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Using the Lie algebra approach, we construct a Mikhauilov–Novikov–
Wang hierarchy associated with the 3 × 3 matrix spectral problem. It is
shown that the hierarchy of nonlinear evolution equations is integrable in
the Lax sense and possesses Hamiltonian structures.
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1. Introduction

The main problems in the theory of integrable systems are: (i) For a
given nonlinear equation, how to determine whether it is integrable or not,
and if it is, how to find its Lax representation; (ii) To find as many as
possible integrable systems such that they become significant equations. In
general, it is very difficult to solve the two problems. On the other hand,
a nonlinear evolution equation is integrable, that is, it can be expressed as
the compatibility condition of two linear spectral problems or possesses a
Lax pair, which plays a crucial role in the inverse scattering transformation
[1, 2] and Darboux transformation [3, 4] and others [5, 6]. In Ref. [7], a
Lie algebraic method was developed to search for new integrable nonlinear
evolution equations and their Hamiltonian structures on the basis of trace
identity.
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In Ref. [8], Mikhailov, Novikov, and Wang proposed an integrable non-
linear evolution equation of the form

ut = −uxxxxx + 10uuxxx + 25uxuxx − 20u2ux + 9vx ,

vt = 3vuxxx − 4vxu
2 + vxuxx − 24vuux (1)

by using the symmetry approach. It is shown that this equation is bi-
Hamiltonian and possesses a recursion operator [8]. Equation (1) is called the
Mikhailov–Novikov–Wang (MNW) equation. It is easy to see that Eq. (1)
can be reduced to the well-known Kaup–Kupershmidt equation [9, 10]

ut = −uxxxxx + 10uuxxx + 25uxuxx − 20u2ux (2)

by setting v = 0. The author of Ref. [11] introduced a 3× 3 matrix spectral
problem, from which a zero curvature representation for (1) was given.

The aim of the present paper is to construct the MNW hierarchy of non-
linear evolution equations associated with the 3×3 matrix spectral problem
and establish their Hamiltonian structures. The compatibility condition be-
tween the given matrix spectral problem yx = U(s, λ)y and its auxiliary
problem ytm = V (m)y yields the zero-curvature equation Utm − (V (m))x +
[U, V (m)] = 0, where each entry of V (m) is a Laurent expansion in λ. Then,
the zero-curvature equation is equivalent to a set of equations about the
coefficients, which can be obtained in terms of the potential function s by
solving the stationary zero-curvature equation. As a result, the hierarchy of
soliton equation is derived.

In Section 2, we introduce the Lie algebraic method and solve the sta-
tionary zero-curvature equation associated with the 3 × 3 matrix spectral
problem, from which we derive two cases of the MNW hierarchy for different
choice of the coefficients in the Laurent expansion. The MNW equation (1),
as the first nontrivial equation, appears in the first case of the MNW hier-
archy. In Section 3, we find a recursion operator and a symplectic operator.
Resorting to the trace identity, we give Hamiltonian structures for the two
cases of the hierarchy of nonlinear evolution equations and prove that they
are Liouville integrable.

2. The hierarchy of nonlinear evolution equations

Let us introduce a 3× 3 matrix spectral problem

yx = U(s, λ)y , y =

 y1
y2
y3

 , U =

 0 1 0
u 0 1

λ+ λ−1v u 0

 , (3)
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where s = (u, v)T , λ is a constant spectral parameter. We construct a Lie
algebra G over C, G = span{σi}8i=1 with the base

σ1 =

 0 1 0
0 0 1
0 0 0

 , σ2 =

 1 0 0
0 0 0
0 0 −1

 , σ3 =

 1 0 0
0 −2 0
0 0 1

 ,

σ4 =

 0 0 1
0 0 0
0 0 0

 , σ5 =

 0 0 0
1 0 0
0 1 0

 , σ6 =

 0 0 0
−1 0 0
0 1 0

 ,

σ7 =

 0 0 0
0 0 0
1 0 0

 , σ8 =

 0 −1 0
0 0 1
0 0 0


equipped with the commutation relations [σj , σk] =

8∑
l=1

C ljkσl, or explicitly

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8
σ1 0 −σ1 3σ8 0 σ2 −σ3 −σ6 2σ4
σ2 0 0 2σ4 −σ5 −σ6 −2σ7 σ8
σ3 0 0 3σ6 3σ5 0 −3σ1
σ4 0 −σ8 σ1 σ2 0
σ5 0 −2σ7 0 σ3
σ6 0 0 −σ2
σ7 0 −σ5
σ9 0 .

One loop algebra generated by G is expressed as G̃ = span{σi(n)}8i=1,
σi(n) = σiλ

n, i = 1,2,. . . ,8, along with the commutative operations

[σj(n), σk(m)] =

8∑
l=1

C ljkσl(n+m) , (4)

where the structural constants C ljk can be found in the above table.
Then U in (3) takes the form

U = R+ uσ5(0) + vσ7(−1) ,

where R = σ1(0) + σ7(1). It is easy to see that G̃ = ker adR+ Im adR and
ker adR is commutative. The gradation for G̃ is defined by

deg(σ4(m)) = 3m+ 2 , deg(σ1(m)) = deg(σ8(m)) = 3m+ 1 ,

deg(σ2(m)) = deg(σ3(m)) = 3m, deg(σ7(m)) = 3m− 2 ,

deg(σ5(m)) = deg(σ6(m)) = 3m− 1 . (5)
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Therefore, we have

deg(R) = deg(σ1(0) + σ7(1)) = 1 ,

deg(σ5(0)) = −1 , deg(σ7(−1)) = −5 ,

In order to solve the associated stationary zero-curvature equation

Vx = [U, V ] , (6)

we define
rank(σj(m)) = deg(σj(m))

and

rank(λ) = 3 , rank(u) = 2 , rank(v) = 6 , rank(∂) = 1

which imply that the equation (6) has homogeneous rank. Let the solution
of the initial problem of (6) be

V =
∑
m≥0

(amσ1(−m) + bmσ2(−m) + cmσ3(−m) + dmσ4(−m) + emσ5(−m)

+fmσ6(−m) + gmσ7(−m) + hmσ8(−m)) , (7)

where the initial values are

a0 = b0 = c0 = d0 = f0 = h0 = 0 . (8a)

By substituting (7) into (6), we obtain

am,x = −bm , bm,x = em − uam − dm+1 − vdm−1 ,

cm,x = uhm − fm , dm,x = 2hm ,

em,x = ubm − hm+1 − vhm−1 ,

fm,x = −(3ucm + gm) + am+1 + vam−1 ,

gm,x = −2ufm + 2bm+1 + 2vbm−1 ,

hm,x = 3cm + udm , (m ≥ 1) (8b)

with

b0,x = e0 − ua0 − d1 , e0x = ub0 − h1 ,
f0,x = −(3uc0 + g0) + a1 , g0,x = −2uf0 + 2b1 . (8c)

Resorting to (8), we get b1 = h1 = 0, e0,x = g0,x = 0. Because of
rank(σ5(0)) 6= rank(σ7(0)), for e0 and g0, one is nonzero constant, the other
is zero. Therefore, there are two cases:
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(i) a0 = b0 = c0 = d0 = f0 = h0 = g0 = 0 , e0 = α (α = const, α 6= 0) ;
(ii) a0 = b0 = c0 = d0 = f0 = h0 = e0 = 0 , g0 = β (β = const, β 6= 0) .

Case (i). From the recurrence equation (8) and the homogeneous rank
convention, we calculate successively that

a1 = b1 = h1 = e1 = 0 , c1 = −
α

3
u , d1 = α ,

f1 =
α

3
ux , g1 =

α

9

(
5u2 − 2uxx

)
,

a2 =
α

9

(
uxx − 4u2

)
, b2 =

α

9
(8uux − uxxx) ,

e2 =
α

27

(
−uxxxx + 7uuxx + 9u2x +

4

3
u3 + 9v

)
,

h2 = d2 = c2 = f2 = g2 = 0 , a3 = b3 = e3 = 0 ,

d3 =
2α

27

(
uxxxx − 10uuxx −

15

2
u2x +

20

3
u3 − 9v

)
,

h3 =
α

27

(
uxxxxx − 25uxuxx + 20u2ux − 10uuxxx − 9vx

)
. (9)

By using mathematical induction, we get

a2m+1 = b2m+1 = e2m+1 = 0 , c2m = d2m = f2m = g2m = h2m = 0 .

It is easy to see that

rank(a2m) = 6m− 2 , rank(b2m) = 6m− 1 , rank(e2m) = 6m,

rank(h2m+1) = 6m+ 1 , rank(d2m+1) = 6m, rank(c2m+1) = 6m+ 2 ,

rank(f2m+1) = 6m+ 3 , rank(g2m+1) = 6m+ 4 ,

rank(U) = 1 , rank(V ) = −1 .

By virtue of (8), we obtain

(λnV )+x − [U, (λnV )+]

= −dn+1σ2(0) + vdnσ2(−1)− hn+1σ5(0) + vhnσ5(−1)
+an+1σ6(0)− vanσ6(−1) + 2bn+1σ7(0)− 2vbnσ7(−1) ,

where

(λnV )+ =

n∑
m=0

[amσ1(n−m) + · · ·+ hmσ8(n−m)] .

Let n = 2m, V (m) = (λ2mV )+ + ∆m, ∆m = va2mσ7(−1) − d2m+1σ5(0).
Then we have

V (m)
x −

[
U, V (m)

]
= −(d2m+1,x + h2m+1)σ5(0) + [(va2m)x − 2vb2m]σ7(−1) .

(10)
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With the aid of (10) and the zero-curvature equation Ut−V (m)
x +[U, V (m)]=0,

we obtain a hierarchy of nonlinear evolution equations

ut = −(d2m+1,x + h2m+1) ,

vt = (va2m)x − 2vb2m , m ≥ 0 (11)

which is reduced to (1) as m = 1, α = 9.
Case (ii). On the basis of the recurrence equation (8) and the conven-

tion on homogeneous rank, the similar data can be calculated successively

a1 = β , b1 = c1 = d1 = h1 = f1 = 0 ,

e1 =
β

3
u , g1 = 0 , a2 = b2 = e2 = 0 ,

c2 =
1

9
β
(
−uxx + 2u2

)
, d2 = −

2

3
βu , f2 =

1

9
β(uxxx − 7uux) ,

g2 =
2

27
β

(
−uxxxx + 9uuxx −

11

3
u3 +

15

2
u2x + 9v

)
,

h2 = −1

3
βux , d3 = h3 = c3 = f3 = g3 = 0 ,

a3 =
1

27
β

(
uxxxx − 12uuxx − 6u2x +

32

3
u3 − 9v

)
,

b3 =
1

27
β
(
−u5x + 12uuxxx + 24uxuxx − 32u2ux + 9vx

)
, a4 = b4 = 0 ,

d4 = − 2

81
β

{
− u6x + 14uuxxxx + 35uxuxx +

49

2
u2xx +

56

3
u4

−70uu2x − 56u2uxx

}
+

4

9
βuv − 2β

9
vxx ,

h4 = − 2

81
β

{
− u7x + 49uxuxxxx + 14uu5x + 84uxxuxxx − 70u3x

−252uuxuxx − 56u2uxxx +
224

3
u3ux

}
+

4

9
β(uv)x −

2

9
βvxxx . (12)

By using mathematical induction, we get

a2m = b2m = e2m = 0 ,

c2m+1 = d2m+1 = f2m+1 = g2m+1 = h2m+1 = 0 .
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Noting that

rank(a2m+1) = 6m, rank(b2m+1) = 6m+ 1 , rank(e2m+1) = 6m+ 2 ,

rank(h2m) = 6m− 3 , rank(d2m) = 6m− 4 , rank(c2m) = 6m− 2 ,

rank(f2m) = 6m− 1 , rank(g2m) = 6m,

rank(U) = 1 , rank(V ) = −2 ,

we arrive at

(λnV )+x − [U, (λnV )+]

= −dn+1σ2(0) + vdnσ2(−1)− hn+1σ5(0) + vhnσ5(−1)
+an+1σ6(0)− vanσ6(−1) + 2bn+1σ7(0)− 2vbnσ7(−1) .

Let n = 2m + 1, V (m) = (λ2m+1V )+ + va2m+1σ7(−1) − d2m+2σ5(0). We
have

V (m)
x −

[
U, V (m)

]
= −(d2m+2,x+h2m+2)σ5(0)+[(va2m+1)x−2vb2m+1]σ7(−1) .

Then the zero-curvature equation implies a hierarchy of nonlinear evolution
equations

ut = −(d2m+2,x + h2m+2) ,

vt = (va2m+1)x − 2vb2m+1 , m ≥ 0 . (13)

So for the case (ii), by taking m = 1, β = 27 in (13), and using the results
of (12), we obtain the following new nonlinear evolution equation

ut = 18vxxx − 36(vu)x − u7x + 49uxuxxxx + 14uu5x + 84uxxuxxx − 70u3x

−252uuxuxx − 56u2uxxx +
224

3
u3ux ,

vt = −36vvx + vxuxxxx + 3vu5x − 12vxuuxx − 72vuxuxx − 36vuuxxx

−6vxu2x +
32

3
u3vx + 96vu2ux .

3. The Hamiltonian structures and integrability

In this section, we shall construct the Hamiltonian structures of the
resulting nonlinear evolution equations and prove their integrability. To this
end we write

V = aσ1 + bσ2 + cσ3 + dσ4 + eσ5 + fσ6 + gσ7 + hσ8 ,
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with

a =
∑
m≥0

amλ
−m , b =

∑
m≥0

bmλ
−m , c =

∑
m≥0

cmλ
−m , d =

∑
m≥0

dmλ
−m ,

e =
∑
m≥0

emλ
−m , f =

∑
m≥0

fmλ
−m , g =

∑
m≥0

gmλ
−m , h =

∑
m≥0

hmλ
−m .

It is easy to see that

∂U

∂λ
= σ7(0)− vσ7(−2) ,

∂U

∂u
= σ5(0) ,

∂U

∂v
= σ7(−1) .

Since 〈σ1, σ5〉 = 2, 〈σ4, σ7〉 = 1, and 〈σj , σ5〉 = 0 = 〈σl, σ7〉, (j, l = 1, · · · , 8;
j 6= 1, l 6= 4), where 〈σi, σj〉 = tr(σiσj), we get〈

V,
∂U

∂λ

〉
= d

(
1− v

λ2

)
,

〈
V,
∂U

∂u

〉
= 2a ,

〈
V,
∂U

∂v

〉
=
d

λ
.

Noticing the trace identity [6](
δ

δu
,
δ

δv

)
tr

(
V
∂U

∂λ

)
=

[
λ−ε

(
∂

∂λ

)
λε
](

tr

(
V
∂U

∂u

)
, tr

(
V
∂U

∂v

))
,

where ε is a constant to be fixed, we obtain by equating the coefficients of
λ−2n−2 on both sides that(

δ/δu
δ/δv

)
(dn+2−vdn) = (−n−1+ε)

(
2an+1

dn

)
, n = 2m+1 . (14)

Now we search for the Hamiltonian structures of nonlinear evolution equa-
tions (11). To fix the constant ε, we simply set n = 1 in (14) and arrive at
ε = 1

3 . Therefore, we establish the following equation(
2a2m+2

d2m+1

)
=

(
δ/δu
δ/δv

)
Hm , Hm = 3

5(vd2m+1 − d2m+3) .

By using (8), we have

a2mx = −b2m , d2m+1,x = 2h2m+1 ,

c2m+1 = 1
3 (h2m+1,x − ud2m+1) =

1
3

(
1
2∂

2 − u
)
d2m+1 ,

f2m+1 = uh2m+1 − c2m+1,x = 1
2u∂d2m+1 − 1

3

(
1
2∂

3 − ∂u
)
d2m+1

=
(
−1

6∂
3 + 1

2u∂ + 1
3∂u

)
d2m+1 ,

b2m = 1
2 (∂g2m+1 + 2uf2m+1 − 2b2m+2) ,

va2m = ∂f2m+1 + 3uc2m+1 + g2m+1 − a2m+2 . (15)
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Then (11) can be rewritten as

ut = −(d2m+1,x + h2m+1) = −3
2∂d2m+1 ,

vt = (va2m)x − 2vb2m = −3∂a2m+2 + 3∂(uc2m+1) + ∂2f2m+1 − 2uf2m+1

= −3
2∂ (2a2m+2) +

(
−1

6∂
5 + 1

3u∂
3 + 1

3∂
3u

+1
2∂

2u∂ + 1
2∂u∂

2 − 2
3u∂u− u

2∂ − ∂u2
)
d2m+1

which possesses the following Hamiltonian form(
ut
vt

)
= J

(
2a2m+2

d2m+1

)
= J

(
δ/δu
δ/δv

)
Hm , (16)

where
J =

(
0 −3

2∂
−3

2∂ F

)
,

with

F = −1
6∂

5 + 1
3u∂

3 + 1
3∂

3u+ 1
2∂

2u∂ + 1
2∂u∂

2 − 2
3u∂u− u

2∂ − ∂u2 .

By (8) and (15), we arrive at

d2m+1 = e2m − ua2m − vd2m−1 − b2mx = e2m − vd2m−1 +
(
∂2 − u

)
a2m ,

e2m,x = ub2m − h2m+1 − vh2m−1 = −u∂a2m − 1
2∂d2m+1 − 1

2v∂d2m−1 ,

e2m = −∂−1u∂a2m − 1
2d2m+1 − 1

2∂
−1v∂d2m−1 ,

2a2m+2 = 2
3∂

−1[Fd2m+1 − (∂v + 2v∂)a2m] . (17)

Therefore, it can be verified that(
2a2m+2

d2m+1

)
= L

(
2a2m
d2m−1

)
, (18)

with

L=
1

3

(
2
3∂

−1F
(
∂2 − ∂−1u∂ − u

)
− 2∂−1v∂ − v −2

3∂
−1F

(
2v + ∂−1v∂

)
∂2 − ∂−1u∂ − u −2v − ∂−1v∂

)
.

It is easy to see that both J and JL are skew-symmetric operators, and for
{Hm} it holds that

Lmf(s) =
δHm

δs
,

where
f(s) =

(
2α
9

(
uxx − 4u2

)
α

)
.
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A direct calculation shows that J is symplectic, i.e.,(
J
′
(s)[Jf ]g, h

)
+
(
J
′
(s)[Jg]h, f

)
+
(
J
′
(s)[Jh]f, g

)
= 0 .

Then, the bracket {f, g} = ( δfδs , J
δg
δs ) is a well-defined Poisson bracket, there-

fore {Hm} are conserved densities for (11) and in involution in pair. Hence
(11) is Liouville integrable.

Now, we turn to the search for Hamiltonian structure of (13). It is easy
to see that we choose n = 2m to be right. To fix the constant ε, we simply
set n = 0 in (14) and arrive at ε = 2

3 . Therefore, we establish the following
equation(

2a2m+3

d2m+2

)
=

(
δ/δu
δ/δv

)
H̃m , H̃m = 3(vd2m+2 − d2m+4) .

Using (8), we have (
ut
vt

)
= J

(
2a2m+3

d2m+2

)
,

where J is the Hamiltonian operator in (16). Consequently, (13) takes the
Hamiltonian form(

ut
vt

)
= J

(
2a2m+3

d2m+2

)
= J

(
δ/δu
δ/δv

)
H̃m .

Based on (8), we derive(
2a2m+3

d2m+2

)
= L

(
2a2m+1

d2m

)
,

where L is the operator in (18). For {H̃m} it holds that

Lmf̃(s) =
δH̃m

δs
,

where

f̃(s) =

(
2
27β

(
uxxxx − 12uuxx − 6u2x +

32
3 u

3 − 9v
)

−2
3βu

)
.

Then, {H̃m} are conserved densities for (13) and involution in pair. Hence
(13) is Liouville integrable [12].
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