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In this research two methods of detecting jumps are presented. One is
based on the nonparametric approach, whereas the other — on the JD(M)J
model. Bayesian inference is applied to detect jumps in the JD(M)J model.
Intraday and daily rates of return are under consideration. The empirical
results imply the existence of jumps. The information on existing jumps is
exploited in a forecasting experiment focused on Value at Risk predictions.
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1. Introduction

In many financial time series, we observe small changes of data over time
(the so-called continuous changes) as well as occasional jumps. These time
series are often modelled by jump-diffusion processes. The processes are
solutions of the stochastic differential equations dYt = µ(t)dt + σ(t)dWt +
k(t)dqt. The first two elements define the continuous part of the process and
form a so-called pure diffusion process. The last element constitutes a pure
jump process. In practice, we want to know whether to consider jumps or
not. In other words, it is a question whether we should take into account the
element k(t)dqt. Some familiar examples of a pure diffusion process are the
arithmetic and geometric Brownian motions1. The Merton model assumes
dynamics of an asset given by the standard jump-diffusion process [2]. The
jump-diffusion processes are commonly used in financial econometrics.

∗ The research was supported by the Polish Ministry of Science and Higher Education.
Research Project 2010–2012, No. N N111 429139.

1 Bayesian estimation of the pure diffusion processes are discussed in [1].
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The aim of the paper is to present two methods of jump detection: a para-
metric and a nonparametric one. We verify the hypothesis of the existence
of jumps. It is also interesting to infer about the number of jumps per day.

The nonparametric method of jumps detection is based on the results of
Barndorff–Nielsen and Shephard [3–5], utilizing a quadratic variation which
is comprised of a sum of two ingredients. One of them corresponds to a pure
diffusion process and the other to a pure jump process. In practice employ-
ing a realized variance (introduced in [6]) and a realized bipower variation
(introduced in [3]) we can separate these two parts. The nonparametric test
of detecting jumps is based on the following idea. If a pure jump component
is greater than zero, then jumps exist, otherwise not. This approach assumes
that a fixed time interval between the following observations should be in-
finitesimally small. In practice, it means that the test should be limited to
high frequency data. The assumption also limits applicability of some other
commonly known tests of jumps.

The likelihood function in the Merton model [2] is a product of infi-
nite mixtures of normal distributions. Let us restrict the infinite mixtures
to finite ones with the number of components equal M + 1. The likeli-
hood function in the Merton model [2] is a product of an infinite number
of mixtures of normal distributions. Let us assume that this number equals
M + 1. If M = 0, then we get a pure diffusion process, for M = 1 we get
the well-known Bernoulli jump-diffusion process. Generally, for M ≥ 0 the
model could be called the jump-diffusion model with M jumps (JD(M)J).
In this paper we consider the Bayesian inference for the model. Bayesian
comparisons of the JD(M)J models, the full Bayesian significance test and
the comparison of some posterior probabilities are used to estimate the num-
ber of jumps M . Let us notice that the familiar Bernoulli jump-diffusion
process assumes the existence of at most one jump at a fixed term, while
the JD(M)J model allows for M jumps.

Using the nonparametric method, we can assess the number of jumps
per day. We can compare the number of jumps with the Bayesian infer-
ence about M . 5-minute and 10-minute data are used in the nonparametric
method, whilst daily data are employed for the parametric model. We com-
pare the assessed numbers of jumps per day which are inferred from the two
methods. In this work, we do not distinguish days with and without macroe-
conomic releases. Such releases could be one of the reasons for jumps [7].

This paper is organized as follows. The nonparametric method of jump
detection is outlined in Sec. 2. In Sec. 3, we define the JD(M)J model
and present Bayesian framework of the model. Next, in Secs. 4 and 5, we
present the results of the empirical research, focusing on testing of jump
existence, estimation of the number of jumps and a Value at Risk analysis.
The methodology is presented using a series of logarithmic rates of return
on KGHM shares.
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2. The nonparametric approach

Our basic assumption is that a time series is, or we believe it is, a trajec-
tory of a stochastic process. The values of the time series are positive and
a logarithm of the values is given by the process Y . Y is a solution of the
stochastic differential equation

dYt = µ (t) dt+ σ (t) dWt + k (t) dqt ,

where µ, σ and k are some unknown functions, which should guarantee
the existence of the unique solution of the above equation. W denotes a
Brownian motion and q is a counting process. The component µ(t)dt +
σ(t)dWt defines a pure diffusion process, while k(t)dqt defines a pure jump
process. Therefore Y is called a jump-diffusion process.

A logarithmic rate of return on an interval [0, t] is defined byXt = Yt−Y0.
Let [X,X]t =

∫ t
0 σ

2 (s) ds +
∑

0≤s≤t k
2 (s) denote a quadratic variation,

where the second term is generated by the jumps. We restrict our con-
siderations to a single trading day. Let δ be the time between consecutive
observations. Then 1/δ is the number of returns. Finally, Xj (δ) stands for
the jth logarithmic rate of return.

The logic behind the method is to estimate
∑

0≤s≤1 k
2(s) by employing

a realized variance RV (δ) =
∑1/δ

j=1X
2
j (δ) (introduced by [6]) and a realized

bipower variation (introduced by [3])

BV (δ) = µ−21 (1− 2δ)−1
1/δ∑
j=3

|Xj (δ) ||Xj−2 (δ) | ,

where µ1 =
√

2/π.
If δ → 0, then RV (δ) →

p

∫ 1
0 σ

2(s)ds +
∑

0≤s≤1 k
2(s) and BV (δ) →

p∫ 1
0 σ

2(s)ds. Finally, the sum of squared values of jumps on an interval [0, 1]
could be estimated by a consistent estimator

RV (δ)−BV (δ)→
p

∑
0≤s≤1

k2 (s)

for an infinitesimal small δ. In practice the sampling frequency δ often
corresponds to five- or ten-minutes data.

To describe the algorithm of detecting jumps, let us define the tripower
quarticity (introduced by [8])

TQ (δ) = δ−1µ−34/3 (1− 4δ)−1
1/δ∑
j=5

|Xj (δ) |4/3|Xj−2 (δ) |4/3|Xj−4 (δ) |4/3 ,

where µ4/3 = 22/3Γ (7/6)Γ−1(1/2).
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If δ → 0, then TQ(δ)→
p

∫ 1
0 σ

4(s)ds. Let α be the significance level and Φ1−α-

the corresponding (1 − α) — quantile of the standard normal distribution
N(0, 1). The following algorithm was designed in [9].

Algorithm 1 1. The number of jumps equals zero. Define an empty set
of indices SJ = ∅.

2. Calculate Z(δ) = δ−1/2(RV (δ)−BV (δ))RV −1(δ)

2
√
(µ−4

1 +2µ−2
1 −5)max{1,TQ(δ)BV −2(δ)}

2.

3. If Z(δ) > Φ1−α then the number of jumps increases by one.

(a) Determine k, such that |Xk(δ)| = max
j∈{1,...,1/δ}\SJ

{|Xj(δ)|}

Define SJ := SJ ∪ {k}
Replace RV (δ) := RV (δ)−X2

k(δ) +
δ

1−δ
∑1/δ

j=1,j /∈SJ X
2
j (δ).

(b) Return to the step two.

4. If Z(δ) ≤ Φ1−α then exit.

In Sec. 3.2, we apply the algorithm for every single day over a given
period of time. It is easy to see that the inferred number of jumps per day
depends on the value of α. We assumed that α equals 0.01. The value is
one of the recommended magnitudes in the literature [8, 10].

3. The JD(M)J model

In the Merton model [2], the price of a share is governed by the jump-
diffusion process S, which is the solution of the equation

dSt = µStdt+ σStdWt +
(
eQ − 1

)
StdNt , (1)

where W is a standard Wiener process, N is a Poisson process with an in-
tensity λ > 0, (Qj)j≥1 are independent normal random variables with mean
µQ and variance σ2Q. Moreover, W,N and Q are stochastically independent.
Then, logarithm of the price, Yt = lnSt, and the process of logarithmic rates
of return Yt+∆ − Yt = ln(

St+∆
St

), are given by

dYt =
(
µ− 1

2σ
2
)
dt+ σdWt +QdNt , (2)

ln

(
St+∆
St

)
=
(
µ− 1

2σ
2
)
∆+ σ (Wt+∆ −Wt) +

Nt+∆∑
j=Nt+1

Qj , ∆ > 0 . (3)

2 If δ → 0, then Z(δ) →
d
N(0, 1).
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The probability density function of ln(St+∆St ) is given in [11]

p
ln
(
St+∆
St

)(x)= ∞∑
k=0

exp (−λ∆)
(λ∆)k

k!
φ
(
x;
(
µ− 1

2σ
2
)
∆+µQk, σ

2∆+σ2Qk
)
,

(4)
where φ(·;m, s2) is the density of a normal distribution with mean m and
variance s2. The likelihood function is a product of the infinite mixture of
the normal densities. Let us consider the approximation

p
ln
(
St+∆
St

)(x) = ∞∑
k=0

exp (−λ∆)
(λ∆)k

k!
φ
(
x;
(
µ− 1

2σ
2
)
∆+µQk, σ

2∆+σ2Qk
)
(5)

≈
M∑
k=0

exp (−λ∆)
(λ∆)k

k!
φ
(
x;
(
µ− 1

2σ
2
)
∆+µQk, σ

2∆+σ2Qk
)
, (6)

whereM ≥ 0 is a fixed constant. In other words, we assume that the random
variable of the number of jumps per ∆ takes values in the set {0, 1, ...,M}.
Let us normalize the approximation (6) so as to obtain a probability density
function

p (x |θ,M ) =

M∑
k=0

wkφ
(
x;
(
µ− 1

2σ
2
)
∆+ µQk, σ

2∆+ σ2Qk
)
, (7)

where wk = (λ∆)k

k!

[∑M
j=0

(λ∆)j

j!

]−1
for k = 0, . . . ,M . The model consid-

ered in this paper is given by (7). We call it a Jump-Diffusion model with
M -Jumps, or JD(M)J model, in short. Note that under M = 0 Eq. (7)
defines the arithmetic Brownian motion.

The Bernoulli jump-diffusion model [12], or BJD in short, allows only
for two possibilities — either a single or no jumps (at all) over a fixed period
of time ∆. Then, the density is given by

p (x |θ,BJM) = (1− λ∆)φ
(
x;
(
µ− 1

2σ
2
)
∆,σ2∆

)
+λ∆φ

(
x;
(
µ− 1

2σ
2
)
∆+ µQ, σ

2∆+ σ2Q
)
,

where λ∆ is assumed to be close to zero. Note that in the JD(1)J model
the density is given by

p (x |θ,M = 1) =
1

1 + λ∆
φ
(
x;
(
µ− 1

2σ
2
)
∆,σ2∆

)
+

λ∆

1 + λ∆
φ
(
x;
(
µ− 1

2σ
2
)
∆+ µQ, σ

2∆+ σ2Q
)
,
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and so the two models (BJD and JD(1)J) are equivalent. It is interesting to
investigate whether the JD(1)J model (or, equivalently, the Bernoulli jump-
diffusion model) is an adequate model for financial time series in comparison
with the pure-diffusion model or the models with more than one jump at
a fixed time interval. Further considerations are restricted to the JD(M)J
models.

Let us assume that a time series x=(x1, . . . , xn) is observed at (t1, . . . , tn),
where xi = ln

(
Sti

Sti−∆

)
. There are five unknown parameters of the JD(M)J

model (µ, σ2, λ, µQ, σ2Q) ∈ Θ, where Θ = R×(0,∞)×(0,∞)×R×(0,∞). Θ is
an admissible set of the parameters.

If we analyse the path of a jump-diffusion process we do not know
whether the observations, or which of them, have resulted from the pure
diffusion or the jump-diffusion process. In other words, we do not know
which component of the sum in the density (7), given by

φ
(
·;
(
µ− 1

2σ
2
)
∆+ µQk, σ

2∆+ σ2Qk
)

for k = 0, . . . ,M , is “responsible for” the observation. In order to manage
the problem, let us introduce the latent vector variable Z = (Z1, . . . , Zn)
such that Zi ∈ {0, 1, . . . ,M} and P (Zi = j) = wj , where i ∈ {1, . . . , n} and
j ∈ {0, 1, . . . ,M}. The random variable Zi is the number of jumps at the
ith interval of time. The likelihood function is then given by

p (x |Z, θ ) =
n∏
i=1

M∑
k=0

wkφ
(
xi;
(
µ− 1

2σ
2
)
∆+ µQZi, σ

2∆+ σ2QZi
)
.

It is convenient to introduce the reparametrization: L = λ∆, hσ = 1
σ2 ,

hQ = 1
σ2
Q
. The vector of unknown parameters is denoted by (Z, θ) =

(Z1, . . . , Zn, µ, hσ, L, µQ, hQ).
The Bayesian model is defined by p(x, Z, θ) = p(x|Z, θ)p(Z, θ). The prior

structure for (Z, θ) is defined by

p (Z, θ) = p (Z |θ ) p (θ) = p (µ) p (hσ) p (L) p (µQ) p (hQ)
n∏
i=1
p (Zi |θ ) ,

where

P (Zi = j |θ ) = wj , wk =
(λ∆)k

k!

 M∑
j=0

(λ∆)j

j!

−1 for k = 0, . . . ,M ,

p (µ) = φ
(
µ;mµ, s

2
µ

)
, p (µQ) = φ

(
µQ;mQ, s

2
Q

)
,

p (hσ) ∝ h(νσ−2)/2σ exp (−Ahσ/2) , p (hQ) ∝ h
(νQ−2)/2
Q exp (−BhQ/2) ,

p (L) ∝ L(νL−2)/2 exp (−L/2) .
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The Bayesian inference is hinged on calculation of a posterior distribu-
tion. The distribution is often sampled from by means of Markov Chain
Monte Carlo methods [13]. In this paper, posterior characteristics of the
parameters and latent variables are estimated by the hybrid Metropolis–
Hastings algorithm within the Gibbs sampler and the acceptance–rejection
sampling method [14].

The hypothesis about existing jumps in the Bayesian framework is equiv-
alent to the question about the magnitude of M . If M is greater than zero
it means that jumps should be taken into account. If M is greater then one
we reject the Bernoulli jump-diffusion model. In what follows, we compare
the JD(M)J models for some values of M . The best model hints at the
appropriate (i.e. data-supported) value of M .

4. Empirical research

Let us notice that the primary assumption of the nonparametric ap-
proach is the stochastic differential equation dYt = µ(t)dt+σ(t)dWt+k(t)dqt
for the logarithm of the prices process, whilst for the parametric model
dYt =

(
µ− 1

2σ
2
)
dt + σdWt + QdNt. The last equation is a special case

of the former with µ(t) ≡ µ − 1
2σ

2, σ(t) ≡ σ, k(t) = Qt and qt = Nt. It
is interesting to compare the outcomes of the nonparametric and Bayesian
inference. We collate the results of testing the hypothesis of the existence
of jumps along with the estimated number of jumps over the same period of
time.

We apply the nonparametric method separately at each single day for
the intraday data. The consecutive intraday data appears every five or ten
minutes. In the case of the JD(M)J model, we consider daily quotations
(closing prices). The daily data appear successively at ∆ = 1

252 .

4.1. Data

KGHM is a copper producer and one of the largest Polish exporters.
The company’s share prices contribute to the WIG20 Index. Let us consider
the time series of intraday and daily values of logarithmic growth rates of
KGHM quotations on the Warsaw Stock Exchange from January 23, 2006
to February 22, 2010. The intraday data are five and ten minute returns.
The data are calculated as logarithmic returns of volume-weighted means of
prices for every 5-minute and 10-minute periods. We consider continuous
trading i.e. transactions from 9:00 a.m. to 4:10 p.m. We discard the null
intervals (i.e. the ones without any transactions). The null five- and ten-
minute periods were accordingly 6 and 5 per cent. The data are depicted
in Fig. 1. The horizontal lines present a band of two standard deviations in
width.
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Fig. 1. The time series of the 5-minute (top), 10-minute (middle) and daily (bot-
tom) returns of KGHM.

The nonparametric approach assumes an infinitesimally small period of
time between the following observations, i.e. δ → 0. On the other hand, in
the case of too small values of δ market mictrostructure noise could affect the
results [15–17]. That is why 5-minute intraday data are recommended for
liquid shares, whereas 10-minute or less-frequent data for less liquid assets.
The KGHM asset is not high liquid. However, in order to compare, we
present results for both sets of intraday data. Basic descriptive statistics of
the modelled series are reported in Table I.

TABLE I

Descriptive statistics of the data.

KGHM Mean Median Min Max Std.Dev. Std.Dev.
Median n

5-minutes −0.000027 0 −0.03867 0.05101 0.0026 ∞ 81988
10-minutes −0.000054 −0.000011 −0.0388 0.04063 0.0034 324 40926
daily 0.00016 0.00115 −0.2362 0.17693 0.0350 30 1023

The 5-minute data are the most volatile, as indicated by the ratios of
standard deviation to median.
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4.2. Empirical results — jump detection

At first, we present the results of the nonparametric method. We can
assess the number of jumps for each day. Figure 2 depicts the numbers of
jumps detected by Algorithm 1. The dotted lines repesent one, two and three
jumps per day. In the case of 5-minute returns, the maximum number of
jumps equals eight, whilst for 10-minute returns this number equals three. It
follows that 5-minute returns are “less smooth” than the 10-minute returns,
which is consistent with our expectations.
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Fig. 2. Numbers of jumps for 5-minute (top) and 10-minute (bottom) returns.

Table II presents the proportion of days with zero, one, two or more
jumps per day. On more than 70 per cent of the days no jumps have occured.
The results emphasize a crucial role of the pure diffusion part. However, on
more than 20 per cent of days there has been at least one jump. The results
validate the existence of jumps. The frequency of days with two or more
jumps is evidently greater than zero. It seems that the Bernoulli jump-
diffusion model may not be an appropriate tool in comparison with models
allowing for more than one jump over a fixed period of time.

TABLE II

Frequency of days with a fixed number of jumps.

No. of jumps 0 1 2 3 4 5 6 7 8

5-minutes 0.71 0.24 0.04 0.01 0 0.002 0 0 0.001
10-minutes 0.78 0.199 0.0166 0.001 0 0 0 0 0
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Further, we report on the results of the parametric approach. The prior
assumptions were defined in Sec. 3. The hyperparameters are specified as
follows: A = B = 1, νL = 6∆ (10∆ or 800∆), mµ = 0.1 (or 0.01), s2µ = 1

(or 107), νσ = 5 (0.25, 0.1 or 0.5), mQ = 0.1 (or 0.01), s2Q = 1 (or 107),
νQ = 5 (0.25, 0.1 or 0.5). Different values of the hyperparameters yield
very similar posterior results. The outcomes of the MCMC methods do
not depend on starting points. The numerical algorithms applied in the
research require monitoring of convergence of the Marov chains to their
limiting stationary distributions3. To this end we resort to visual inspection
of plots displaying means, standard deviations and CUMSUM statistics [18].

Table III depicts posterior means and standard deviations of the param-
eters. It is easy to see that the pure diffusion process along with the pure
jump process play an essential role. The inclusion of the jump component
into the model changes the estimation outcomes of the pure diffusion pa-
rameters. The result justifies a need for jump-diffusion models. The lack of
apparent differences in the estimation of the posterior means and standard
deviations for M = 1 and M = 10 suggests that both models lead to very
similar conclusions.

TABLE III

Posterior means and standard deviations for KGHM.

Model JD(0)J JD(1)J JD(10)J

θ E(·|x) D(·|x) E(·|x) D(·|x) E(·|x) D(·|x)

λ — — 3.815 (1.84) 3.767 (1.78)
µ 0.19 (0.266) 0.254 (0.251) 0.255 (0.25)
µQ — — −0.025 (0.086) −0.025 (0.085)
σ2 0.31 (0.014) 0.254 (0.016) 0.254 (0.015)
σ2
Q — — 0.078 (0.045) 0.08 (0.046)

Let us look at the values of the posterior means of σ2: 0.31, 0.254 and
0.254 for the JD(0)J, JD(1)J and JD(10)J model, respectively. The highest
value is for JD(0)J. It has a reasonable interpretation — the process without
jumps needs a higher value of the volatility parameter σ2. The JD(M)J mod-
els forM > 0 “absorb some volatility” by the jump components. Histograms
of the posterior distributions and densities of their prior counterparts dis-
tributions are collected in Fig. 3. The posteriors are far distinguishable
from their prior counterparts, indicating a strong data contribution to the
inference.

3 The numerical calculations were performed in R and Maple 14, using the program
created by the author.
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Fig. 3. Histograms of the parameters’ posteriors along with the prior densities (solid
lines).

We now focus on the choice of an appropriate value of M . Three ways
of addressing the problem are possible.

The first method is based on comparison of the competitive models
JD(M1)J and JD(M2)J. The model with the highest posterior probability is
perceived as the best one. We have to compare

p (JD(M1)J|x) =
p (JD(M1)J) p (x| JD(M1)J)∑2
k=1 p (JD(Mk)J) p (x| JD(Mk)J)

and p(JD(M2)J|x) = 1 − p(JD(M1)J|x). Newton–Raftery estimator may
be employed to calculate the marginal data density p(x|JD(M)J) [19]. The
estimator is simulation-consistent, although, in general, it does not have a
finite variance. Plots of its values feature often jumps, and evince instability.
Therefore, it is advisable to run long Markov chains. In the empirical re-
search an improved version of the estimator is employed. The estimator was
formed not from complete likelihood values, but from marginal likelihoods
obtained by integrating out variables Z1, . . . , Zn. It is consistent with the
recommendation of [20].
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Let us consider four models: JD(0)J, JD(1)J, JD(2)J, and JD(10)J.
It is assumed that the prior probabilities of each model are equal. The
Newton–Raftery estimators are employed to calculate the posterior probabil-
ities of the models, based on which we obtain log10

(
p(JD(1)J|x)
p(JD(0)J|x)

)
≈ 9.95 and

log10

(
p(JD(10)J|x)
p(JD(1)J|x)

)
≈ 0.345. It proves the advantage of the jump-diffusion

process over the pure diffusion one. It clearly argues for the existence of
jumps. It seems that the JD(10)J specification is slightly favoured against
the JD(1)J model. Yet the result should be taken with caution on account
of instability of the Newton–Raftery estimator. The above results are based
on 250,000 draws of the Markov chain and 10,000 burn-in passes. A longer
Markov chain (of 3,700,000 draws) was generated to increase the credibil-
ity of the Newton–Raftery estimator. Figure 4 presents values of p(JD(2)J|x)

p(JD(1)J|x)
against the number of the MCMC passes. The logarithm of Bayes factor
log10

(
p(JD(2)J|x)
p(JD(1)J|x)

)
≈ 0.7. It slightly favours the JD(2)J model over the

JD(1)J one. However, taking into account the instability of the Newton–
Raftery estimator, we ought to be circumspect in drawing any conclusion if
a logarithm of Bayes factor is as low as 0.345 or 0.7.
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Fig. 4. Values of p(JD(2)J|x)/p(JD(1)J|x).

The second method is based on an application of the Full Bayesian
Significance Test (FBS Test) [21, 22]. In order to verify the hypothesis about
existing jumps, we could test the hypothesis H0: Z1 = 0,. . . ,Zn = 0 using
the Full Bayesian Significance Test. Let us consider the model given by

p (x, Z1, . . . , Zn, µ, hσ, L, µQ, hQ, θ) ,
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where Zi ∈ {0, 1}. It corresponds to JD(1)J model. If the probability

Ev(H0) = 1− P
(
(θ, Z) : p (θ, Z |x) > max

(θ,Z)∈θ×(0,...,0)
p (θ, Z |x) |x

)
is large, then the test favours the H0 and the lack of jumps.

The approximation of Ev(H0) is based on 800, 000 MCMC cycles then

max
(θ,Z)∈θ×(0,...,0)

p (θ, Z |x) ≈ exp(1966.053) and Ev(H0) ≈ 0.15 .

The FBS test favours JD(1)J over JD(0)J and we conclude that jumps exist.
Figure 5 presents values of Ev(H0) against the number of the MCMC passes
used to approximate Ev(H0). The estimator of Ev(H0) quickly converges
to 0.15.
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Fig. 5. Values of Ev(H0) against the number of the MCMC passes.

The third method is based on testing hypothesis: Z1 ≤ j, . . . , Zn ≤ j
by comparing the posterior probabilities4 P (Z1 ≤ j, . . . , Zn ≤ j|x; JD(M)J)
for j = 0, . . . ,M . In that case, we consider a model given by
p(x, Z1, . . . , Zn, µ, hσ, L, µQ, hQ, θ), where Zi ∈ {0, . . . ,M}, which corre-
sponds to the JD(M)J specification.

Let us now consider the JD(10)J model and compare posterior proba-
bilities: P (Z1 = 0, . . . , Zn = 0|x; JD(10)J) ≈ 0, P (Z1 ≤ 1, . . . , Zn ≤ 1|x;
JD(10)J) ≈ 0.9762192, P (Z1 ≤ 2, . . . , Zn ≤ 2|x; JD(10)J) ≈ 0.9999071.
The presented approximations are calculated with 1,000,000 draws from the

4 More details about testing hypothesis by comparing posterior probabilities can be
found in [23].
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posterior distribution. Figure 6 presents values of P (Z1 ≤ 1, . . . , Zn ≤ 1|x;
JD(10)J) against the number of the MCMC passes. The estimator of the
probability quickly converges to 0.9762192. The investigation proves the
existence of jumps. Moreover, the method indicates that M = 2 is suitable
for the modelled series.
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Fig. 6. Values of P (Z1 ≤ 1, . . . , Zn ≤ 1|x; JD(10)J) against the number of the
MCMC passes.

Furthermore, we collate values of posterior probabilities of jumps for ev-
ery single day. Figure 7 depicts the time series of the daily returns, values of
the probabilities P (Zi = 1|x, JD(10)J) and P (Zi > 1|x, JD(10)J) against the
number (i = 1, . . . , n) of the successive days. Note that the higher posterior
probabilities of jumps go with higher volatility of the time series. Clearly,
periods of no jumps alternate with the ones of frequent jumps. It suggests
existence of jump clustering (it is based on the same idea as volatility cluster-
ing). Preliminary empirical researches (not reported in this paper) confirm
that the presented methodology is able to detect jump clustering. This issue
is left for a further research. The posterior probabilities of more than one
jumps (Zi > 1) for every single day are lower than 0.007. Assume for a while
that a jump occurs when the posterior probability of a jump exceeds 0.5.
Then there are 5 downward jumps and 4 upward jumps. Some additional
analysis (peripheral to the present paper and, therefore, not reported here)
confirms asymmetry of the jumps. It corresponds to a skew in the empirical
data distribution. We note an intuitive relation — higher posterior proba-
bilities of jumps go along with higher absolute values of the data. Jumps’
dynamics is explained by the second and higher-numbered components of
the mixture. So, jumps are low probable for the pure-diffusion component,
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i.e. normal distribution (observations are in tails of the distribution). In the
case of heavy tails distributions (a study on this topic might be found in [24]
such jumps (or extreme values) might be typical values.
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Fig. 7. The time series of the daily returns (top), i → P (Zi = 1|x, JD(10)J)

(middle) and i→ P (Zi > 1|x, JD(10)J) (bottom).

To sum up, the two approaches (the nonparametric and the parametric
one) detect jumps. Moreover, it is empirically proved that models with more
than one jump per day applied to daily data are able to improve fitting.

Additionally, we considered daily quotations of S&P100 Index (March 5,
1984 to July 8, 1997 and simulated data. We detected jumps in S&P100
Index (E(λ|x) ≈ 9). Further details of this research can be found in [25].
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4.3. Empirical results — VaR

One of the conclusions of the previous section is that jumps should be
taken into account while analyzing the KGHM time series. Employing the
parametric model JD(M)J and the Bayesian methods, we assess Value at
Risk (VaR) predictions. We consider a long position and a tolerance level α.
Then the one-period ahead Value at Risk VaRls:t(α, t + 1) at time t + 1,
for s < t, is defined as a minus α-quantile of the predictive distribution
p(xt+1|xs, . . . , xt; JD(M)J)

P
(
xt+1 ≤ −VaRls:t (α, t+ 1) |x

)
= α .

The predictive distribution reflects uncertainty about the future rates of
return (given the data and the Bayesian model specification) while taking
into account the parameter uncertainty.

Kupiec test [26] is used to verify the accuracy of the VaR predictions. It
is a backtesting procedure which counts VaR exceedances, i.e. the number
of days the observed returns are lower than the predicted VaRls:t. The null
hypothesis (H0) reads: the number of VaR breaks equals α. In order to
backtest, we calculate 800 one-day ahead forecasts of VaRls:t. The forecasts
are calculated on the basis of 200 preceding observations. The predictive dis-
tributions [27] p(xt+1|xt−200, . . . , xt,M) were used to calculate the forecast
of VaRlt−200:t(α, t+ 1) according to the formula

−VaRlt−200:t(α,t+1)∫
−∞

p (xt+1 |xt−200, . . . , xt; JD (M) J) = α .

Table IV presents the results of the test and values of a conditional expected
shortfall ES [28] defined as

ES (α, n+ 1) = E
(
−xn+1

∣∣∣xn+1 < −VaRl1:n (α, n+ 1) ;x, JD (M) J
)
,

where n is the sample size.
VaR tells us nothing about potential size of the loss, while the conditional

expected shortfall does. VaR and ES are essential tools to assess riskiness
of trading activities.

Let us notice small p-value for the JD(0)J model and α = 0.01. In
the other cases the test favours unambiguously the null hypothesis. The
p-values for α ∈ {0.01, 0.1} and the JD(M)J models for M ∈ {1, 2} are
higher than for the pure diffusion specification (JD(0)J). It seems that the
JD(M)J models for M ∈ {1, 2} are favoured against JD(0)J. The frequency
of VaR exceedances are similar to α. The inclusion of jumps did not improve
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TABLE IV

Results of the Kupiec test and values of ES.

JD(0)J

α VaR breaks Freq. of VaR breaks p-value ES(α, n+ 1)

0.01 14 0.017 0.054 0.094
0.05 37 0.046 0.622 0.073
0.1 71 0.089 0.280 0.062

JD(1)J

0.01 12 0.015 0.186 0.210
0.05 44 0.055 0.520 0.093
0.1 75 0.094 0.550 0.070

JD(2)J

0.01 12 0.015 0.186 0.206
0.05 44 0.055 0.520 0.093
0.1 76 0.095 0.630 0.070

significantly the results of the Kupiec test. The values of the conditional
expected shortfalls are higher for M ≥ 1. In other words, in the case of the
models with jumps, average losses upon VaR exceedance are higher. The
results for M = 1 and M = 2 are similar. The outcomes imply that in the
case of this particular risk analysis the models with M > 1 are unnecessary.

4.4. Summary

In this paper two methods of detecting jumps are presented. One of them
is based on the nonparametric approach. The other one — based on the
JD(M)J model — builds upon some generalization of the Bernoulli jump-
diffusion model. In this paper, the Bayesian framework for estimation and
prediction within the model is adopted. The methods are applied to analyse
logarithmic returns on the KGHM stock market shares. The nonparametric
method is applied to the intraday data, while daily data are modelled with
the JD(M)J model. Both methods provide clear evidence for jumps. There
are days with more than one jump detected. The posterior probabilities of
more than one jump per a single day are low, but (in some cases) higher
than zero. Therefore, it appears that both the pure diffusion process and
the Bernoulli jump-diffusion process may not be good enough for financial
time series analysis. It follows that one should apply the JD(M)J models
rather than the familiar Bernoulli jump-diffusion model. We draw these
conclusions from different methods and time series (the intraday and daily



2018 M. Kostrzewski

returns). The outcomes of the Value at Risk predictions imply that in the
case of this particular risk analysis the models with M > 1 are unnecessary.

The nonparametric approach assumes that a fixed time interval between
the following observations should be infinitesimally small. In practice it
means that the test should be limited to high frequency data. The Bayesian
approach is free from this defect. Moreover, Bayesian statistics equipped
with the Markov Chain Monte Carlo methods gives us an easy way of esti-
mating and forecasting.

Useful comments and remarks by anonymous referee are highly appreci-
ated. The author would also like to thank Łukasz Kwiatkowski for language
verification of the manuscript.
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