ERRATUM

(Received February 23, 2012)

A. Bialas

Wounded Constituents

Acta Phys. Pol. B 43, 95 (2012)

The following corrections should be introduced.

(i) The last paragraph of Section 3 should be replaced by:

To make use of this prediction it is necessary to recall the old formula for the number of wounded constituents in a collision of two composite objects [1,2]. Consider a collision of two nuclei A and B. For the number dw_A of wounded constituents of size between δ and $\delta + d\delta$ in A we have

$$\sigma_{AB}(b)dw_A(b;\delta;B) = AdN_H(\delta) \int d^2s D_A(s)\sigma_{\delta B}(b-s)$$

$$\equiv AdN_H(\delta)\hat{\sigma}_{\delta B}(b)$$
(8)

and an analogous formula for dw_B . Here $\sigma_{\delta B}(b)$ is the cross-section of one constituent of size δ on the nucleus B, $\sigma_{AB}(b)$ is the total (inelastic) cross-section for the A-B collisions³, $D_A(s)$ is the (transverse) distribution of the nucleons in the nucleus A normalized to unity, and $dN_H(\delta)$ is the number of constituents of size between δ and $\delta + d\delta$ in the nucleon⁴.

- (*ii*) In the footnote 4, $AdN_H(\delta)$ should be replaced by $AD_A(s)dN_H(\delta)$.
- (iii) In the r.h.s. of Eq. (22), $\sigma_{\delta A}(b)$ and $\sigma_{\delta B}(b)$ should be replaced by $\hat{\sigma}_{\delta A}(b)$ and $\hat{\sigma}_{\delta B}(b)$, respectively.

These changes do not affect the results and conclusions of the paper.