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1. Introduction

Presently, physicists expect that there exist aberrations from relativis-
tic kinematics in high energy (transplanckian) regime. Such a suggestion
follows from many theoretical [1, 2] as well as experimental (see e.g. [3])
investigations performed in the last time.

Generally, there exist two approaches to describe the particle kinematics
in ultra-high energy regime. First of them assumes that relativistic sym-
metry becomes broken at Planck’s scale to the proper subgroup of Poincaré
algebra [4,5]. The second approach is more sofisticated, i.e. it assumes that
relativistic symmetry is still present in high energy regime, but it becomes
deformed [6].

The first treatment has been proposed in [4, 5] where authors assumed
that the whole Lorentz algebra is broken to the four subgroups: T(2), E(2),
HOM(2) and SIM(2) identified with four versions of so-called Very Special
Relativity. The second treatment arises from Quantum Group Theory [7,8]
which, in accordance with Hopf-algebraic classification of all relativistic and
nonrelativistic deformations [9,10], provides three types of quantum spaces.

(51)
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First of them corresponds to the well-known canonical type of noncommu-
tativity

[ x̂µ, x̂ν ] = iθµν , (1)

with antisymmetric constant tensor θµν . Its relativistic and nonrelativistic
Hopf-algebraic counterparts have been proposed in [11] and [12] respectively.

The second kind of mentioned deformations introduces the Lie-algebraic
type of space-time noncommutativity

[ x̂µ, x̂ν ] = iθρµν x̂ρ , (2)

with particularly chosen coefficients θρµν being constants. The corresponding
Poincaré quantum groups have been introduced in [13, 14, 15], while the
suitable Galilei algebras — in [16] and [12].

The last kind of quantum space, so-called quadratic type of noncommu-
tativity

[ x̂µ, x̂ν ] = iθρτµν x̂ρx̂τ ; θρτµν = const. (3)

has been proposed in [17, 18] and [15] at relativistic and in [19] at nonrela-
tivistic level.

The links between both (mentioned above) approaches have been investi-
gated recently in articles [20] and [21]. Preciously, it has been demonstrated
that the very particular realizations of canonical, Lie-algebraic and quadratic
space-time noncommutativity are covariant with respect the action of un-
deformed T(2), E(2) and HOM(2) subgroups respectively. Such a result
seems to be quite interesting because it connects two different approaches
to the same problem — to the form of Poincaré algebra at Planck’s scale. It
also confirms expectation that relativistic symmetry in high energy regime
should be modified, while the realizations of such an idea by breaking or
deforming of Poincaré algebra plays only the secondary role.

In this article we extend described above investigations to the case of clas-
sical acceleration-enlarged Newton–Hooke Hopf algebras U0(N̂H±) [22,23].
Particularly, we find their subgroups which act covariantly on the following
(provided in [24] and [25]) twist-deformed acceleration-enlarged Newton–
Hooke space-times1,2

[ t, xi ] = 0 , [ xi, xj ] = if±

(
t

τ

)
, (4)

1 x0 = ct.
2 It should be noted that symbol τ plays the role of time scale parameter (cosmological
constant), which is responsible for oscillation or expansion of space-time noncommuta-
tivity (4). For τ approaching infinity we reproduce the canonical (1), Lie-algebraic (2)
and quadratic (3) type of space-time noncommutativity.
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with

f+

(
t

τ

)
= f

(
sinh

(
t

τ

)
, cosh

(
t

τ

))
, f−

(
t

τ

)
= f

(
sin
(
t

τ

)
, cos

(
t

τ

))
.

Further, by contraction limit of obtained results (τ → ∞), we analyze the
case of so-called classical acceleration-enlarged Galilei Hopf algebra U0(Ĝ)
proposed in [26].

The paper is organized as follows. In second section we describe the gen-
eral algorithm used in present article. Sections 3 and 4 are devoted respec-
tively to the subgroups of classical acceleration-enlarged Newton–Hooke as
well as classical acceleration-enlarged Galilei Hopf symmetries acting covari-
antly on the proper (acceleration-enlarged) twist-deformed space-times (4).
Final remarks are presented in the last section.

2. General prescription

In this section we describe the general algorithm which can be applied
to the arbitrary twist deformation of space-time symmetries algebra A.

First of all, we recall basic facts related with the twist-deformed quan-
tum group UF (A) and with the corresponding quantum space-time. In
accordance with general twist procedure [27], the algebraic sector of Hopf
structure UF (A) remains undeformed, while the coproducts and antipodes
transform as follows

∆0(a)→ ∆F (a) = F ◦ ∆0(a) ◦ F−1 , SF (a) = uF S0(a)u−1
F , (5)

with ∆0(a) = a ⊗ 1 + 1 ⊗ a, S0(a) = −a and uF =
∑
f(1)S0(f(2)) (we use

Sweedler’s notation F =
∑
f(1) ⊗ f(2)). Present in the above formula twist

element F ∈ UF (A)⊗ UF (A) satisfies the classical cocycle condition

F12 · (∆0 ⊗ 1) F = F23 · (1⊗∆0) F , (6)

and the normalization condition

(ε⊗ 1) F = (1⊗ ε) F = 1 , (7)

with F12 = F ⊗ 1, F23 = 1⊗F and

∆0(a) = a⊗ 1 + 1⊗ a . (8)

The corresponding to the above Hopf structure space-time is defined as
quantum representation space (Hopf module) with action of the symmetry
generators satisfying suitably deformed Leibnitz rules [28,11]

h� ωF (f(x)⊗ g(x)) = ωF (∆F (h) � f(x)⊗ g(x)) , (9)
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for h ∈ UF (A) or UF (A) and

ωF (f(x)⊗ g(x)) = ω ◦
(
F−1 � f(x)⊗ g(x)

)
; ω ◦ (a⊗ b) = a · b . (10)

The action of UF (A) algebra on its Hopf module of functions depending on
space-time coordinates xµ is given by

h� f(x) = h (xµ, ∂µ) f(x) , (11)

while the ?F -multiplication of arbitrary two functions is defined as follows

f(x) ?F g(x) := ω ◦
(
F−1 � f(x)⊗ g(x)

)
. (12)

It should be also noted that the commutation relations

[ xµ, xν ]?F = xµ ?F xν − xν ?F xµ (13)

are covariant (by definition) with respect to the action of Hopf algebra gen-
erators (see deformed Leibnitz rules (9)).

In this article we consider the action of undeformed acceleration-enlarged
Newton–Hooke as well as classical acceleration-enlarged Galilei Hopf alge-
bras on the commutation relations (13) (A = N̂H± or Ĝ). It is given by the
particular realizations of differential representation (16) and new classical
Leibnitz rules

h� ωF (f(x)⊗ g(x)) = ωF (∆0(h) � f(x)⊗ g(x)) (14)

associated with coproduct (8). Further, we demonstrate that in such a case
the relations (13) are not invariant with respect to the action of the whole
algebras U0(N̂H±) and U0(Ĝ), but only with respect to their proper sub-
groups. Such an effect can be identified with the breaking classical symmetry
phenomena associated with twist-deformed space-times (13).

3. Breaking of classical acceleration-enlarged
Newton–Hooke symmetry

In this section we turn to the case of undeformed acceleration-enlarged
Newton–Hooke Hopf algebra U0(N̂H±) defined by the following algebraic
sector3

3 The both Hopf structures U0( dNH±) contain, apart from rotation (Mij), boost (Ki)
and space-time translation (Pi, H) generators, the additional ones denoted by Fi,
responsible for constant acceleration.
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[Mij ,Mkl]= i (δilMjk − δjlMik + δjkMil − δikMjl) , [H,Pi] = ± i

τ2
Ki ,

[Mij ,Kk]= i (δjkKi − δikKj) , [Mij , Pk] = i (δjk Pi − δikPj) ,
[Mij , H]=[Ki,Kj ] = [Ki, Pj ] = 0 , [Ki, H] = −iPi , [Pi, Pj ] = 0 ,
[Fi, Fj ]=[Fi, Pj ] = [Fi,Kj ] = 0 , [Mij , Fk] = i (δjk Fi − δik Fj) ,
[H,Fi]=2iKi , (15)

and classical coproduct (8). One can check that the above structure is
represented on Hopf module of functions as follows (see formula (11))

H � f(t, x) = i∂tf(t, x) , Pi � f(t, x) = iC±

(
t

τ

)
∂if(t, x) , (16)

Mij�f(t, x) = i (xi∂j−xj∂i) f(t, x) , Ki�f(t, x) = iτ S±

(
t

τ

)
∂i f(t, x) ,

(17)
and

Fi � f(t, x) = ±2iτ2

(
C±

(
t

τ

)
− 1
)
∂if(t, x) , (18)

with

C+/−

(
t

τ

)
= cosh / cos

(
t

τ

)
and S+/−

(
t

τ

)
= sinh / sin

(
t

τ

)
.

As it was already mentioned in Introduction the twist deformations of
quantum group U0(N̂H±) have been provided in [24]. Here, we take under
consideration the twisted acceleration-enlarged Newton–Hooke space-times
defined by the following twist factors

F = Fα1 = exp

 i

4

2∑
k,l=1

αkl1 Pk ∧ Pl

 [
αkl1 = −αlk1 = α1

]
, (19)

F = Fα2 = exp

 i

4

2∑
k,l=1

αkl2 Kk ∧ Pl

 [
αkl2 = −αlk2 = α2

]
, (20)

F = Fα3 = exp

 i

4

2∑
k,l=1

αkl3 Kk ∧Kl

 [
αkl3 = −αlk3 = α3

]
, (21)

F = Fα4 = exp

 i

4

2∑
k,l=1

αkl4 Fk ∧ Fl

 [
αkl4 = −αlk4 = α4

]
, (22)
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F = Fα5 = exp

 i

4

2∑
k,l=1

αkl5 Fk ∧ Pl

 [
αkl5 = −αlk5 = α5

]
, (23)

F = Fα6 = exp

 i

4

2∑
k,l=1

αkl6 Kk ∧ Fl

 [
αkl6 = −αlk6 = α6

]
. (24)

In other words, we consider spaces of the form

[ t, x̂i ]?F =[ x̂1, x̂3 ]?F =[ x̂2, x̂3 ]?F =0 , [ x̂1, x̂2 ]?F = if(t) ; i = 1, 2, 3 ,
(25)

with function f(t) given by

f(t) = fκ1(t) = f±,κ1

(
t

τ

)
= κ1C

2
±

(
t

τ

)
, (26)

f(t) = fκ2(t) = f±,κ2

(
t

τ

)
= κ2τ C±

(
t

τ

)
S±

(
t

τ

)
, (27)

f(t) = fκ3(t) = f±,κ3

(
t

τ

)
= κ3τ

2 S2
±

(
t

τ

)
, (28)

f(t) = fκ4(t) = f±,κ4

(
t

τ

)
= 4κ4τ

4

(
C±

(
t

τ

)
− 1
)2

, (29)

f(t) = fκ5(t) = f±,κ5

(
t

τ

)
= ±κ5τ

2

(
C±

(
t

τ

)
− 1
)
C±

(
t

τ

)
, (30)

f(t) = fκ6(t) = f±,κ6

(
t

τ

)
= ±κ6τ

3

(
C±

(
t

τ

)
− 1
)
S±

(
t

τ

)
. (31)

Of course, for all parameters κa running to zero the above space-times be-
come commutative.

Let us now turn to the covariance of relations (26)–(31) with respect to
the action of undeformed Hopf algebra U0(N̂H±). Using differential repre-
sentation (16)–(18), classical Leibnitz rules (8) and twist factors (19)–(24),
one finds (see prescription (14))

Gk � [t, xi]?F =0 , (32)

Gk �

[
[xi, xj ]?F−if(t)(δ1iδ2j−δ1jδ2i)

]
=0 ; Gk = Pk, Kk, Fk , (33)

Mkl � [t, xi]?F =0 , M12 �

[
[xi, xj ]?F−if(t)(δ1iδ2j−δ1jδ2i)

]
=0 , (34)

M13 �

[
[xi, xj ]?F−if(t)(δ1iδ2j−δ1jδ2i)

]
=f(t)(δ2iδ3j−δ2jδ3i) , (35)
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M23 �

[
[xi, xj ]?F−if(t)(δ1iδ2j−δ1jδ2i)

]
=−f(t)(δ1iδ3j − δ1jδ3i) , (36)

H �

[
[xi, xj ]?F−if(t)(δ1iδ2j−δ1jδ2i)

]
=h(t)(δ1iδ2j−δ1jδ2i) , (37)

H � [t, xi]?F =0 , (38)

with h(t) = df(t)
dt , i.e.

h(t) = hκ1(t) = h±,κ1

(
t

τ

)
= ±κ1

τ
S±

(
2t
τ

)
, (39)

h(t) = hκ2(t) = h±,κ2

(
t

τ

)
= κ2C±

(
2t
τ

)
, (40)

h(t) = hκ3(t) = h±,κ3

(
t

τ

)
= κ3τ S±

(
2t
τ

)
, (41)

h(t) = hκ4(t) = h±,κ4

(
t

τ

)
= ±8κ4τ

3S±

(
t

τ

)(
C±

(
t

τ

)
− 1
)
, (42)

h(t) = hκ5(t) = h±,κ5

(
t

τ

)
= κ5τ

(
S±

(
2t
τ

)
− S±

(
t

τ

))
, (43)

h(t) = hκ6(t) = h±,κ6

(
t

τ

)
= 2κ6τ

2

(
2C±

(
t

τ

)
+ 1
)
S2
±

(
t

2τ

)
. (44)

The above result means that the commutation relations (26)–(31) remain in-
variant with respect to the action of Pi, Ki, Fi and M12 generators. Hence,
the “isometry” condition for considered (twisted) spaces breaks the whole
U0(N̂H±) quantum group into its subalgebra generated by spatial transla-
tions, boosts, constant acceleration generators and rotation in (x1, x2)-plane.

Finally, it should be noted that one can easily extend the above algorithm
to the case of usual Newton–Hooke Hopf structure U0(NH±) by putting
acceleration generators Fi equal zero.

4. The case of acceleration-enlarged Galilei Hopf algebra analyzed
in the contraction limit (τ→∞) of U0(N̂H±) Hopf structure

Let us now turn to the classical acceleration-enlarged Galilei Hopf algebra
U0(Ĝ) given by the following algebraic sector
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[Mij ,Mkl ] = i (δilMjk − δjlMik + δjkMil − δikMjl) , [H,Pi ] = 0 ,
[Mij ,Kk ] = i (δjkKi − δikKj) , [Mij , Pk ] = i (δjk Pi − δik Pj) ,
[Mij , H ] = [Ki,Kj ] = [Ki, Pj ] = 0 , [Ki, H ] = −iPi , [Pi, Pj ] = 0 ,
[Fi, Fj ] = [Fi, Pj ] = [Fi,Kj ] = 0 , [Mij , Fk ] = i (δjk Fi − δik Fj) ,
[H,Fi ] = 2iKi , (45)

and trivial coproduct (8). It is well-known that the above Hopf structure
can be gotten by the contraction limit (τ → ∞) of discussed in pervious
section quantum group U0(N̂H±).

The noncommutative space-times associated with twist deformations of
Hopf algebra U0(Ĝ) can be provided by the contraction procedure of spaces
(26)–(31); they take the form

[t, x̂i]?F =[x̂1, x̂3]?F =[x̂2, x̂3]?F =0 , [x̂1, x̂2]?F = iw(t) ; i = 1, 2, 3 ,
(46)

with (wκi(t) = limτ→∞ fκi(t))

w(t) = wκ1(t) = κ1 , (47)
w(t) = wκ2(t) = κ2 t , (48)
w(t) = wκ3(t) = κ3 t

2 , (49)
w(t) = wκ4(t) = κ4 t

4 , (50)
w(t) = wκ5(t) = 1

2κ5 t
2 , (51)

w(t) = wκ6(t) = 1
2κ6 t

3 . (52)

It should be also noted, that the Galilean counterpart of covariance condi-
tions (32)–(38) in τ →∞ limit looks as follows

Gk � [t, xi]?F =0 , (53)

Gk �

[
[xi, xj ]?F− iw(t)(δ1iδ2j−δ1jδ2i)

]
=0 ; Gk=Pk, Kk, Fk , (54)

Mkl � [t, xi]?F =0 , M12 �

[
[xi, xj ]?F− iw(t)(δ1iδ2j−δ1jδ2i)

]
=0 ,(55)

M13 �

[
[xi, xj ]?F− iw(t)(δ1iδ2j−δ1jδ2i)

]
=w(t)(δ2iδ3j − δ2jδ3i) , (56)

M23 �

[
[xi, xj ]?F− iw(t)(δ1iδ2j−δ1jδ2i)

]
=−w(t)(δ1iδ3j − δ1jδ3i) , (57)

H �

[
[xi, xj ]?F− iw(t)(δ1iδ2j−δ1jδ2i)

]
=g(t)(δ1iδ2j−δ1jδ2i) , (58)

H � [t, xi]?F =0 , (59)
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where (gκi(t) = limτ→∞ hκi(t))

g(t) = gκ1(t) = 0 , (60)
g(t) = gκ2(t) = κ2 , (61)
g(t) = gκ3(t) = 2κ3t , (62)
g(t) = gκ4(t) = 4κ4t

3 , (63)
g(t) = gκ5(t) = κ5t , (64)
g(t) = gκ6(t) = 3

2κ6t
2 . (65)

The above result means that the commutations relations (46) remain in-
variant with respect to the action of Pi, Ki, Fi, M12 and H generators in
the case of deformation (47) as well as Pi, Ki, Fi and M12 for space-times
(48)–(52).

Finally, let us observe that the above considerations can be applied to the
case of classical Galilei quantum group U0(G) by neglecting operators Fi.

5. Final remarks

In this article we provide the subgroups of classical acceleration-enlarged
Newton–Hooke U0(N̂H±) as well as classical acceleration-enlarged Galilei
U0(Ĝ) Hopf structures, which play the role of “isometry” groups for twist-
deformed space-times (25) and (46). In such a way, by analogy to the investi-
gations performed in [20,21], we get the link between twisted quantum spaces
and the proper undeformed Hopf subalgebras. Consequently, the obtained
results admit to analyze the twist-deformed dynamical models [29,30,31,32]
in terms of the corresponding classical quantum subgroups of the whole non-
relativistic symmetries. The works in this direction have already started and
are in progress.

The author would like to thank J. Lukierski for valuable discussions.
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