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The nonequilibrium dynamic phase transition, in the two dimensional
site diluted kinetic Ising model in presence of an oscillating magnetic field,
has been studied by Monte Carlo simulation. The projections of dynamical
phase boundary surface are drawn in the planes formed by the dilution
and field amplitude and the plane formed by temperature and field ampli-
tude. The tricritical behaviour is found to be absent in this case which was
observed in the pure system.
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1. Introduction

Though the Ising model was proposed nearly three quarters of a century
ago, its dynamical aspects are still under active investigation [1]. Nowadays,
the study of the dynamics of Ising models in presence of time varying mag-
netic field, became an active and interesting area of modern research. The
dynamical response of the Ising system in presence of an oscillating magnetic
field has been studied extensively by computer simulation [2–7] in the last
few years. The dynamical hysteretic response [2–4] and the nonequilibrium
dynamical phase transition [5–7] are two important aspects of the dynamic
response of the kinetic Ising model in presence of an oscillating magnetic
field.

Tome and Oliviera [5] first studied the dynamic transition in the kinetic
Ising model in presence of a sinusoidally oscillating magnetic field. They
solved the mean field (MF) dynamic equation of motion (for the average
magnetisation) of the kinetic Ising model in presence of a sinusoidally oscil-
lating magnetic field. By defining the order parameter as the time averaged
magnetisation over a full cycle of the oscillating magnetic field, they showed
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that the order parameter vanishes depending upon the value of the tem-
perature and the amplitude of the oscillating field. Precisely, in the field
amplitude and temperature plane they have drawn a phase boundary sepa-
rating dynamic ordered (nonzero value of order parameter) and disordered
(order parameter vanishes) phase. They [5] have also observed and located
a tricritical point (TCP) (separating the nature (discontinuous/continuous)
of the transition) on the phase boundary line. It was confirmed later by
Monte Carlo study [8] and by solving meanfield differential equation [9] of
kinetic Ising model.

Since this transition exists even in the static (zero frequency) limit, such
a transition, observed [5] from the solution of mean field dynamical equa-
tion, is not dynamic in true sense. This is because for the field amplitude
less than the coercive field (at temperature less than the transition temper-
ature without any field), the response magnetisation varies periodically but
asymmetrically even in the zero frequency limit; the system remains locked
to one well of the free energy and cannot go to the other one in the absence
of noise or fluctuation.

Lo and Pelcovits [6] first attempted to study the dynamic nature of this
phase transition (incorporating the effect of fluctuation) in the kinetic Ising
model by Monte Carlo (MC) simulation. In this case, the transition disap-
pears in the zero frequency limit; due to the presence of fluctuations, the
magnetisation flips to the direction of the magnetic field and the dynamic or-
der parameter (time averaged magnetisation) vanishes. However, they have
not reported any precise phase boundary [6]. Acharyya and Chakrabarti [7]
studied the nonequilibrium dynamic phase transition in the kinetic Ising
model in presence of oscillating magnetic field by extensive MC simulation.
They have also noticed that this dynamic phase transition is associated with
the breaking of the symmetry of the dynamic hysteresis (m–h) loop [7]. In
the dynamically disordered (value of order parameter vanishes) phase, the
corresponding hysteresis loop is symmetric, and loses its symmetry in the or-
dered phase (giving nonzero value of dynamic order parameter). They have
also studied the temperature variation of the AC susceptibility components
near the dynamic transition point [7]. They observed that the imaginary
(real) part of the AC susceptibility gives a peak (dip) near the dynamic
transition point (where the dynamic order parameter vanishes). The con-
clusions were: (i) this is a distinct signal of phase transition and (ii) this is
an indication of the thermodynamic nature of the phase transition.

It may be mentioned here that the statistical distribution of dynamic
order parameter has been studied by Sides et al. [10]. The nature of the
distribution changes near the dynamic transition point. They have also ob-
served that the fluctuation of the hysteresis loop area becomes considerably
large near the dynamic transition point [10].



Nonequilibrium Phase Transition in the Kinetic Ising Model: Absence . . . 2043

Very recently, the relaxation behaviour of the dynamic order parameter,
near the transition point has been studied by MC simulation [11] and solving
meanfield dynamic equation [12]. It has been observed that the relaxation is
of the Debye type and the relaxation time diverges near the transition point.
The ‘specific heat’ and the ‘susceptibility’ also diverge [13] near the transition
point in a similar manner with that of fluctuations of order parameter and
fluctuation of energy, respectively.

The tricritical point was observed in the case of pure system [8]. In
this paper, the dynamic phase transition has been studied in the site diluted
(by nonmagnetic impurities) kinetic Ising model by MC simulation. The
phase boundaries are plotted in the planes formed by the field amplitude
and the temperature and in the plane formed by the impurity concentration
and the field amplitude. The paper is organised as follows: in Sec. 2 the
model and the simulation scheme are discussed, the MC results are given in
Sec. 3 and the paper ends with a summary of the work in Sec. 4.

2. The model and the simulation scheme

The Hamiltonian of a site diluted Ising model (with ferromagnetic near-
est neighbour interaction) in presence of a time varying magnetic field can
be written as

H = −
∑
〈ij〉

Jijs
z
i s
z
jcjcj − h(t)

∑
i

szi ci . (1)

Here szi (= ±1) is Ising spin variable, Jij is the interaction strength, ci (= 0
or 1) represents the site (i) which is either occupied (ci = 1) or vacant
(ci = 0). h(t) = h0cos(ωt) is the oscillating magnetic field, where h0 and
ω are the amplitude and the frequency respectively of the oscillating field.
The system is in contact with an isothermal heat bath at temperature T .
For simplicity, all Jij and the value of the Boltzmann constant are taken
equal to unity. The boundary condition is periodic.

A square lattice of linear size L(= 100) has been considered. The lattice
sites are randomly occupied by magnetic sites with a finite probability p.
Thus, the degree of dilution or the concentration of (nonmagnetic) impuri-
ties, is q = 1− p. At any finite temperature T and for a fixed frequency (ω)
and amplitude (h0) of the field, the dynamics of this system has been studied
here by Monte Carlo simulation using Metropolis single spin-flip dynamics.
Each lattice site is updated here sequentially and one such full scan over the
lattice is defined as the time unit (Monte Carlo step per spin or MCS) here.
The initial configuration has been chosen such that the all spins are directed
upward. The instantaneous magnetisation (per site), m(t) = (1/L2)

∑
i s
z
i ci

has been calculated. From the instantaneous magnetisation, the dynamic
order parameter Q = ω

2π

∮
m(t)dt (time averaged magnetisation over a full
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cycle of the oscillating field) is calculated. This dynamic order parameter is
a function of temperature (T ), field amplitude (h0) and the impurity con-
centration (q), i.e., Q = Q(T, h0, q). Each value of Q has been calculated
by averaging over 25 number of initial impurity realisations. The frequency
of the oscillating magnetic field used here is equal to 0.0628.

3. Results

It has been observed that Q = Q(T, h0, q) is nonzero for a finite set of
values of h0, T and q, and Q vanishes elsewhere. In the space formed by h0,
T and q, there is a surface which divides the Q = 0 region from Q 6= 0
region. Figure 1 shows the schematic diagram of this phase surface.

Fig. 1. Schematic diagram of dynamic phase boundary surface in the space formed
by T , h0 and q. Below this surface Q 6= 0 and above the surface Q = 0.

Previously, a number of numerical studies [4, 6, 8] is performed regarding
the dynamic transition in the q = 0 plane (i.e., projection of this phase
surface on h0–T plane. In that case, it was observed that in the h0–T plane
there is a distinct phase boundary below which Q is nonzero and above
which Q vanishes. There is a tricritical point on the phase boundary which
separates the nature (discontinuous/continuous) of this transition.

Fig. 2 (a) shows the dynamic phase boundary in the h0–T plane for
different values of the impurity concentration. It has been observed that as
the impurity concentration increases the phase boundary shrinks inward. In
this case, the entire phase boundary has been scanned and the transition
observed is always continuous. Unlike the earlier case [7], no such tricritical
point is observed here. Fig. 2 (b) shows the temperature variations of the
dynamic order parameter (i.e., Q versus T ) for two different values of h0 in
the case of very weak disorder (impurity).

A similar kind of dynamic phase boundary has been obtained in the h0–q
plane (i.e., the projection of the phase surface on h0–q plane). Fig. 3 (a)
shows the phase boundaries in the h0–q plane for different values of tem-
peratures. Like the earlier case, here also, as the temperature increases the
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Fig. 2. (a) Projections of dynamic phase surface on the h0–T plane. (3) represents
q = 0.05 and (+) represents q = 0.3. (b) Temperature variations of dynamic order
parameter (Q) for two different values of field amplitudes (h0).

phase boundary shrinks inward. Here also the transition is continuous along
the entire phase boundary. Two typical transitions (fall of order parameter
with respect to the impurity concentrations) are shown in Fig. 3 (b).

Fig. 3. (a) Projections of dynamic phase surface on the h0–q plane. (3) represents
T = 0.25, (+) represents T = 0.50 and (2) represents T = 0.75. (b) Variations of
dynamic order parameter (Q) with respect to impurity concentration (q) for two
different values of field amplitudes (h0).

4. Summary

The nonequilibrium dynamic phase transition, in the site diluted kinetic
Ising model in presence of oscillating magnetic field, is studied by Monte
Carlo simulation.

The value of the dynamic order parameter gets nonzero below a bound-
ary surface in T , h0 and q space, and above the surface it vanishes. The
projections of this surface on h0–T plane and on h0–q plane are drawn.
The nature of the transition observed here is continuous along the entire
phase boundary in the h0–T plane with very small impurity concentrations.
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This is unlike the case observed earlier in the pure sample [8, 9]. A similar
kind of transition is observed for a fixed temperature with varying impurity
concentrations. Here also no tricritical behaviour was observed. The studies
reported here are mostly observational, no attempt has been made to under-
stand these phenomena from the knowledge of the theoretical background.

It should be mentioned that a large scale simulation [14] observed that
the first order transition is absent in the dynamic transition in the pure Ising
ferromagnet by oscillating magnetic field.
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