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1. Introduction

A novel approach to the massive Yang–Mills gauge theory has been pro-
posed [1], where the divergences are consistently removed in the loop expan-
sion. The removal strategy follows close the method used recently for the
nonlinear sigma model [2]. It consists in the subtraction of the pure pole
parts of the properly normalized one-particle-irreducible amplitudes regular-
ized in D dimensions. The mathematical tools are standard, but the proof
that the technique is consistent is rather involved [2–4].

Although the subtraction method is consistent with the Slavnov Taylor
Identities, locality and a new, ad hoc derived, Local Functional Equation, the
perturbative series seems to be inadequate for high energy processes, thus
casting some doubts on the validity of unitarity (although SS† = 1 order-by-
order in the loop expansion). It has been recently suggested [5] that this is
due to some singularities (phase transitions) present in the parameters space
(β := 4

g2
,m2). According to this scenario one can approach the theory with

the usual perturbative loop expansion for low-energy processes, while the
high energy processes are described by the massless Yang–Mills theory with
no remnants of the longitudinal polarizations. The transition between the

(1965)
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two regimes may be studied by the lattice simulation. This is attempted in
the present paper, where we try to study the model in the nonperturbative
regime.

The present work was motivated by the arguments just outlined, but its
contents and results are valid independently of them. In fact, it opens new
perspectives on the lattice gauge theories.

An intensively studied lattice gauge model [6–13] turns out to be the
perfect tool for the simulation of the massive Yang–Mills (i.e. mass à la
Stückelberg). We confirm the existence of a Transition Line (TL) which
separates a confined phase from the one with physical vector boson states.
The phase LT has an end-point around (β ∼ 2.2, m2 ∼ 0.381): for smaller β
there is a smooth transition (crossover) from one phase to the other, while
for larger β there are numerical indications of singularities in the derivatives
with respect of m2 and of β of the energy and of the order parameter (the
m2 derivative of the free energy). The deconfined phase is studied by using
the correlators of gauge invariant fields. This allows a full gauge invari-
ant approach to the model. We give numerical evidence of the existence of
isovector modes for the spin one (no spin zero is present). For the isoscalar
fields there is a faint, but persistent, signal of an energy gap both for spin
one and zero. Far from the LT, these excitations in the isoscalar channels
are compatible with the threshold of two isovector spin one modes. How-
ever, near the TL the energy gap in the isoscalar channels is lower than
the threshold, thus suggesting the existence of both spin one and spin zero
bound states. This effect happens in a band attached to the TL: for large β
(i.e. higher than the end point value) the band is very narrow, while in the
crossover region (low β) the onset of bound states is smooth and on a wider
region. The tantalizing question is whether this interesting region of the
phase space will ever be reached by experiments and the presence of bound
states confirmed.

2. The lattice model

The field theory (for the SU(2) group) in the continuum is [1]

SYM =
1

g2

∫
d4x

(
−1

4
Gaµν [A]G

µν
a [A] +

M2

2
(Aaµ − Faµ)2

)
, (1)

where in terms of the Pauli matrices τa

Aµ =
τa
2
Aaµ , Fµ =

τa
2
Faµ := iΩ∂µΩ

† . (2)

Ω(x) is an element of the SU(2) group, parameterized by four real fields

Ω = φ0 + iτaφa , =⇒ φ20 +
~φ 2 = 1 . (3)
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We have

Faµ = 2 (φ0∂µφa − ∂µφ0φa + εabc∂µφbφc) . (4)

The action in Eq. (1) is invariant under gL(x) ∈ SU(2)L local-left and gR ∈
SU(2)R global-right transformations

SU(2)L


Ω′(x) = gL(x)Ω(x)

A′µ(x) = gL(x)Aµg
†
L(x)

+igL(x)∂µg
†
L(x)

, SU(2)R

{
Ω′(x) = Ω(x)g†R
A′µ(x) = Aµ(x)

.

(5)

The theory is not renormalizable due to the non-polynomial dependence
on ~φ explicit in Eq. (3). We refer to the Refs. [1, 2] on the new strategy
suggested for the consistent subtraction of all the ultraviolet divergences.

The lattice model is constructed by assuming a nearest neighbor interac-
tion and by requiring a naïve mapping into the action (1) in the limit of zero
lattice spacing. It is very important to construct a model invariant under
the discretized versions of Eqs. (5). The link variable is taken to be

U(x, µ) ' exp(−iaAµ(x)) . (6)

Both U(x, µ) and the site variable Ω(x) are elements of SU(2). Thus the
action is (β = 4

g2
)

SE =
β

2
Re
∑
2

Tr(1−U2)+
β

2
M2a2Re

∑
xµ

Tr
{
1−Ω(x)†U(x, µ)Ω(x+µ)

}
,

(7)
where the sum over the plaquette is the Wilson action [14] and the mass
term has the (Euclidean) continuum limit

β

2
M2a2Re

∑
xµ

Tr
{
1−Ω(x)†U(x, µ)Ω(x+ µ)

}
→ M2

g2

∫
d4xTr

{(
Aµ − iΩ∂µΩ†

)2}
. (8)

In the simulation the Tr{1} is omitted. Thus the action becomes

SE → −
β

2
Re
∑
2

Tr(U2)−
β

2
m2Re

∑
xµ

Tr
{
Ω(x)†U(x, µ)Ω(x+ µ)

}
. (9)

From now on the dimensionless parameters are β and m2. We work in
D = 4, however, the symbol D is kept in some equations. In the paper we
will consider also the model with m2 → −m2.
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3. Simulation

The partition function is obtained by summing over all configurations
given by the link variables and the gauge field Ω

Z
[
β,m2, N

]
=
∑
{U,Ω}

e−SE , (10)

where N is the number of sites.
In principle, the integration over Ω(x) is redundant, since by a change of

variables (UΩ(x, µ) := Ω(x)†U(x, µ)Ω(x+µ)) we can factor out the volume
of the group. Z[β,m2, N ] becomes∑

{Ω}

∑
{U}

expβ

(
1
2 Re

∑
2

Tr{U2}+ 1
2m

2Re
∑
xµ

Tr{U(x, µ)}

)
. (11)

In Eq. (11) the integration over Ω has disappeared; consequently Ω in
Eq. (10) does not describe any degree of freedom. In that respect, we are
at variance with other approaches to the same action (7) as in [6–13], where
the field Ω is thought of as a Higgs field with frozen length. In Eq. (10) we
force the integration over the gauge orbit UΩ by means of the explicit sum
over Ω. In doing this, we gain an interesting theoretical setup of the model;
in practice, our formalism is fully gauge invariant (Section 5). Moreover,
by forcing the integration over the gauge orbit UΩ we get results which are
less noisy than those obtained by using only the integration over the link
variables in (11).

4. Functionals and order parameter

In this model we can study the energy-per-site functional

E =
1

N

∂

∂β
lnZ

=
1

2N

〈
Re
∑
2

Tr{U2}+m2
∑
xµ

Tr
{
Ω†(x)U(x, µ)Ω(x+ µ)

}〉
, (12)

where 〈 〉 denotes the mean value by the Boltzmann weight of Eq. (10). More-
over, we introduce the magnetization, i.e. the response to the applied m2

C =
1

DNβ

∂

∂m2
lnZ =

1

2ND

〈
Re
∑
xµ

Tr
{
Ω†(x)U(x, µ)Ω(x+ µ)

}〉
.(13)
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Then, we have the plaquette energy

EP =
2

D(D − 1)N

〈
1

2
Re
∑
2

Tr{U2}

〉
=

2

D(D − 1)

[
E −Dm2 C

]
. (14)

There are some simple properties that will be of some help in the sequel.
Under the mapping

U(x, µ)→ − U(x, µ) (15)

the Wilson action is invariant while the mass part changes sign. The measure
of the group integration is invariant, then we have from Eqs. (10), (12) and
(13)

Z
[
β,−m2, N

]
= Z

[
β,m2, N

]
,

E
[
β,−m2, N

]
= E

[
β,m2, N

]
,

C
[
β,−m2, N

]
= −C

[
β,m2, N

]
. (16)

We argue that C is a valid order parameter. This will be shown in the next
sections. We briefly recollect the main points. Its susceptibility (∂ C/∂m2)
has a cusp-like behavior in m2 on the TL for β greater than the end point
value. It is odd under the change of sign of m2. Moreover, the implementa-
tion of the global SU(2)R symmetry is drastically different in the far away
regions, where C ∼ 0 and C ± 1. In the first region SU(2)R charged fields
are screened or confined, while in the second deconfined modes are present.

5. The vector meson fields

Our approach allows the presence of SU(2)L gauge invariant fields. Let
us consider

C(x, µ) := Ω†(x)U(x, µ)Ω(x+ µ) = C0(x, µ) + iτaCa(x, µ) , (17)

which, according to Eqs. (5), are invariant under local SU(2)L transforma-
tions. C0(x, µ) is the mass term density in the action (9) and it is an SU(2)R
— scalar (isoscalar), while Ca(x, µ) are vectors under the same group of
transformations (isovectors). Since C(x, µ) ∈ SU(2), we get that all fields
are real and constrained by

C0(x, µ)
2 +

∑
a

Ca(x, µ)
2 = 1 . (18)

Moreover, we expect the vacuum to be invariant under SU(2)R global trans-
formations (5) and therefore

〈Ca(x, µ)〉 = 0 , a = 1, 2, 3 , ∀(x, µ) . (19)
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The order parameter (13)

C =
1

DN

∑
xµ

〈C0(x, µ)〉 (20)

is the conjugate of the mass parameter m2. According to Eq. (16) we expect
that

lim
m2=0

C = 0 , lim
m2→∞

C = 1 . (21)

Beside the order parameter, it is important to study the following connected
correlators. They will provide the essential characterization of the decon-
fined phase of the system

Cab,µν(x, y) := 〈Ca(x, µ)Cb(y, ν)〉C ,

C0b,µν(x, y) := 〈C0(x, µ)Cb(y, ν)〉C ,

C00,µν(x, y) := 〈C0(x, µ)C0(y, ν)〉C . (22)

In order to investigate the transition between phases, we consider also the
susceptibility

∂

∂m2
C =

β

DN

∑
xµ

∑
yν

〈C0(x, µ)C0(y, ν)〉C

=
β

DN

∑
xµ

∑
yν

(〈C0(x, µ)C0(y, ν)〉 − 〈C0(x, µ)〉 〈C0(y, ν)〉) .(23)

It should be noticed that the mean square error of C is related to its derivative

∂

∂m2
C = βDN

〈
(C− 〈C〉)2

〉
. (24)

This relation is very important for numerical simulations. If the derivative
of C had a finite limit for N → ∞, the standard deviation would have a
1/
√
N behavior. If, instead, the derivative diverges then the standard error

might not have a decreasing behavior by increasing the lattice size N . If
this is the case, then the calculation of the derivative by using the heat bath
yields a noisy signal. The noise might not decrease by increasing the lattice
size, as expected in the normal case.

5.1. The SU(2) right symmetry

If the SU(2)R symmetry is unitarily implemented then we expect

Cab,µν(x, y) = 0 , if a 6= b , a, b = 1, 2, 3 ,

C0b,µν(x, y) = 0 . (25)
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The energy gap in the correlator in C00,µν(x, y) might set on above the
two-particle threshold. However, there is an interesting possibility that the
gap (both for spin one and spin zero) shows up below this threshold, thus
suggesting the existence of bound states.

5.2. The continuum limit of C

By a similar argument used in Section 2, we study the continuum limit
of C(x, µ). We have

C(x, µ) = Ω†(x)(1− iaAµ(x))(Ω(x) + a∂µΩ) +O
(
a2
)
. (26)

Thus, for C1, C2, C3 one gets

iτaCa(x, µ) = −iaΩ†
(
Aµ(x)− iΩ∂µΩ†

)
Ω +O

(
a2
)
. (27)

While for C0, we can use the result of Section 2, Eqs. (7) and (8)

C0(x, µ) = 1− a2

4
Tr

{(
Aµ − iΩ∂µΩ†

)2}
+O

(
a4
)
. (28)

Notice that the dominant terms in Eqs. (27) and (28) are SU(2) local-left-
invariant.

The continuum limit of C0(x, µ) and the expression of the order param-
eter in Eq. (13) suggests that in the region C ∼ 0, where confinement (or
screening) occurs there is condensation of vector meson pairs, while in the
deconfined region, where C ∼ 1, vector mesons do not condense and are
realized as particles.

6. Note on symmetry breaking

The symmetry of the model and of the partition function is rather inter-
esting. The SU(2)L left transformations (5) correspond to the local symme-
tries of the action, while the SU(2)R transformations (5) can only be global
symmetries, due to the fact that the mass term in SE (Eq. (7)) breaks the
local SU(2)R symmetry. For decreasing mass parameter m2 we expect the
onset of a local SU(2)R symmetry. Then the fields C(x, µ), by construction
(17), transform according to a SU(2)⊗ SU(2) ∼ O(4) group of transforma-
tions

C(x, µ)′ = gR(x)C(x, µ)gR(x+ µ)† . (29)

This fact has far reaching consequences. That is, in the limit of zero mass,
only closed loops of C(x, µ) fields have non zero expectation value [15]. In
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particular, all the correlators in Eqs. (22) are zero unless y = x + µ and
y + ν = x, i.e. ν = −µ and C(y, ν) = C(x, µ)†. But then the O(4) on the
set {C0(x), Ca(x)} imposes

C00,µν(x, y) ' C11,µν(x, y) = C22,µν(x, y) = C33,µν(x, y) . (30)

The numerical simulations show that the onset of a local SU(2)R is very
rapid when one crosses the line of PT. It becomes smooth for small β, after
the end point.

When the mass parameter becomes large the O(4) symmetry will be lost
and only the global SU(2)R invariance will survive and, therefore, C00,µν(x, y)
will be substantially different from the SU(2)R — vector components.

7. Survey

We have performed standard Monte Carlo simulations for the model
based on the action (9). Heat bath has been used for the updating. Normally,
we have saved a configuration every fifteen updatings for a total of 10,000
measures.

We considered cubic 4-dimensional lattices with periodic boundary con-
ditions of different sizes: 44, 64, 84, 124, 164, 244. We have chosen the size on
the basis of the precision needed. Typically a 64 lattice size provides sensible
results if (β,m2) is far away from the TL.

We have built a bird’s-eye view of the region β ∈ [1, 4],m2 ∈ [0, 8] of some
global quantities of the system. The quantities studied are those described
in Section 4, i.e. the energy per site E (12), the order parameter C (13) and
their derivatives with respect to m2 and β as in Eq. (23)

∂

∂m2
C =

β

D

〈(
1√
N

∑
xµ

C0(x, µ)−

〈
1√
N

∑
xµ

C0(x, µ)

〉)2〉
,

∂

∂m2
E = D

(
1 + β

∂

∂β

)
C

= D C

−β

〈[
1

β
√
N
SE−

〈
1

β
√
N
SE

〉][
1√
N

∑
xµ

C0(x, µ)−

〈
1√
N

∑
xµ

C0(x, µ)

〉]〉
∂

∂β
E =

〈[
1

β
√
N
SE −

〈
1

β
√
N
SE

〉]2〉
. (31)
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Notice that

∂

∂β
C =

1

ND

∂

∂β

〈(∑
xµ

C0(x, µ)

)〉
= − 1

D〈(
1√
N

∑
xµ

C0(x, µ)−

〈
1√
N

∑
xµ

C0(x, µ)

〉)(
1

β
√
N
SE−

〈
1

β
√
N
SE

〉)〉
.

(32)

A survey on the parameters space shows a clear phase change across the line
represented in Fig. 1. In particular, the line represents the loci, where the
dependence of the order parameter C from m2 has a marked inflection. The
line is stable under the change of the size, for instance from 64 through 244.
A throughout study has shown that both energy and order parameter are
continuous everywhere including on the TL. Figure 2 describes the depen-
dence on m2 of C and its derivative. All the first derivatives have a cusp
behavior for β ≥ 2.2 while they are smooth for β < 2.2. Figure 3 exemplifies
the situation for β = 1.5 and β = 3. There is some evidence for an end
point at β ∼ 2.2, m2 ∼ 0.381, linked to the crossover point evidenced by
early works on SU(2)-QCD simulations [16].
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8. Numerical results

The numerical analysis of Sect. 7 confirms the results obtained in pre-
vious works about the TL, with some minor discrepancies, as the position
of the end point. On the vexata quaestio, concerning the order of the PT
across the line and for β ≥ 2.2, our numerical evidence is not very conclusive,
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although we would be more in favor of a second order type. The present
section is devoted to the new and surprising results. They show that the
model is indeed a faithful simulation of the massive Yang–Mills gauge theory
and, moreover, that unexpected and non trivial features can be obtained in
a region of the phase diagram unaccessible by perturbation theory.

We study the operators (zero three-momentum)

Ca,µ(t) :=
1√
N

3
4

∑
~x

Ca(~x, x4, µ)

∣∣∣∣
x4=t

, a=0, 1, 2, 3 , µ, ν=1, 2, 3, 4 .

(33)
In particular, we consider the two-point correlators

Cab,µν(t) := 〈Ca,µ(t+ t0)Cb,ν(t0)〉C . (34)

Numerical simulations support the selection rules

C0b,µν(t) = 0 ,

Cab,µν(t)

∣∣∣∣
a6=b

= 0 , a, b = 1, 2, 3 (35)

imposed by the global SU(2)R invariance. Moreover, according to Eqs. (18),
(21) and (30) we get the limit values

lim
m2=0

Caa,µν(0) = 0.25δµν , a = 0, 1, 2, 3 (36)

while for t > 0 in the same limit the two-point functions are expected to
vanish according to the discussion of Section 6.

The spin analysis is done by decomposing the correlators into a spin one
and spin zero parts (dots stand for pairs of isoindexes 00 or 11, 22, 33)

C···,µν(t) = V...(t)(δµν − δ4µδ4ν) + S...(t)δ4µδ4ν . (37)

We fit the amplitudes by a single exponential form

F (t) = a+ be−t∆ . (38)

A more complex analysis is not at reach with the data at hand. However,
the form turns out to be sufficient for most of the cases that have been
considered. The energy gap ∆ is obtained from a fit on the correlator (34)
evaluated on 104 configurations. Typical results are shown in Figs. 4 and 5.
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The energy gaps have been evaluated for several values of (β,m2). Fig-
sures 6 and 7 represent the energy gaps as function of m2. Several features
are present in all the cases we have considered. (i) In the deconfined re-
gion and far from the TL the isovector correlator is due to a spin one mode
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with energy gap ∆ ' |m|, while the isoscalar correlator has both spin one
and spin zero energy gaps, consistent with a two-vector-meson threshold.
(ii) Near the TL the isoscalar gaps become smaller than the threshold, thus
suggesting the presence of bound states. (iii) Across the TL there is a rapid
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|m2| and it is very close to the spin 1 isovector

energy gap in the region away from the phase transition.
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Fig. 7. Energy gaps of isoscalar spin one and spin zero (left) and isovector spin one
(right) as function of m2 for fixed β = 3 (TL at m2 = 0.235).
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increase of the gaps: within the errors all correlators vanish for t > 0 and
a O(4) symmetry is restored. The change of phase is much more rapid for
β = 3 than for β = 1.5 (the change of scale of m2 in Figs. 6 and 7 should
be properly accounted for).

9. Conclusions

We have investigated the deconfined phase of a massive Yang–Mills
model by using a set of gauge invariant fields. We give evidence of a TL
in the parameters space (β,m2). An order parameter C is introduced (the
response to the m2 parameter) which is ∼ 1 in the deconfined region (large
m2), while ∼ 0 below the TL (small m2). The vanishing of the order param-
eter corresponds to the condensation of pairs of vector mesons. Far from this
line the spectrum consists of an isovector spin one meson and of two-particle
states in the isoscalar spin one and spin zero channels. Moreover, there is
some evidence of bound states near the TL in the isoscalar channels for both
spin states. The presence of a discontinuity line confirms the conjecture on
the existence of two regimes: a low energy where the loop expansion is valid
and an extreme region, where massless Yang–Mills works. The last point is a
very important step forward for the understanding of high energy processes.

It is a pleasure to thank Bartolome Allés for a stimulating introduction
to the art of heat bath simulation and Davide Gamba for invaluable help
with the software during the early stage of this work.
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