P 2
− = m2 . (7.7)
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In the case of the “screening” shellM+ = 0, Q+ = 0, and we putM− = −M ,
Q− = Q. Thus, the system has a nontrivial electric and gravitational fields
only in the interior region D− of the shell. The easiest way is to describe
such a shell in terms of the coordinates {t+, r} of the exterior region, where
it is moving under the influence of the potential energy of the gravitational
and the electric self-interaction of the same form as for a “hollow” shell, but
with the opposite sign. Thus, we have the Lagrangian, Hamiltonian and
Hamiltonian constraint in the form

L+
sh = −m

√
1− r2t+ +

q2 − km2

2r
, (7.8)

H+
sh =

√
m2 + P 2

+ −
q2 − km2

2r
= M , P+ =

mrt+√
1− r2t+

, (7.9)

(
M +

q2 − km2

2r

)2

− P 2
+ = m2 , (7.10)

correspondingly.

7.2. A family of concentric charged dust shells

Let us briefly consider a more complex configuration, consisting of a
set of concentric charged dust shells. Let Ra, ma, qa , τa be the radius, the
proper mass, the charge, and the proper time of the a-th shell, respectively
(a = 1, 2, . . . , N). We assume that Rb > Ra if b > a. Suppose that Ma, Qa
are the active mass and the electric charge that determine the gravitational
Reissner–Nordström field Fa = 1− 2kMa/r + kQ2

a/r
2 in the area Ra < r <

Ra+1, between a-th and (a + 1)-th shells. We denote by F−a , ϕ−a and F+
a ,

ϕ+
a the metric coefficients and the electric potentials in the neighborhood

of a-th shell, in its interior Ra−1 < r < Ra and exterior Ra < r < Ra+1

regions, respectively. Then

F−a = 1− 2kMa−1

r
+
kQ2

a−1

r2
, F+

a = Fa = 1− 2kMa

r
+
kQ2

a

r2
, (7.11)

ϕ−a =
Qa−1

r
, ϕ+

a =
Qa
r
, Ua =

q2a − km2
a

2r
, (7.12)

where Ua is the potential energy of self-interaction of the a-th shell. Note
that F+

a = F−a+1, ϕ
+
a = ϕ−a+1 and qa = Qa −Qa−1. In this case

H±a = ε±a

√
F±a

(
m2 + F±a

(
P±a
)2)+ qϕ±a ∓ Ua (7.13)
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are the Hamiltonians of the a-th shell, which, as well as the momenta of the
shells

P±a =
madra

F±a dτa
, (7.14)

are considered relatively to the coordinates of areas Ra−1 < r < Ra and
Ra < r < Ra+1, respectively. Here ε±a = ±1. These Hamiltonians satisfy
the constraints

H+
a = H−a = Ma −Ma−1 . (7.15)

The total Hamiltonian of the configuration

H =
N∑
a=1

H±a =
N∑
a=1

{
ε±a

√
F±a

(
m2 + F±a

(
P±a
)2)+ qϕ±a ∓ Ua

}
(7.16)

by virtue of the Hamiltonian constraints (7.15) is provided to be equal

H = Etot = MN −M0 . (7.17)

Full electric charge of the configuration, because of the additivity of the
charge, is

Q =
N∑
a=1

qa = QN −Q0 . (7.18)

If M0 = 0 and Q0, the system is moving in its own gravitational and
electric fields. In this case H±1 = M1, Q1 = q1. Thus, the full Hamiltonian
and the charge of the system have the form

H = MN = M , Q = QN , (7.19)

where M = MN is the full active mass of the configuration.

8. Conclusions

A special feature of the dynamics of the spherical shell is that its evo-
lution is not accompanied by radiation and can be reduced to a simple
Lagrangian system. This dynamic system has only one local degree of free-
dom r = r (τ). Therefore, there is a possibility to construct equations of
motion of the shell in terms of coordinates assigned only to the interior or
exterior region and to consider them independently. Hence, making use of
the simple generalization of the relativistic version of the D’Alambert prin-
ciple of virtual displacements, the effective actions I±sh (5.6) are constructed
for a charged dust shell, describing its dynamics from the point of view of
the exterior or interior stationary observers. This leads to the different ef-
fective Lagrangians L±sh (5.7) and Hamiltonians H±sh (6.5) of the shell in the
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interior and exterior regions D(2)
± with coordinates xa±. It turns out that

the dynamical systems described by these Lagrangians are not independent.
They satisfy the Hamiltonian constraint H+

sh = H−sh = M+−M− = E, which
guarantees isometry of the sides of the shell. The total energy of the shell
E = M+ − M− conjugates both time coordinates t± in the regions D±.
Energy value is constant and it does not depend on the position of a resting
observer inside or outside of the shell.

Consideration of the “hollow” and the “screening” charged dust shells
shows that their dynamics are somewhat similar. Also, the generalized
Hamiltonian constraint takes place for a family of concentric spherical
charged shells. Full Hamiltonian (7.16) of the configuration numerically
equals to the difference between active masses outside the system and inside
it, i.e. H = Etot = MN −M0.

This work was supported by the grant of the “Cosmomicrophysics” pro-
gramme of the Physics and Astronomy Division of the National Academy of
Sciences of Ukraine.
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