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The concept of new methodology of adding QCD NLO corrections in
the initial state Monte Carlo parton shower (hard process part) is tested nu-
merically using, as an example, the process of the heavy boson production
at hadron—hadron colliders such as LHC. In spite of the use of a simplified
model of the process, all presented numerical results prove convincingly
that the basic concept of the new methodology works correctly in practice,
that is, in the numerical environment of the Monte Carlo parton shower
event generator. The differences with the other well established methods,
like MC@QNLO and POWHEG, are briefly discussed and future refinements
of the implementation of the new method are also outlined.
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1. Introduction

Successful operation of the Large Hadron Collider (LHC) at CERN is
resulting in rich harvest of experimental data. Even more data at higher
energy and with higher statistics will be available over the next two decades
from the LHC experiments. One of the challenges in the proper understand-
ing and interpretation of these data, possibly leading to discovery of new
phenomena, will be perfect mastering of the “trivial” effects due to multiple
emission of soft and collinear gluons and quarks. Perturbative Quantum
Chromodynamics (pQCD) [1-3], together with the clever modelling of low
energy nonperturbative effects, will be the basic and indispensable tool for
disentangling the Standard Model physics component in the data.
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2. Overview of the method

Most of the methodology used in this work is described in Ref. [4]. In the
following, additional details relevant for Monte Carlo (MC) implementation
and tests are described. Let us start with a description of the initial condition
of the forward evolution (necessary in the MC implementation) which was
omitted in Ref. [4]. For the proper understanding of this implementation it
is necessary to recall some basic facts about the use of maximum rapidity of
emitted partons (angular ordering) as the evolution time variable.

While the energy of the emitted gluon is a natural variable to han-
dle infrared singularities, the angular variable is best suited for controlling
collinear singularities. The logarithm of the angle of the emitted gluon (ra-
pidity) with respect to the emitter parton emerging from the initial hadron,
is a natural “master variable” for modelling collinear singularities. The angu-
lar variable is also well suited for modelling the structure of the non-Abelian
soft limit (colour coherence) [5-7].

Conversely, a hard process in deep inelastic lepton—hadron scattering
(DIS) or Drell-Yan (DY) process acting as a “probe”, either backscattering
(in the Breit frame for DIS) or absorbing (into a heavy boson in DY) the
emitter parton, in a well defined rest frame of the hard process (RFHP), has
its own energy scale used also as a master variable in collinear factorization
and renormalization group equations. More precisely, for the hard process
with the center-of-mass energy @ (/5 in the DY process), the parton en-
tering hard process has the energy equal @J/2. On the other hand, in the
same RFHP, the initial hadron energy is Ej and the Bjorken variable is the
ratio x = Q/(2E},) (x is invariant with respect to boosts along the emitter
direction). The luminosity distribution of this parton D(Q,z) is commonly
referred to as parton distribution function, PDF in short. It is weakly de-
pendent on @ and is measured experimentally at each value of () separately,
that is at a given value of @ varying the energy Ej = Q/(2x) of the initial
hadron seen in RFHP.

The important practical question for Monte Carlo modelling of the emis-
sion of the collinear gluons is: how to relate the variable = In(Q/A) gov-
erning the “evolution” of the PDF in the traditional DGLAP schemes' such
as MS scheme, and the rapidity variable of emitted gluons?

In the following, to answer the above question we shall consider for sim-
plicity the LO case with non-running ag, and for pure gluonstrahlung (non-
singlet QED-like component of PDF) from a single emitter’. For the MC
purpose, we define the evolution variable ¢ as a hypervelocity of the Lorentz

! Formulated typically in terms of exponentiation of the collinear singularities or using
the renormalization group equations, or both.
2 One hemisphere in DY, or initial state cascade/ladder in DIS process.
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boost from the initial beam hadron rest frame to RFHP, t = = (or equiva-
lently, the hypervelocity of the beam hadron in the RFHP). For each emitted
gluon we define the rapidity & in the rest frame of the initial hadron, or é
in RFHP. Next, we require in the context of pQCD description of the glu-
onstrahlung that & < 0 in the RFHP (in the initial hadron frame & < Z).
In other words, ¢t = = is a limiting rapidity for emitted gluons (or £ = 0).
t = % =« , where my, is hadron mass and s = 4E,21.
h TMmp
The role of perturbative QCD is to relate D(Q, z) measured in two ex-
periments A and B with probes at the scales Qa and Qg, provided that
Qa > Qp >> my. Two PDFs, D(Qa,z) and D(Qgp,x), will differ be-
cause of the gluon emissions located in the additional phase space within
the (24, 5p) rapidity (angular) interval. Also, experiments A and B will
use different RFHPs, connected by the Lorentz boost of the hypervelocity
At =55 — Zp = In gAE,
What is now the difference between the more traditional choice of the

evolution time variable { = ln% of DGLAP and our preferred definition

Of course, e

t=52=1In %‘RFHP =In-& (maximum rapidity of the emitted gluons)?

h TMMp
When comparing two experiments with hard probes at the scales QA and Qp,
At = In(Qa/Qg), while more phase-space conscious At = At — In(za/2p).
The “offset” In(xa /xp) is formally of the NLO class® and can be neglected
within the LO approximation®, hence both choices are equally good at LO
level. However, the use of (angular) ¢ assures the completeness of the phase
space of the emitted gluon, no gaps (nor “dead zones”), so it is the preferred
choice in the MC modelling, aiming at the NLO level evolution in the next
steps. Additionally, the parallel use of = t — In ﬁ is quite useful and
essential for other purposes, like introduction of the running ag, ete.

In particular, ¢ is more natural for defining the initial point of the for-
ward evolution (the stopping rule in the backward evolution). In order to
assure the validity of pQCD, it is required that the energy scale of the
probe gy >> A,my is reasonably above the non-perturbative scales, like
A ~ my ~ 1GeV, at the above initial point. This leads to the initial
forward evolution point at ¢y ~ In(go/A) and tq ~ In(qgo/my,) — Inx, as im-
plemented in the following MC. In other words, gluons with rapidities below
to are regarded as “unresolved”; i.e. tg = & is a maximum rapidity for all
unresolved gluons.

It should be noted that the above discussion is quite standard in the
context of any Monte Carlo parton shower using the angular ordering. This
line of the MC parton shower inspired by the CCFM model [8, 9], see

3 Tt induces extra O(as) term in the evolution kernel.
4 We have to remember to take it into account at the NLO level, when defining NLO
evolution kernel.
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also Refs. [9-11], is presently developed by the authors of the CASCADE
MC [12]. In particular, when using (maximum) rapidity ¢ as the evolution
time variable in the time ordered exponential of the QCD parton distribu-
tions the complete multigluon phase space is covered (with no gaps, “dead
zones”), while the straightforward use of the ordering in the ¢ variable in the
MC would result in gaps between emitted real hard gluons, see also brief
discussion of the corresponding kinematics in Ref. [13].

2.1. Single LO ladder — basic building block in the MC

Let us define multigluon distribution in the single initial state ladder
taken in the LO approximation, which is a building block in our parton
shower MC implementation, as an integrand in the following “exclusive/
unintegrated PDF”

D(t,IL’) = /dxo dz 630::(:02 d() (f@,xo) G (t,£0 — 1H$0’Z) s
_ 2Cras -
G(t,to|2) = eF ) (H/d3 ) Ogise, 17rP(Zi)>
X9t>£n52:l_[;-l:1 zj (1)

where P(z) = £(1+22), {o = In(go/A). The “eikonal” phase space integration
element is defined as in Ref. [4]°

@k 1 __dpdkt

BERk) = —— — =

) 2K k2 2m kT

and k* = k0 + k3. In the above, we use rapldlty £ =1 ln = |R][1 defined

in the beam hadron rest frame Rh, while n = 5 F’RFHP of Ref. [4] was
6 Vs

defined in laboratory frame®. They are simply related by & = In o
Rapidity ordering is now t = &pax > &y > - > & > &1 > - > & = to,
where tg = &y = In(qo/mp) — Inxy. The direction of the z axis in the REFHP
is traditionally pointing out towards the hadron momentum. A lightcone

variable of the emitted gluon is defined in the usual way as a; = of the

f 9
emitter (after ¢ emissions) as x; = xg — Z}:o aj, and finally 2z, = z;/x;1.

5 A single ladder (parton shower from single emitter) is defined in the “tanget space”
of momenta k, see Ref. [4].
6 Or, alternatively, in the overall center of the mass system.
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The Sudakov formfactor Sf is determined by the “unitarity” condition

1

/ dZ G(t,to|Z) = 1 (2)

0

and we omit its explicit definition, which involves the usual cut-off 1 —z; < €

regularizing the IR singularity % — 9% The above feature is instrumental

1—2;
in the Markovian MC implementation, which provides D(t,x) for any value
of t > tg.

The initial distribution dy(qo,x¢) can be related to experiment, to pre-
vious steps in the MC ladder, or to PDF in the standard MS system. Its
precise definition is not essential for the following tests of implementation of
the NLO corrections to the hard process, hence we will define it only numer-
ically. We only notice that due to Eq. (2) the baryon number conservation

sum rule
1

1
/dx D(t,z) = /dﬂﬁo do(to, zo)
0 0

is preserved.

Finally, note the use in Eq. (1) of the rescaled four-momenta k* within
the “tangent space”, as defined in Ref. [4]. The mapping k* — k* can be
defined” once the ladders are connected together with the hard process, back
in the common standard Lorentz invariant phase space, see Ref. [4] and the
following sections.

2.2. Two-ladder LO multiparton distributions

As a necessary introductory step to correcting the hard process to NLO
level, let us start with defining and testing our simplified MC parton shower
implementing the DY process with two ladders and the hard process, all
three in the LO approximation®

7 This mapping preserves the rapidity variable.

8 In this work, we adopted notation of Ref. [4], in particular drz(P;q1,q2) = 6 (P —

_ o) Lo P
q1 q2) 2‘1? qu .
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o) = /dJTOFdﬂCOB do (to, zor) do (to, zoB) Z Z /dﬂiF dxy

n1=0 no=0

_ = - 2CFray =
i=1

_ - QCFa —
xe o / H &€ (kJ) 977j>71171 TSP(ZBj) 5IB:330B H;El ZBj

n1+n2

do
XdTQ P — Z ]Cj;ql,QQ T(I; (S&CF{L'B,Q) W1\1>IHéO (3)
j=1

In the LO approximation, we set Wﬁéo = 1. This weight will be de-

fined /restored in the next section. In the above, we use rapidity variable 7,
defined in the overall center of the mass system (CMS). Rapidity & of Eq. (1)

is translated into 7, differently in the forward part (F) of the phase space

nor > 1; > =, where we define & = In mii — 1, and in the backward (B)

part = > 1; > nog, where & = —ln% + n; should be used. The bound-
ary between the two hemispheres = is for the moment set to be at = = 0,
but in a more sophisticated versions of the MC will be correlated with the
position of the produced heavy boson (LO), or heavy boson and the hard-
est gluon (LO+NLO)”. For the initial condition in the evolution we define
nor = In(qo/mu) — In(xor) and nog = — In(qo/mp) + In(zop). However, for
the sake of simplicity we will set In(gg/mp) = 0 in the following.

Phase space integration of Eq. (3) for W&”@O = 1 and using Eq. (1),
provides us with the classical factorization formula

1
op = /da:F Cl.%'B DF(t,(I}F) DB<t,.%'B) UB(Sm'FQZB) . (4)
0

In testing numerically the above formula, the convolutions Dg (¢, zp) = (dy®
Gr)(t,zr) and Dg(t,zp) = (dp ® GB)(t,xB) are obtained from separate
simple Markovian LO Monte Carlo exercises. As was stressed in Ref. [4], the
above LO formula represents our LO MC without any approximations and
can be tested with arbitrary numerical precision. Such a precise numerical
test is demonstrated in the next section.

9 Gluon phase space is always fully covered (no gaps).
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In Eq. (3) distributions are expressed (similarly as in Eq. (1)) in terms
of the k* four-momenta in the tangent space. The mapping k* — k* is
understood to be exactly the same as defined in Ref. [4], that is done simul-
taneously for both hemispheres, using ordering in the variable |n; — =|. The
details of this mapping do not influence the validity of Eq. (4).

2.3. Two LO ladders and NLO-corrected DY hard process

Introduction of the NLO corrections to the hard process is done using a
single “monolithic” weight Wﬂ%o on top of the LO distributions of Eq. (3).
In the following numerical exercises we will implement Wl\%%o defined exactly
as in Ref. [4]. Let us recall this definition in a slightly more compact notation,
for the sake of completeness

51(Q17Q2,Ej) +_:£: Bl(Q1,Q27Eb)
P(ZFj)dUB(é,é)/dQ P(ZBj)dUB (§,é)/d9 7
(5)
with the NLO soft+virtual correction Ay g = % (%772 — %) and the real
correction part

Wl\lznéo =14+ Agyv + Z

jeF jeB

N _ [ =p)dos . (1-a)’dog .
) = | 575700+ R 0 o)
1+(1—a—p)2dog /. -
~laxs 2 a8, (5’9>
1+(1—a—p)2dog /. -
Oucp . 0 (s,a) . (6)

The above represents the exact ME of the quark—antiquark annihilation into
a heavy vector boson process with additional single real gluon emission'"
and subtraction of the LO component already included in the LO MC. The
angle 6 in the subtraction (LO) part of the Born distribution is typically
defined in the rest frame of the heavy boson, where ¢1 + ¢ = 0, as the
angle between the decay lepton momentum ¢; and the difference of momenta
of the incoming quark and antiquark 0 = Z(qi,por — pos)'’, while two
angles in the NLO exact ME are defined precisely as fp = Z(q1, —poB) and
O = Z(q1,por). (The implementation of NLO corrections in POWHEG
scheme in Ref. [15] uses the same form of the exact ME.) Note that in the

10 We employ here the particular compact representation of Ref. [14] of this ME as a
combination of the Born differential sections with the redefined scattering angle 6.

1 Other similar choices of the angle in the Born distribution are also perfectly valid
within the LO MC.
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above we only need directions of the vectors por and pop, which are the same
as of the hadron beams. The variable 8§ = szpzp = (q1 +¢2)? is the effective
mass squared of the heavy vector boson. Finally, we specify the lightcone
variables o; and 3; of the emitted gluon for j in the F and B parts of the
phase space

a;j = 1—2zp;, Bj = aj e2i==) for jeF,

Bj = 1—zgj, a; = f3; e 275 - for jeB.

The above relations are explained in Ref. [4] as resulting directly from the
kinematical projection operators extracting the LO part from the exact ma-
trix element. Note that variables a;; and ; in the above relations are defined
in terms of k;b , which do not obey the overall 4-momentum conservation. The
transformation l;:;b — k:;t and its inverse (where k‘;‘ do obey 4-momentum
conservation) are defined explicitly in the above work. Slightly improved
(LO level) kinematical mapping, better suited for the NLO-corrected hard
process will be proposed at the end of Section 4.

The exact phase space integration of Eq. (3) including WiE® of Eq. (5)
is again possible, see Ref. [4] for details, providing a compact expression for
the total cross section

1

g1 = /d.%'p de dz DF(t,J}F) DB(t,{L‘B) JB(sszxB)
0
X {52':1(1 + AS+V) + CQT(Z)} ) (7)

where Ca,(2) = 268% [ 1(1 — 2)] was derived in Ref. [4].

3. Numerical results

In the following, we shall first check that the simple formula of Eq. (4)
with two collinear PDFs agrees numerically with the parton shower MC
of Eq. (3) with the LO hard process (WHE® = 1). Once the above “LO
benchmark calibration” is successful, we shall check numerically whether the
NLO formula of Eq. (7) agrees with the MC integration of Eq. (3), switching
on the NLO correcting weight WO of Eq. (5). In both MC exercises we
expect deviations only up to statistical MC error, or other imperfections of
the numerical implementations.
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3.1. LO benchmark

Figure 1 represents a “calibration benchmark” for the overall normaliza-
tion at the LO level. In fact, we show in Fig. 1 the properly normalized
distribution of the variable nj;, = % In(zp/zp). In the collinear limit, this
variable represents the rapidity of W boson. This variable will differ substan-
tially from the true rapidity of the W boson in the presence of the gluon with
hard transverse momentum, but this is an acceptable approximation in the
current LO exercise. The W mass distribution with the sharp Breit—Wigner

resonance lineshape is not very interesting and we do not show it here.
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Fig.1. In the upper plot, the LO distribution of nj, = %ln(xF/xB) from the
CMC LO parton shower (black/purple) and from the strictly collinear formula
(grey/green) are shown. The lower plot shows the ratio of the two, the agreement
of < 0.5% is obtained.

In Fig. 1, one of the distributions is from the MC generation of the vari-
ables (zp, zp) according to 2-dimensional integrand of Eq. (4). This is done
using the general purpose MC program FOAM [16]. However, in this MC
we need the collinear PDF D(t, x) in the entire range of z and ¢ as an in-
put. This distribution has been obtained from a separate high statistics run
(1010 events) of a simple Markovian MC (MMC), recording the resulting
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D(t,z) in the 2-dimensional table (a finite grid). In fact, this MMC run
solves the LO DGLAP equation (for gluonstrahlung LO kernel) using the
MC method, similarly as in Refs. [17, 18]*?. From the look-up table recorded
during the MMC run, a simple interpolation is employed to obtain D(t,x)
for any values of ¢t and z in the next step, that is, in the 2-dimensional
integrand used by FOAM.

Another distribution in Fig. 1 comes from the full scale MC generation
(four-momenta conserving) according to Eq. (3). The MC run with 108
events was used. In the MC implementation we cannot use the Markovian
method because of the narrow Breit-Wigner peak due to a heavy boson
propagator. We could employ a backward evolution algorithm of Ref. [20],
but instead we have opted to employ a variant of the constrained MC (CMC)
technique of Ref. [13]. In fact, we combine two CMC modules and FOAM
into one MC generating gluon emission from the incoming quark and an-
tiquark which annihilate into the W boson. The LO hard process ME of
the W boson production is implemented'?, FOAM is taking care of the gen-
eration of the variables zy, xp, Tro, tBo and the sharp Breit—Wigner peak
in § = sxprp, then initial parameters for two CMC modules are set and
the gluon four-momenta ];:;‘ are generated. Once they are mapped into k:f ,
following the prescription defined in Ref. [4], the overall energy-momentum
conservation is achieved.

Figure 1 demonstrates a very good numerical agreement between do /dny;,
from our full scale LO parton shower MC of Eq. (3) and the simple formula
of Eq. (4) in the strict collinear kinematics (just convolution of two PDFs
and the Born cross section). The LO MC is working in the standard phase
space, with the exact 4-momentum conservation and agrees with precision
< 0.5% with the simple collinear formula of Eq. (4). The visible numerical
bias is most likely due to finite size of the grid used to parametrize PDFs
from the MMC run.

3.2. Numerical test of NLO correction

Having cross-checked very precisely the overall normalization of our LO
MC, we are now ready to do a similar cross-check in the case of the NLO-
corrected hard process.

12 The use of the MC method is not mandatory here — we could solve it using finite
step methods, as in Ref. [19].

'3 In the presented MC exercise, the average over angular distribution of the W boson
decay products is taken. This is irrelevant for the conclusions of our study and this
averaging can be undone rather easily.
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Figure 2 represents a principal (technical) test and proof of concept of our
new methodology for implementing the NLO corrections to the hard process
in the parton shower MC. The NLO correction to the ny, distribution is
obtained, on the one hand, within the full scale parton shower MC featuring
the NLO-corrected hard process as in Egs. (3) and (5), and, on the other
hand, with a simple collinear formula of Eq. (7) in which two PDFs are
convoluted with the analytical function Co,.(2), the “coefficient function”
for the hard process. In Fig. 2, we present the NLO corrections obtained
using both calculations. The LO component, cross-checked in the previous
section, is present in the MC but not shown in this plot in order to increase
the “resolution”. In Fig. 2, we also include the ratio of the NLO corrections
from the two sources.
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Fig.2. The pure (—) NLO correction to the distribution of njj, = % In(zp/zg) in
CMC LO parton shower in W boson production (black/purple). It agrees with the
strictly collinear formula (grey/green) to within < 1% of the NLO correction itself.

As seen in Fig. 2, the result of the parton shower MC with the NLO-
corrected hard process and the result of the simple collinear formula of
Eq. (7) agree very well, within the statistical error.
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In Fig. 2, we see only the NLO corrections, but how big is the NLO
correction with respect to the LO? We show this in Fig. 3, where both the
LO and NLO components are compared, and the NLO/LO ratio is plotted
as well. As we see, the NLO correction to the rapidity-like variable for the
W boson is only about 1.5% of LO, and this is unusually small.
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Fig.3. The comparison of the LO (black/purple) and of the pure (=) NLO correc-
tions (grey/green) to the distribution of 1, = % In(zp/2p); the overall normaliza-
tion is in GeV 2.

For this particular hard process the NLO correction is negative, hence in
both Figs. 2 and 3 it is multiplied by the factor (—1), in order to facilitate
visualization of the results.

At the technical level, the inclusion of the NLO correction in the parton
shower MC is straightforward, we are just activating Wﬂléo of Eq. (5). In

fact, MC is providing the LO and NLO-corrected results in a single MC run

with weighted events. The WI\I}I@O weight is well behaved, strongly peaked
near WI\IZ”@O = 1, positive, and without long-range tails. The distribution

of this weight is shown in Fig. 4. In the MC implementing the collinear
formula of Eq. (7), we again use FOAM, but now the generation space is
3-dimensional due to the presence of additional variable z.
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Note that in all numerical results shown so far we have put Ay, g =0,
as it is completely unimportant for the purpose of the presented numerical
analysis. For our study, we also used toy initial distributions dy(qo, t), which
were parametrized as follows

tDyep(2,1GeV) = 2zu(z) + zd(z) + s2s(z),
2au(z) = 2.19 2'/2(1 —z)3,
zd(z) = 1.23 2121 — 2)*,
zs(z) = 1.35 2%2(1 —2)7.
h_wtlr
. Entries 100000
03i103 Metan 0.9851
L RMS  0.04095
r NLO weight
0.25
0.2
0.15F
0.1
0.051
O:Jl\\\‘\\\‘\ll‘\\\‘MﬂJ’\\\‘\\\l\
0 02 04 06 08 1 12 14
wt

Fig.4. The distribution of the NLO weight W&° of Eq. (5).

4. Discussion and comparison with other methods

The new method of introducing the NLO corrections in the hard process
proposed in Ref. [4] and tested in this work is clearly very different from
the well established MC@QNLO [21] and POWHEG [22, 23] methodologies.
Ref. [4] offers a limited discussion on these differences. Having at hand MC
numerical implementation, we may elaborate on certain issues in more detail,
in particular, we are going to show numerical results illustrating differences
with the POWHEG technique.

At first sight, the most striking difference with the POWHEG and
MCQNLO techniques are:
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e “Democratic” summation over all emitted gluons, without deciding ex-
plicitly which gluon is the one involved in the NLO correction and
which ones are merely “LO spectators” in the parton shower.

e The absence of (1/(1 — z))4 distributions in the real part of the NLO
corrections (kinematics independence of the virtual + soft correction).

In the following, we shall elaborate mainly on the first point, analysing
in a detail how WHEC of Eq. (5) is distributed over the multigluon phase
space. In order to make the discussion maximally transparent, let us consider
a simplified weight

31 (Qh q2;, l_ﬂj)
WI\N/I%O =1+ WNLO ’ WNLO = ' (8)
jzelz? ’ ’ P(zpj) dog(8,0)/ds2

which is limited to one ladder (one hemisphere). Moreover, we put it on top
of the MC modelling gluon emissions from single quark'?, essentially the
multigluon distribution of Eq. (1).

We start by examining the inclusive distribution of gluons on the Sudakov
logarithmic plane of rapidity £ and variable v = In(1 — z). This is shown in
Fig. 5 (a). The distribution looks as expected, and the flat plateau represents
IR singularity 2Cp % d§ ldz (for constant ag) with the drop by factor 1/2

—Zz
towards z = 0, due to # factor in the LO kernel.

(V)

NLO

LO 1-gluondistr. p(t,v) Plateau at ZCF % =0.10; (-1) Ap

(b)

Fig.5. (a) The inclusive distribution of gluons on the log Sudakov plane of rapidity
t = &max and v = In(1 — 2). (b) Contributions from all gluons weighted with the
component weight W]NLO.

14 We use the Markovian MC implementation, but optional use of the CMC would
provide identical results. We use quite a wide range of ¢, corresponding to /s = 7 TeV.
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In Fig. 5(b), we show contributions from all gluons weighted with the
component weight —WJNLO of Eq. (8). (We insert a minus sign in order to
facilitate visualization.) Here we see that the NLO contribution is concen-
trated in the area near the rapidity of the hard process t = £nax, Which has
to be true for the genuine NLO contribution. On the other hand, the fact
that the NLO correction dies out towards the IR limit z — 1 is not guaran-
teed in the collinear factorization. It results from the conscious choice that
our LO differential distributions reproduce the correct IR limit not only in
LO but also in NLO and in the entire phase space'”.

Another important point is the completeness of the phase space near
the (z = 0, t = &{max) phase space corner. Both POWHEG and MC@QNLO
use standard LO MCs which feature an empty “dead zone” in this region'®,
which is critical for the completeness of the NLO corrections in the hard
process. They have to fill in this empty part of the phase space with MC
events according to the correct LO+NLO distribution. Correcting for this
deficiency of the standard LO MC requires non-trivial effort. In our case,
the problem of the phase space incompleteness is absent'” and we simply
re-weight the LO distribution (MC events) to the NLO level.

Finally, we also see that the NLO correction is very small, which might
be a general feature of the new method. It is mainly due to the absence
of the (1/(1 — z))4 terms in the NLO correction — this is a separate issue
discussed in Ref. [4], see also a few remarks below.

Looking at Fig. 5 it is tempting to conclude that the dominant con-
tribution to > y VVJNLO may come from the gluon with the highest In k‘]T ~
£;+In(1—z;), that is the closest to the hard process corner (z = 0, t = &max)-
We may easily relabel gluons generated in the MC, Ej — >k, such that
they are ordered in the variable kg = x + In(1 — zx ), with K = 1 being
the hardest one (kx41 < KK).

In Fig. 6, we show a split of the inclusive distribution of Fig. 5 (a) into the
K =1 component (hardest gluon in k7) and the rest K > 1. As we see, the
K =1 component saturates/reproduces the original complete distribution
of Fig. 5 (a) over all the region, where the NLO correction (Fig. 5 (b)) is non-
negligible. This is exactly the observation on which POWHEG technique is
built! Moreover, as noticed by the POWHEG authors, taking the K = 1
component is sufficient to reproduce the complete NLO correction (up to
NNLO).

15 Older version of the standard LO MCs do not always reproduce the correct soft gluon
limit beyond the LO level.

6 This is due to the use of the boost transformation in the standard LO MCs to get
the overall four-momentum conservation. We avoid this transformation (problem) as
we use the rescaling transformation only in k; — k; in the LO MC.

17 Of course, reconstructing the LO parton shower also requires non-trivial effort.
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Fig.6. The inclusive distribution of gluons of Fig. 5 (a) split into the hardest (in
kT gluon (left) and the rest (right).

Let us check numerically the above statements by means of comparing

. _ . . . NLO
the NLO correction to the z = xo[]; 2; distribution from >, W;"* and

from W}?;Cl) This comparison is shown in Fig. 7. As we see, the K = 1

component saturates the entire sum very well, whereas the K = 2 component
is quite small. A natural question is: why bother to keep the entire sum
instead of taking only the K = 1 contribution? In fact we can, which is a
valuable feature of our scheme. However, we stress that in the POWHEG
scheme the K = 1 gluon is generated in the MC separately in the first
step and other gluons are generated (by the LO parton shower MC) in the
next step. This is fine and easy if the LO MC uses k”-ordering, while in
the case of the LO MC with angular/rapidity-ordering additional effort of
generating the so-called vetoed showers and truncated showers is needed in
the POWHEG method. In our method, the angular ordering is used but
the vetoed/truncated showers are not needed, even if we replace the sum

NLO total and K=1,2 contribs.

“"\I\|III|\II‘I\I‘I\I‘I\I‘I\I T

-2.5 -2 -1.5 -1 -0.5 Iogm(x?

Fig. 7. The full NLO correction ) j W]NLO and its two hardest (in k') components
WREQ WERLQ as a function of = [1; 2
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> j WJNLO by K = 1 component W}\(H;? Is there any rationale for keeping
the sum over gluons in NLO weight at all? There are two reasons for keeping
it, at least optionally: (a) the valuable cross-check of the NLO MC against
the simple collinear formula of Eq. (7) is exact only if we keep the sum, (b)
it may turn out that keeping the sum reduces missing NNLO corrections. In
our opinion one should keep both versions and check which one fits better
the complete NNLO or better agrees with additional resummations beyond
LO.

As an additional illustration for the above discussion, in Fig. 8, we show
the distribution of gluons ordered in rapidity, starting from the gluon with
the maximum rapidity, the closest to hard process. As we see, the gluon
distribution with the highest rapidity & ~ &nax (J = 1) features a ridge
extending towards the soft region. It is important to notice that the width of
this ridge goes to zero when € — 0 in the IR cut-off (1—2) < e. Hence, sooner
or later the gluon with the highest £ will not be able to reproduce/saturate
the gluon distribution in the NLO corner close to hard process, and the NLO
correction will be highly incomplete. In the k”-ordering this is not the case,
of course.

ALL: p, (tv)= dsr:h: Plateau at 2C_ % =0.10 Angular ordering: J=1

,cgf‘_;t A

Angular ordering: J=2 Angular ordering: J=7 ~<n>

»‘5\&;& et

Fig.8. The distribution of gluons ordered in rapidity, as in our basic LO MC.
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In the above, we have mainly discussed the differences of our MC with the
POWHEG method in which, similarly to our case, the negative MC weight
is not allowed. The MC@NLO method roughly corresponds to generating
in a separate MC branch events according to non-positive NLO correcting
distribution. In the same MC branch, events filling the empty phase space
near the hard process corner are also added'®.

Both MC@NLO and POWHEG feature the (1/(1 — z))4+ components in
the NLO corrections, which are the source of the practical complications
there, while they are absent in our approach. In MCQNLO and POWHEG
case these (1/(1—2z))4 corrections act effectively as the “in-flight” translation
of the PDFs from the MS collinear factorization scheme (FS) to the FS used
effectively in the MC, (see Ref. [4]). We propose to shift this translation
beyond the MC, as a rather simple redefinition of PDFs which should be
done “off line”, from the point of view of MC. The above issue requires a
dedicated study (in preparation), and is also closely related to the upgrade
of the ladder part of the MC to the NLO level.

Having in mind that the considered method is more general, and can be
also applied for introducing the NLO corrections in the middle of the lad-
der |24, 25], it is an interesting question whether limiting the sum Zj W]NLO
to one (or two) terms would/could be used in order to upgrade the QCD
evolution in the parton shower to the complete NLO level, which would
open many new promising avenues in the development of the high quality
QCD parton shower MCs for LHC and other colliders. This question will
be addressed in the forthcoming study in Ref. [26].

The present work provides a numerical cross-check of the ideas outlined
in Ref. [4]. We briefly mention the most urgent future studies which will
necessarily follow this work (some are already completed but unpublished).
The two most important issues are: (i) adjusting the choice of = at NLO
level, and (ii) selecting a better choice/definition of initial PDF. Also, adding
missing graphs for the NLO corrections, that is graphs with gluon to quark
transitions is needed. This should be simpler than the presented gluon-
strahlung contributions due to lack of IR singularities.

The present choice of the rapidity boundary = = 0 is good at the LO
level, and it also correctly reproduces the integrated NLO cross section.
However, at the exclusive level, the exact NLO distributions must be prop-
erly reproduced in the limit when all gluons but one are collinear (have small
kT), for instance, the rapidity difference between the heavy boson and the
hardest (in k7)) gluon. For the above aim the best choice is to identify =
with the rest system of the heavy boson and the hardest gluon n*. This can
be easily obtained by means of refining the mapping k; — k; in such a way

18 This, luckily, reduces the number of events with the negative weight.
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that it is used twice. For the first time with = = 0, then the rapidity n* is
determined and k; — k; mapping is repeated with = = n*. Obviously, some
gluons will be reclassified as belonging to another initial beam ladder'”. The
above solution was already tested and works correctly.

Concerning further refinements on the initial PDF| this issue would be
resolved automatically if MC was fitted to the experimental data or if the
PDFs have been fitted within the MC scheme. If the initial PDF is to be
taken from a standard library of PDFs in the MS scheme, then it will be
necessary to correct it using the difference of the counterterms of the MS
and MC schemes (see Eq. (44) in [4]). From the classic analysis [27] of NLO
corrections to the DY process, it is known that this correction will be large

and dominated by the term ~ <M> , in the region where quark
+

1—z

distribution?’ is strongly varying in z. Note that in POWHEG method the
above correction is implemented in the MC by means of explicit generation
of the variables in the convolution implementing NLO corrections and the
corresponding manipulation on four-momenta is done. In contrast, in our
method NLO corrections are included entirely through MC weight and no
extra kinematics transformations are needed (beyond these of the LO MC
modelling).

In the above context, interesting numerical results are presented in
Ref. [28] — they illustrate the size and location of the x-variation in PDFs
due to kinematics manipulations in POWHEG driven by NLO corrections.
In our method, the entire kinematical modification of the longitudinal par-
ton fraction z is due to the LO mapping and the shape modification due to
the NLO weight. We expect this effect to be less sizable in our method, but
a separate study would be needed to verify it.

5. Summary and outlook

A new methodology of adding the QCD NLO corrections to the hard
process in the initial state Monte Carlo parton shower is tested numerically
using heavy boson production at hadron—hadron colliders. The ladder parts
of the parton shower are modelled in the LO approximation, also using these
new methods. The presented numerical results prove that the basic concept
of the new methodology works correctly in the numerical environment of
a Monte Carlo parton shower. The differences with the well established
methods of MCQNLO and POWHEG are briefly discussed. Also, possible

refinements of the method are indicated.

19 Luckily, this “Aow” of gluons from one to another hemisphere does not influence the
overall MC weight.
20 Similar phenomenon will occur for the gluon distribution.
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Clearly the "proof of concept” is successful, and more work is required
before a practical application will emerge.
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