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In this study, we take a fresh look at the cross-correlations between
WTI crude oil market and U.S. stock market from the perspective of
econophysics. We choose the three major U.S. stock indices (i.e., DJIA,
NASDAQ and S&P 500) as the research objects and select the sample data
from Jan 2, 2002 to Jun 29, 2012. In the empirical process, first, using
a statistical test in analogy to the Ljung-Box test, we find that there are
cross-correlations between WTI and DJIA, WTI and NASDAQ, and WTI
and S&P 500 at the 5% significance level. Then, employing the multifractal
detrended cross-correlation analysis (MF-DCCA) method, we find that the
cross-correlated behavior between WTI crude oil market and U.S. stock
market is nonlinear and multifractal. An interesting finding is that the
cross-correlation exponent is smaller than the average scaling exponent
when q<0, and larger than the average scaling exponent when q>0. Fi-
nally, using the rolling windows method, which can capture the dynamics
of cross-correlations, we find that there are three special periods whose
time-varying Hurst exponents are different from the others.
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1. Introduction

Financial markets are considered as complex dynamic systems [1, 2].
One of the important features of market dynamics is the presence of cross-
correlations between financial variables [3]. Although the price changes of
the crude oil market are usually acknowledged as an important incentive
for the price fluctuations of the stock market, the economists do not reach
a consensus on the cross-correlations between crude oil prices and stock
prices [4]. For instance, Jones and Kaul [5] first revealed a stable negative
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cross-correlation between oil prices and stock prices. The negative cross-
correlations were also found in Refs. [6–8]. On the contrary, Al Janabi et al.
[9] examined whether the Gulf Cooperation Council (GCC) stock markets
are informationally efficient with regard to oil prices during the period of
2006–2008, and found that the oil prices do not show the trend to affect
the stock markets. The same conclusions were drawn by Cong et al. [10]
who found that oil price fluctuations do not have impact on stock returns of
most Chinese stock indices. Furthermore, Ciner [11] reported a statistically
significant nonlinear relationship between oil prices and stock prices.

In this paper, we try to take a fresh look at the cross-correlations between
West Texas Intermediate (WTI) crude oil market and U.S. stock market
from the perspective of econophysics. The motivations can be summarized
as follows: on the one hand, most of the previous works [4–11] derived by
economists are based on the standard economic theory, such as the efficient
market hypothesis (EMH) [12], in which the returns of financial entities
follow a normal (Gaussian) distribution and prices obey a random walk.
However, lots of empirical literatures provided evidence that the distribu-
tion of returns shows a fat tail instead of a normal distribution and the price
fluctuations have persistence or anti-persistence behaviors over time [13].
That is to say, EMH has become disputed because a larger amount of ineffi-
ciencies are approved in some works [14, 15]. On the other hand, to explain
or describe the aforementioned phenomenon that the traditional economic
theory is inadequate or insufficient to address it, many econophysicists de-
veloped a variety of methods from the perspective of physics, such as the
complex systems theory [1, 2], the correlation network theory [16–18], the
random matrix theory [19–21], and the monofractal and multifractal anal-
ysis theory [22, 23]. Especially, the multifractal analysis is able to describe
the scaling properties of financial markets because it can divide a complex
financial system into varieties of regions according to their complexity, and
becomes a useful analytical tool in financial markets [24]. In fact, many
scholars confirmed that “the existence of multifractality has been a ‘stylized
fact’ in financial markets”, such as in Refs. [24–29].

In previous works, various methods were developed to quantify the auto-
correlation and cross-correlation behaviors of financial markets based on the
monofractal and multifractal theory. For example, Peng et al. [30] proposed
the detrended fluctuation analysis (DFA) to explore the long-range auto-
correlations of a non-stationary time series and widely used in financial time
series analysis. Then, DFA was extended into two important methods: one
is the multifractal detrended fluctuation anlaysis (MF-DFA) proposed by
Kantelhardt et al. [23], which is a powerful tool to investigate multifrac-
tality of the financial time series [25–29]; the other is the detrended cross-
correlation analysis (DCCA) proposed by Podobnik and Stanley [31], which
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can be used to quantify the cross-correlations between two non-stationary
financial time series [3, 32, 33]. To examine the multifractal characteris-
tics of two cross-correlated non-stationary time series, Zhou [34] proposed
the multifractal detrended cross-correlation analysis (MF-DCCA) based on
MF-DFA and DCCA. After that, MF-DCCA was widely used to investigate
the cross-correlations in financial markets [24, 35–40]. For instance, based on
MF-DCCA, Yuan et al. [24] examined the cross-correlations between stock
price changes and trading volume changes in Chinese stock markets and
found that multifractality existed. He and Chen [36] investigated the cross-
correlations between the China’s and U.S. agricultural futures markets via
MF-DCCA. They found that multifractal cross-correlation behavior is sig-
nificant in the two agricultural futures markets. Cao et al. [40] studied the
cross-correlations between the Chinese foreign exchange market and stock
market by MF-DCCA. Their results showed that multifractality exists in
cross-correlations and cross-correlated behavior is persistent.

Therefore, in this study, we aim at investigating the cross-correlations
between WTI crude oil market and U.S. stock market based on the multi-
fractal analysis. The WTI crude oil market is one of the most important
crude oil markets and is the underlying commodity of Chicago Mercantile
Exchange’s oil futures contracts. As for the U.S. stock market, we choose the
three major U.S. stock indices: the Dow Jones Industrial Average (DJIA),
the National Association of Securities Dealer Automated Quotation (NAS-
DAQ) Composite, and the Standard & Poor 500 (S&P 500) as our research
objects. In other words, in this paper, we examine the cross-correlations
between WTI and DJIA, WTI and NASDAQ, and WTI and S&P 500. In
the empirical analysis, we first make a preliminary analysis of the four time
series (i.e., WTI, DJIA, NASDAQ and S&P 500) from Jan 2, 2002 to Jun
29, 2012. Next, we qualitatively analyze the three pairs of cross-correlations
based on the cross-correlation statistics proposed by Podobnik et al. [41].
Then, we use MF-DCCA to investigate the existence of cross-correlations
quantitatively. Finally, we employ the rolling windows method to capture
the dynamics of cross-correlations.

The remainder of this paper is organized as follows. In Sec. 2, we describe
the methodology of MF-DCCA. In Sec. 3, we present the data set and make a
preliminary analysis. We show the main empirical results in Sec. 4. Finally,
in Sec. 5 we draw some conclusions.

2. Methodology

Suppose that there are two time series {x(t)} and {y(t)} of the same
length N , where t = 1, 2, . . . , N , then MF-DCCA method can be described
as follows [34]
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Step 1. Determine the “profile” as two new series

X(t) =
t∑
i=1

(x(i)− 〈x〉) , Y (t) =
t∑
i=1

(y(i)− 〈y〉) , t = 1, 2, . . . , N . (1)

Step 2. Both of the profiles {X(t)} and {Y (t)} are divided into Ns =
int(N/s) non-overlapping segments of equal length s. Since N is often not a
multiple of s, a short part at the end of profile may remain. To include this
part of the series, we repeat the same procedure starting from the opposite
end. Therefore, we obtain 2Ns segments. In this study, we set 10 ≤ s ≤ N/5.

Step 3. We estimate the local trends for each of the 2Ns segments by a
least-square fit of each series. Then determine the variance [36, 40]

F 2
v (s) =

1

s

s∑
t=1

∣∣∣X(v−1)s+t(t)− X̃v(t)
∣∣∣ ∣∣∣Y(v−1)s+t(t)− Ỹv(t)∣∣∣ (2)

for each segment v, v = 1, 2, . . . , Ns and

F 2
v (s) =

1

s

s∑
t=1

∣∣∣XN−(v−Ns)s+t(t)− X̃v(t)
∣∣∣ ∣∣∣YN−(v−Ns)s+t(t)− Ỹv(t)

∣∣∣ (3)

for v = Ns + 1, Ns + 2, . . . ,2Ns. Here, X̃v(t) and Ỹv(t) are the fitting
polynomials in segments v, respectively.

Step 4. We average over all segments to obtain the qth order cross-
correlation fluctuation function

Fq(s) =

{
1

2Ns

2Ns∑
v=1

[
F 2
v (s)

]q/2}1/q

(4)

for any q 6= 0 and

F0(s) =

{
1

4Ns

2Ns∑
v=1

ln
[
F 2
v (s)

]}
. (5)

Step 5. By observing the log–log plots Fq(s) versus s for each value of q,
we can determine the scaling behavior of the fluctuation function. If the
original series {x(t)} and {y(t)} are power-law cross-correlated, then

Fq(s) ∝ shxy(q) , (6)

where the cross-correlation scaling exponent hxy(q) can be obtained by the
slope of log–log plot of Fq(s) versus s via ordinary least squares (OLS) [39].
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Especially, if the time series {x(t)} is identical to {y(t)}, MF-DCCA is equiv-
alent to MF-DFA; and when q = 2, MF-DCCA is just DCCA. hxy(q) is
also known as a generalization of Hurst exponent H with the equivalence
H ≡ hxy(2) [42]. If hxy(q) = H for all q, i.e., hxy(q) is independent on q,
then the cross-correlations between two time series are monofractal; other-
wise they are multifractal.

Generally, there are three cases of hxy(q): (i) If hxy(q) < 0.5, the cross-
correlations between the two time series are anti-persistent (negative). This
implies that one price is likely to increase following a decrease of the other
price, and vice versa [35]. (ii) If hxy(q) > 0.5, the cross-correlations between
the two time series are persistent (positive). This means that an increase
(a decrease) of one price is likely to be followed by an increase (a decrease)
of the other price [35]. (iii) If hxy(q) = 0.5, there are no cross-correlations
between the two time series, and the change of one price cannot affect the
behavior of the other price [35].

By analyzing the spectrum of the cross-correlations scaling exponent
hxy(q), we can calculate the singularity strength α and the multifractal
spectrum f(α) by [42]

α = hxy(q) + qh
′
xy(q) (7)

and
f(α) = q[α− hxy(q)] + 1 , (8)

where h′
xy(q) stands for the derivative of hxy(q) with respect to q. In this

study, we set q ranging from −10 to 10 with a step of one.
The strength of multifractality can be defined by the width of the mul-

tifractal spectrum [36], which is presented as follows

∆α = αmax − αmin . (9)

3. Date and preliminary analysis

We choose the daily closing prices of WTI, DJIA, NASDAQ and
S&P 500 from Jan 2, 2002 to Jun 29, 2012. The WTI crude oil spot prices
are provided by U.S. Energy Information Administration (EIA)
(http://www.eia.gov/petroleum). We obtain the daily closing prices of
the three major U.S. stock indices (i.e., DJIA, NASDAQ and S&P 500)
from Yahoo Finance (http://finance.yahoo.com).

Let P (t) denote the daily closing price on day t. The daily return, r(t),
is defined as the logarithmic difference of P (t) and P (t−1), i.e., r(t) =
ln(P (t)) − ln(P (t − 1)). The volatility is defined by the absolute return
|r(t)|. Figure 1 shows the graphical representation of the four returns (i.e.,
WTI, DJIA, NASDAQ and S&P 500). We can find that the four returns
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have a mutual zone of large fluctuations in Fig. 1 from Jan 2008 to Dec 2009,
which may be the worst days of the global economy during the U.S. sub-
prime crisis.

Fig. 1. Returns of the WTI, DJIA, NASDAQ and S&P 500.

The descriptive statistics of the four returns are organized in Table I. The
mean values of the four returns are very close to zero, and quite small by
comparison with the standard deviations. The Jarque–Bera statistics reject
the null hypothesis of the normal distribution at the 1% significance level.
This phenomenon is also accompanied by non-zero skewness and kurtosis
larger than three, which indicates that the four returns are fat-tailed. The
Ljung-Box statistics reject the null hypothesis of no auto-correlations up
to the 20th order at the 1% significance level, which implies that the four
returns present the auto-correlations.
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TABLE I

Descriptive statistics of returns of WTI, DJIA, NASDAQ and S&P 500.

WTI DJIA NASDAQ S&P 500

Mean (×10−4) 2.2430 0.3522 0.5788 0.2228
Maximum 0.0713 0.0456 0.0485 0.0476
Minimum −0.0660 −0.0356 −0.0416 −0.0411
Standard deviation 0.0109 0.0055 0.0067 0.0059
Skewness −0.0932 0.0360 −0.0707 −0.1935
Kurtosis 7.4528 11.1173 7.5445 11.2824
Jarque–Bera (×103) 2.1727∗∗∗ 7.2116∗∗∗ 2.2614∗∗∗ 7.5237∗∗∗
Q(20) 65.4455∗∗∗ 97.6337∗∗∗ 57.2772∗∗∗ 98.1227∗∗∗
Observations 2623 2623 2623 2623

Notes: The Jarque–Bera statistic tests for the null hypothesis of normality distribution.
Q(20) denotes the value of the Ljung-Box statistics of the return series for up to the
20th order serial correlation. *** Indicates rejection of the null hypothesis at the 1%
significance level.

In order to further examine the fat-tailed distribution of the four returns,
we use a novel method of power-law estimation proposed by Podobnik et al.
[43]. They indicated that, on average, there is one volatility above threshold
q after each time interval τave(q), then

1/τave(q) ≈
∞∫
q

P (|x|)d|x| = P (|x| > q) ∼ q−β . (10)

We calculate the average time interval τave(q) for different values of q,
and acquire the estimates for β by the relationship

τave(q) ∝ qβ . (11)

The log–log plots of τave(q) versus threshold q are presented in Fig. 2.
The thresholds q range from 2σ to 8σ with a fixed step of 0.25σ, where σ
is the standard deviation of each absolute return. There is a power-law
relationship with Podobnik’s tail exponent β = 3.2302, β = 3.0233, β =
3.4019 and β = 3.0293 for WTI, DJIA, NASDAQ and S&P 500, respectively.
One can find that the four Podobnik’s tail exponents are close to three,
which is consistent with the “inverse cubic power-law” and is found in many
financial markets [28, 37, 43].
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Fig. 2. Log–log plots of the average time interval τave(q) versus threshold q

(in units of σ).

4. Empirical results

4.1. Cross-correlation test

In this subsection, we employ a new cross-correlation test proposed by
Podobnik et al. [41] to quantify the cross-correlations between WTI crude
oil market and U.S. stock market (i.e., the three pairs of cross-correlations:
WTI and DJIA, WTI and NASDAQ, and WTI and S&P 500). This test
is analogous to the Ljung-Box test [44] and widely used to test the cross-
correlations in the financial markets [24, 35, 37–40]. The cross-correlation
statistic between two time series {x(t)|t = 1, 2, . . . , N} and {y(t)|t = 1, 2,
. . . ,N} is defined as

Qcc(m) = N2
m∑
t=1

C2(t)

N − t
, (12)

where the cross-correlation coefficient C(t) is defined by

C(t) =

N∑
k=t+1

x(k)y(k − t)√
N∑
k=1

x2(k)
N∑
k=1

y2(k)

. (13)
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Podobnik et al. [41] proposed that, the cross-correlation statistic Qcc(m)
is approximately χ2(m) distributed with m degrees of freedom. It can be
used to test the null hypothesis that none of the first m cross-correlation
coefficients is different from zero [41].

We show the log–log plots of cross-correlation statistics Qcc(m) versus
degrees of freedomm for WTI and DJIA, WTI and NASDAQ, and WTI and
S&P 500 in Fig. 3. The degrees of freedom, m, range from 100 to 103. As
a comparison, we also present the critical value for the χ2(m) distribution
at the 5% significance level in Fig. 3. For a broad range of m, all the test
statistics Qcc(m) > χ2

0.95(m). Therefore, we can reject the null hypothesis
of no cross-correlations. That is to say, cross-correlations evidently exist
between WTI and DJIA, WTI and NASDAQ, and WTI and S&P 500.
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Fig. 3. Log–log plots of test statistics Qcc(m) versus degrees of freedom m.

4.2. Multifractal detrended cross-correlation analysis

Podobnik et al. [41] also proposed that the cross-correlation test based
on the statistic Qcc(m) of Eq. (12) can only test the existence of cross-
correlation qualitatively. Thus, in this subsection, we use MF-DCCA ap-
proach to investigate the cross-correlation quantitatively by estimating the
cross-correlation scaling exponent.

In Figs. 4, 5 and 6, we display the relationship between cross-correlation
scaling exponent hxy(q) and q (the curves with circle symbols) for WTI and
DJIA, WTI and NASDAQ, and WTI and S&P 500, respectively. Here, we
denote the WTI returns as the {x(t)} time series, and respectively denote
the three returns of DJIA, NASDAQ and S&P 500 as the {y(t)} time series.
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As a comparison, we also estimate the scaling exponents hxx(q) and hyy(q)
of WTI crude oil market and U.S. stock market (i.e., DJIA, NASDAQ and
S&P 500) by means of MF-DFA, respectively. In Figs. 4, 5 and 6 the curves
with triangle symbols represent hxx(q) of WTI and the curves with square
symbols stand for hyy(q) of DJIA, NASDAQ and S&P 500, respectively.

Fig. 4. The relationship between h(q) and q for WTI and DJIA.

Fig. 5. The relationship between h(q) and q for WTI and NASDAQ.

In general, if the scaling exponent h(q) depends on the values of q, then
the auto-correlations or cross-correlations are multifractal; otherwise, there
are monofractal. From Figs. 4, 5 and 6, one can observe that, for differ-
ent q, there is a different exponent hxy(q), which indicates that the cross-
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Fig. 6. The relationship between h(q) and q for WTI and S&P 500.

correlations between WTI and DJIA, WTI and NASDAQ, and WTI and
S&P 500 have obvious multifractal natures. For the same reason, we can
see that the multifractal features also exist in the individual market (i.e.,
WTI, DJIA, NASDAQ and S&P 500) by observing the changes of hxx(q)
or hyy(q). According to the previous work by Zhou [34], for two time se-
ries constructed by binomial measure from p-model, there is the following
relationship among hxy(q), hxx(q) and hyy(q)

hxy(q) = (hxx(q) + hyy(q))/2 , (14)

where (hxx(q) + hyy(q))/2 is denoted as the average scaling exponent [31].
Nevertheless, He and Chen [38] proved that if the time scale s → ∞, the
relationship between bivariate cross-correlation exponent hxy(q) and the av-
erage scaling exponent (hxx(q) + hyy(q))/2 satisfies the following inequality

hxy(q) ≤ (hxx(q) + hyy(q))/2 . (15)

To evaluate the above-mentioned relationship, we calculate the aver-
age scaling exponents between WTI and DJIA, WTI and NASDAQ, and
WTI and S&P 500, and respectively draw the graphical representations in
Figs. 4, 5 and 6 (the curves with diamond symbols). From Figs. 4, 5 and 6,
an interesting finding is that, the cross-correlation exponent hxy(q) is smaller
than the average scaling exponent (hxx(q)+hyy(q))/2 when q <0, and larger
than the average scaling exponent (hxx(q)+hyy(q))/2 when q >0. This sug-
gests that our results do not hold for Eq. (14) for all values of q and Eq. (15)
when q >0. In other words, Eqs. (14) and (15) are not verified by the
empirical analysis between WTI crude oil market and U.S. stock market.
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For better understanding of the nonlinear dependency, we further exam-
ine the multifractal strength via multifractal spectra. First, we calculate the
multifractal spectra between WTI crude oil market and U.S. stock market
by Eqs. (7) and (8), and plot the results in Fig. 7. If multifractal spec-
trum shows as a point, it is monofractal [40]. In Fig. 7, one can see that
the multifractal spectra in the two markets are not a point, which indi-
cates that multifractality exists separately in WTI crude oil market and
U.S. stock market (i.e., DJIA, NASDAQ and S&P 500) and in the cross-
correlated markets (i.e., WTI and DJIA, WTI and NASDAQ, and WTI and
S&P 500). Then, we estimate the multifractal degrees (i.e., the widths of
multifractal spectra) by means of Eq. (9), and list the numerical results in
Table II. By comparing the results in Table II or Fig. 7, we can find that: (i)
The multifractal degrees between the two markets are smaller than these of
the individual market, i.e., the strength of multifractal of WTI and DJIA,
WTI and NASDAQ, and WTI and S&P 500 is smaller than that of WTI,
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Fig. 7. Multifractal spectra between WTI crude oil market and U.S. stock market.
Panels (a), (b) and (c) show the multifractal relationships between f(α) and α for
WTI and DJIA, WTI and NASDAQ, and WTI and S&P 500, respectively.
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DJIA, NASDAQ and S&P 500, respectively. (ii) The DJIA stock index has
the largest multifractal degree, and the smallest one is the cross-correlations
between WTI and S&P 500. The cross-correlated behavior between WTI
crude oil market and U.S. stock market is nonlinear and multifractal, which
implies that traditional linear models (e.g., vector auto-regression models
(VAR)) in the standard economic theory could not be applied to describe
the dynamics of the cross-correlations between the two markets.

TABLE II

Multifractality degrees ∆α.

∆α

WTI 0.3480
DJIA 0.4758
NASDAQ 0.3187
S&P 500 0.3047

WTI and DJIA 0.2413
WTI and NASDAQ 0.1687
WTI and S&P 500 0.1433

4.3. Rolling windows analysis

In this subsection, we use the rolling windows method to analyze the
time-varying features of the cross-correlations between WTI crude oil market
and U.S. stock market. The rolling windows method is used to investigate
the temporal evolution of the Hurst exponent hxy(2) at different scales,
which is also called as the local Hurst exponent [41], or a rolling test [45].
For details, see Refs. [41, 45].

In previous studies, many scholars employed the rolling windows method
to analyze the long-range and short-term dynamics of financial markets
[35, 40, 45], and discussed the choice of the window size [46, 47]. Grech
and Mazur [46] indicated that the local Hurst exponent at a given time t
depends on the window size. As for the selection of window size, Liu et al.
[47] proposed that: to examine the general trend of long-range market dy-
namics (e.g., market efficiency), one should select a large window size (e.g.,
Ref. [48] set the window size to four years); on the contrary, to investigate
the effects of exogenous events (e.g., seasonal factors and financial crisis)
on the short-term market dynamics, one should choose a small window size
(e.g., in Refs. [35, 47, 49], the window size was fixed to one year). In our
work, like in Refs. [35, 47, 49], the window size is set to 250 trading days,
which are roughly equal to one calendar year. The window step length is a
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single day. We illustrate the graphical representations of time-varying Hurst
exponents hxy(2) of WTI and DJIA, WTI and NASDAQ, and WTI and
S&P 500 in Fig. 8. The time x-axis represents the date of the beginning and
the last day in each window.

Fig. 8. (Color online) Time-varying Hurst exponents hxy(2) of WTI and DJIA,
WTI and NASDAQ, and WTI and S&P 500.

From Fig. 8, we can find that the time-varying Hurst exponents of WTI
and DJIA, WTI and NASDAQ, andWTI and S&P 500 have the same trends.
The reason may be that the three major indices are all from the U.S. stock
market and with the same market trends. There are three special periods
in Fig. 8: the first period from Jan 2003 to Oct 2005 (denoted as Period I),
the second period from Nov 2007 to Dec 2009 (denoted as Period II) and
the third period from Mar 2010 to present (denoted as Period III). During
Period I, there is a major event: the second war in Iraq, which caused dis-
order in oil and stock prices. The cross-correlations between WTI crude oil
market and U.S. stock market are positive during Period I because the time-
varying Hurst exponents are larger than 0.5. The main event in Period II
is the U.S. sub-prime crisis. At this period, the pattern shows that most
of the time-varying Hurst exponents are smaller than 0.4 (i.e., the cross-
correlations between the two markets are negative). As shown in Fig. 8,
it is interesting to note that the tendency of time-varying Hurst exponents
to fluctuate above and below 0.5 during Period III. The primary event at
this period is the European debt crisis, which starts from Dec 2009. The
tendency implies that the cross-correlations between the two markets are
uncertain, and the tendency of global economy is instable at present.
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5. Conclusions

In summary, we examine the cross-correlations between WTI crude oil
market and U.S. stock market. We choose the three major U.S. stock indices
(i.e., DJIA, NASDAQ and S&P 500) as the research objects. Or rather, in
this study, we investigate the cross-correlations between WTI and DJIA,
WTI and NASDAQ, and WTI and S&P 500. In the empirical process, we
first use a statistical test proposed by Podobnik et al. [41] to test the pres-
ence of cross-correlations qualitatively and find that the cross-correlations
significantly exist between WTI and DJIA, WTI and NASDAQ, and WTI
and S&P 500. Then, we employ MF-DCCA method to examine the pres-
ence of cross-correlations quantitatively and find that the cross-correlated
behaviors between crude oil market and U.S. stock market are nonlinear
and multifractal. Finally, we use the rolling windows approach to capture
the dynamics of cross-correlations and find that there are three special pe-
riods whose time-varying Hurst exponents are different from the others.
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