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1. Introduction

The majority of studies, both theoretical and experimental, on the Bose–
Einstein condensation (BEC) was carried out for gases in the harmonic traps
and in three space dimensions [1]. In the meantime, a number of works
were devoted to the study of the thermodynamic properties of the Bose
gas trapped in arbitrary power-like spherical-symmetric potential in three
spacial (3D) dimensions [2], and to the harmonic trap at lower dimension
D = 2 [3]. Recent publication [4] contains the calculation of the tempera-
ture and the fraction of the condensed particles in the case of Bose–Einstein
condensation of the ideal Bose gas in free space at any space dimension. As
far as the physical realization is concerned, the harmonic traps of lower di-
mensions are effectively modeled by the sharply anisotropic frequencies [3].
A direct realization of BEC in the 2D harmonic and isotropic trap was re-
cently achieved with the photons confined in the spherical cavity [5]. The
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confinement results both in the effective nonrelativistic dependence of the
photon energy on the transverse momentum, the harmonic oscillator poten-
tial in the transverse direction,
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√
k2
‖(r) + k2

r ≈ ~ck‖(r) +
~ck2

r
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2r2

2
+

p2
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, (1.1)

with a tiny effective photon mass meff = π~cs/D0 ≈ 5 × 10−33 g, the fre-
quency ω = c

√
2/(RD0) ≈ 4 × 1011 s−1, and E0 = π~cs/D0 ≈ 3 eV [5].

Here, D0 = 1.4× 10−4 cm is the distance along the optical axes between the
spherical mirrors, each having the radius of curvature R = 100 cm, s = 7 is
the excitation number of the longitudinal standing wave of the photon, and
r, kr = pr/~ are, respectively, the distance from the optical axes and the
conjugate wave number in the transverse direction, c and ~ are the velocity
of light and the Planck constant.

However, the general analysis of the possibility of BEC in a power-law
potential in an arbitrary space dimensionD, as well as the degree of singular-
ity of the chemical potential and other thermodynamic functions, is absent
in the literature. In the present work, we fill the gap and find both the con-
ditions for BEC, as well as the degree of singularity of the thermodynamical
functions of the ideal Bose gas, appearing in the case of arbitrary power-like
spherical potential and for arbitrary space dimensionality. Despite the fact
that the ideal Bose gas approximation adopted in the present work is poor
for the gases of alkali metals, it is meaningful for BEC of photons studied
in Ref. [5], in addition to the case of the hypothetical weakly interacting
axions, proposed as dark-matter candidate in Ref. [6].

The rest of the paper is organized as follows. The density of states is
obtained in Sec. 2. Section 3 is devoted to the elucidation of the behavior
of the chemical potential near the the BEC transition temperature. The
results and conclusions are presented in Sec. 4. The Appendix contains the
necessary information concerning the polylogarithm function.

2. Density of states and the critical temperature of BEC

The starting point is the semi-classical one-particle density of states ν(ε)
in the case of spherically symmetric single-particle potential of the form

U(r) = U0

(r
a

)γ
, (2.1)
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characterized by its strength U0 > 0, the scale a, and the exponent γ. In
effect, the single-particle density of states can be defined as

ν(ε) =

∫
dDrdDp

(2π~)D
δ

[
ε− p2

2m
− U0

(r
a

)γ]
, (2.2)

where δ(x) is the Dirac delta function. Hereafter, D is the space dimen-
sionality of the gas, the particle spin is assumed to be zero, and p and r
are the moduli of the D-dimensional vectors of the momentum and the ra-
dius, respectively. The phase-space integral (2.2) is calculated in the multi-
dimensional spherical coordinates, where the volume element integrated over
angular variables takes the form

dDr =
2πD/2

Γ
(
D
2

)rD−1dr

see [7], the formula 4.632(2) differentiated over R. Analogously for dDp,
with the use of the table integral [8]

1∫
0

xξ−1(1− x)η−1dx =
Γ (ξ)Γ (η)

Γ (ξ + η)
,

the calculation leads to the explicit expression

ν(ε) = Aεα−1 , (2.3)

where

α =
D

2
+
D

γ
,

A =

(
ma2

2~2U
2/γ
0

)D/2 2Γ
(
D
γ

)
γΓ
(
D
2

)
Γ (α)

, (2.4)

and Γ (x) is the Euler gamma function.
The case of γ = 0, at first sight, seems to be singular. However, it

corresponds to the situation, when the gas is under the influence of the
constant potential U0. As is usual in the case of free particles or particles
in the constant potential, one should put the system into the finite vol-
ume. The problem is reduced to the case of bosons in D spatial dimensions,
with the only difference that they condense to the state with the energy U0.
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The temperature of BEC in this case is the same as found in [4]. The
thermodynamical properties of the system do not depend on changing the
energy reference point.

In the meantime, there is another way to get the case of free bosons in
the space with no external potential, confined inside the sphere with the
radius a. This is obtained in the limit γ →∞. Then

U(r) = U0

(r
a

)γ
→
{

0, if r < a ,
∞, if r > a ,

(2.5)

and the expressions (2.4) are reduced, respectively, to the following ones

α =
D

2
,

A =
( m

2~2

)D/2 aD

Γ
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D
2

)
Γ
(
D
2 + 1

) . (2.6)

The density of states in this limit coincides with that obtained earlier [4]
for free bosons in a finite volume. As for the dependence of the chemical
potential on the temperature, in the cases of γ = 0 or γ → ∞, we will
comment on this point after establishing the analogous dependence in the
general case of finite γ 6= 0.

As usual, the inequalities µ(T ) ≤ 0 and
(
∂µ
∂T

)
U0

< 0 result from the
condition of having the particle number bosons in the gas, i.e.,

N =

∞∫
0

ν(ε)dε

e(ε−µ)/T − 1
, (2.7)

where µ ≡ µ(T ) is the chemical potential. The above equation is valid only
if U0 > 0. The Boltzmann constant is set to unity. BEC is possible if the
integral defining the temperature of BEC T0,

N =

∞∫
0

ν(ε)dε

eε/T0 − 1
=

(
ma2

2~2U
2/γ
0

)D/2 2Γ
(
D
γ

)
ζ (α)Tα0

γΓ
(
D
2

) , (2.8)

has a definite value. Hereafter

ζ(x) =

∞∑
n=1

1

nx
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is the Riemann zeta function. This function is defined at x > 1. Hence, the
restriction on the parameters of the problem γ and D, resulting from the
definition of zeta function, is

α =
D

2
+
D

γ
> 1 . (2.9)

One obtains that BEC is possible in the space dimension D = 1, 2, and 3 at,
respectively, γ < 2, γ > 0, and γ > −6. In particular, the confinement in
the harmonic trap, γ = 2, admits BEC in any space dimension when D > 1.
The critical temperature T0 of BEC is found from Eq. (2.8)

T0 =

N (2~2U
2/γ
0

ma2

)D/2
γΓ
(
D
2

)
2Γ
(
D
γ

)
ζ(α)

1/α

. (2.10)

In particular, one has D = 3, γ = 2 for BEC of alkali atoms in the traps with
the typical magnitude of the frequency ω ∼ 102 s−1. Then, ma2/(2~2U0) =
(~ω)−2, and the BEC temperature is

T0 = ~ω
[
N

ζ(3)

]1/3

∼ 10−7 K

for N ∼ 106. Hereafter, the necessary expressions for the zeta function
at particular arguments are taken from [9]. On the other hand, under the
conditions of the experiment [5], the parameters are D = 2, γ = 2, ω ∼
1011 s−1, and the BEC temperature is

T0 =
~ω
π

√
3N ∼ 103 K ,

at N ∼ 104 photons in the cavity. The above equation allows for two
polarization states of the photon. For the oscillator potential in space with
arbitrary dimension D, one finds

T0 = ~ω
[
N

ζ(D)

]1/D

. (2.11)

Since limD→∞ζ(D) = 1, one can see from (2.11) that, in this limit, T0 → ~ω
independently of the particle number N .

The chemical potential µ(T ) at T < T0 is zero with all its derivatives.
Hence, the number of particles sitting at the excited energy levels, N>(T ), is
given by Eq. (2.8), in which one should make the replacements N → N>(T )
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and T0 → T . Then, the number of particles in BEC, N0(T ) = N −N>(T ),
is given by the expression

N0(T ) = N

[
1−

(
T

T0

)α]
. (2.12)

This expression is valid for the finite values of the power γ in the external
potential. It coincides with the earlier expression α = 3/2 + 3/γ [1, 2] at
D = 3. As is explained above, the case of ideal Bose gas put in a finite
volume, upon neglecting the interaction with the external field, corresponds
to taking the limit γ →∞, and the power α is reduced to the value α = 3/2
in the three-dimensional case.

3. Thermodynamic functions near BEC transition temperature

The temperature behavior of the thermodynamic functions in the vicinity
of the critical temperature T0 is found from the behavior of µ(T ). Since
µ(T ) = 0 at T ≤ T0, one should consider the region T = T0 + ∆T , where
∆T � T0. µ(T ) is found from Eq. (2.7)(

T0

T

)α
=

Liα
(
eµ/T

)
Liα(1)

, (3.1)

where Liα(z) is the polylogarithm function. Its definition and some proper-
ties necessary in the context of the present work, are gathered in Appendix.
With the help of Eq. (A.1) in the Appendix one can find the internal energy
in terms of µ ≡ µ(T ). To this end one should use the following relations

E = A

∞∫
0

εαdε

e(ε−µ)/T − 1
= ATα+1Γ (α+ 1)Liα+1

(
eµ/T

)
,

N = A

∞∫
0

εα−1dε

e(ε−µ)/T − 1
= ATαΓ (α)Liα

(
eµ/T

)
.

Excluding from these equations the multiplicative factor A, one obtains the
internal energy in the following form

E = NTα
Liα+1

(
eµ/T

)
Liα

(
eµ/T

) . (3.2)

Although Eqs. (3.1) and (3.2) are exact, they are not very useful for practical
purposes. One should consider them in various limiting cases, in order to
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obtain explicit expressions for µ and other thermodynamic functions. As
will be clear, the temperature behavior of µ(T ) is different at different values
of α. If α > 2 (that is, if γ < 2/3, γ < 1, and γ < 6 at D = 1, D = 2, and
D = 3, respectively) then one may use power expansion in fugacity eµ/T

N = A

∞∫
0

εα−1dε

e(ε−µ)/T − 1
= A

∞∑
n=0

eµ(n+1)/T

∞∫
0

dε

×εα−1e−ε(n+1)/T = AΓ (α)Tα

[
ζ (α) +

∞∑
n=1

eµn/T − 1

nα

]
. (3.3)

Since µ � T , which is valid in the vicinity of T0, then, to the first order,
eµn/T − 1 ≈ µn/T , and the summation is obtained in the following closed
form

µ

T

∞∑
n=1

1

nα−1
=
µ

T
ζ (α− 1) .

The explicit equation for finding the chemical potential valid at α > 2 is

N = N

(
T

T0

)α [
1 +

µζ (α− 1)

Tζ (α)

]
,

whose solution at T > T0 is

µ(T ) ≈ T0

[(
T0

T

)α
− 1

]
ζ (α)

ζ (α− 1)
≈ −(T − T0)

αζ (α)

ζ (α− 1)
.

One can see from this expression that µ(T ) is continuous at T0, but its first
derivative has a discontinuity

[µ′] = − αζ (α)

ζ (α− 1)
.

Hereafter,
[f ] ≡ limε→0 [f(T0 + ε)− f(T0 − ε)]

designates the discontinuity of the function f(T ) at the BEC transition
temperature T0. Hence, the energy of the Bose gas is continuous but the
heat capacity at constant external field defined as

C =

(
∂E

∂T

)
N,U

= A

∞∫
0

εαe(ε−µ)/T[
e(ε−µ)/T − 1

]2 (ε− µT 2
+
µ′

T

)
dε
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is discontinuous at T = T0, i.e.,

[C] = A
[µ′]

T0

∞∫
0

εαeε/Tdε(
eε/T − 1

)2 = −N α2ζ (α)

ζ (α− 1)
. (3.4)

The case when the inequality

1 < α ≤ 2 (3.5)

is satisfied, demands the separate treatment, because eµn/T under the sum
in Eq. (3.3) cannot be expanded in powers of µ/T due to the divergence of
the summation over n. In due turn, both the cases of the strict inequality
1 < α < 2 and the equality α = 2 in (3.5) should also be treated separately.
Depending on the number of space dimensions D = 1, 2, and 3, the strict
inequality is satisfied for the power γ in the intervals 2/3 < γ < 2, γ > 2,
and |γ| > 6, respectively.

First, let us consider the case of the strict inequality 1 < α < 2. At
small µ, the dominant contribution to the sum in Eq. (3.3) comes from large
n, so the summation can be approximated by the integration with the help
of the formula due to Euler and Maclaurin [9]

∞∑
n=1

f(n+ a) ≈
∞∫
a

f(x)dx− 1

2
f(a)− 1

12
f ′(a) . (3.6)

To this end one should write

∞∑
n=1

f(n) =
∞∑
l=0

f(l + 1) = f(1) +
∞∑
l=1

f(l + 1) ,

and apply (3.6) in the particular case a = 0. Upon neglecting the non-
singular terms of the order of µ/T , one finds that the dominant contribution
to the equation relating the chemical potential µ to the particle number N
is thus represented in the form

N = N

(
T

T0

)α 1 +
1

ζ (α)

∞∫
1

(
exµ/T − 1

) dx
xα

 ≈ N ( T
T0

)α

×

[
1− 1

ζ (α) (α− 1)

(
|µ|
T

)α−1

Γ

(
2− α, |µ|

T

)]
,
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where

Γ (α, x) =

∞∫
x

e−zzα−1dz = Γ (α)−
∞∑
n=0

(−1)nxα+n

n!(α+ n)
(3.7)

is the incomplete gamma function [7], and x = |µ|/T � 1. Since x is small,
one can keep only the term with n = 0 in the sum over n in Eq. (3.7). As
a result, after keeping the terms of the lower order in the ratio µ/T , one
obtains the first-order expression for the nonzero value of µ(T ) for T > T0

µ(T ) ≈ −T0

[
α (α− 1) ζ (α) (T − T0)

T0Γ (2− α)

] 1
α−1

. (3.8)

This expression shows that the chemical potential is continuous at T = T0.
Indeed, µ(T ) vanishes at T ≤ T0 with all its derivatives. Since, in the
present case, 1/(α − 1) > 0, then, at T > T0, the expression (T − T0)

1
α−1

vanishes at T → T0, too. As for the derivatives of the chemical potential
over temperature, the evaluation of the order k derivative can be expressed
as follows

µ(k)(T ) ≡ ∂kµ

∂T k
= − 1

T k−1
0

[
α(α− 1)

Γ (2− α)

]1/(α−1)

×
(
T − T0

T0

)1/(α−1)−k k−1∏
l=0

(
1

α− 1
− l
)
,

which shows that, provided the condition

α = 1 +
1

k
(3.9)

is fulfilled, where k ≥ 2, the k-th order derivative of the chemical potential
as a function of temperature is discontinuous at T = T0. The magnitude of
the discontinuity is[

µ(k)
]

= − k!

T k−1
0

[
(k + 1)ζ(1 + 1/k)

k2Γ (1− 1/k)

]k
. (3.10)

Since, in the present case, α < 2, the case k = 1 is beyond the treatment. As
will be clear later on, when α = 2, the temperature behavior of the chemical
potential becomes non-analytical at T = T0.
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Let us turn to the case α = 2. Note that this equality takes place, if, at
the space dimension D = 1, 2, 3, the power of the coordinate dependence of
the trapping potential U(r) ∝ rγ equals, respectively, γ = 2/3, 2, 6. It is the
situation D = 2, γ = 2 which was realized recently in the experiments with
the Bose–Einstein condensation of photons in the cavity [5]. The chemical
potential at T > T0 can be found from Eq. (3.1), with α = 2(

T0

T

)2

=
Li2
(
eµ/T

)
Li2(1)

≈ Li2 (1− |µ|/T )

Li2(1)
. (3.11)

The corresponding special function is now Li2(x). Its definition and some
properties necessary for the present treatment, are listed in Appendix. Using
Eq. (A.3) with ε = |µ|/T , the equation for the determination of |µ| at
0 < T − T0 � T0, reads

|µ|
T

ln
|µ|
T
≈ −π

2(T − T0)

3T0
,

whose solution, with the logarithmic accuracy, can be represented in the
form

µ(T ) ≈ − π2(T − T0)

3 ln 3T0
π2(T−T0)

. (3.12)

One can see that, in the experimentally accessible case D = 2, γ = 2 [5],
the temperature dependence µ(T ) is non-analytical at T = T0. The differ-
entiation over temperature shows that the chemical potential and its first
derivative are continuous but the second derivative has an infinite disconti-
nuity at the critical temperature. Hence the temperature derivative of the
heat capacity is discontinuous.

Let us comment on the thermodynamics of the Bose gas in the limiting
cases γ = 0 or γ → ∞. The first one is reduced to the constant external
potential U(r) = U0 = const. In this case, the thermodynamical proper-
ties are meaningful, if one restricts the system to the finite D-dimensional
volume. Since the effect of the potential U(r) = const can be removed by
the change of the energy reference point, the thermodynamical properties
at γ = 0 are the same as in the case of free bosons. Curiously, but the
seemingly opposite case γ →∞ corresponds exactly to the same case of the
free Bose gas. The only difference is that the effect of the finite volume is
reached naturally, see Eq. (2.5). The behavior of the BEC fraction N0(T )
and the chemical potential µ(T ) near the BEC transition point T0 can be
inferred from the results obtained in the preceding section by making the
replacement α→ D/2. In particular,

N0(T ) = N

[
1−

(
T

T0

)D/2]
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which coincides with the results of [4]. For the ideal Bose gas, BEC is
possible when D > 2. If D > 4, the chemical potential is continuous at
T = T0, but its derivative over T has the discontinuity of the magnitude

[µ′] = − Dζ(D/2)

2ζ(D/2− 1)
.

IfD/2 = 1+1/k, where k = 2, 3, . . ., that is, D = 3, 8/3, . . ., then the second,
third, . . . derivative of the chemical potential is discontinuous. In fact, one
finds from (3.10), that, in the three-dimensional space, the magnitude of the
discontinuity is

[µ′′] = −9ζ2(3/2)

8πT0
≈ −2.44

T0
.

This coincides with the textbook result. Finally, if D = 4, then µ(T ) for
T > T0 is given by the expression (3.12), the same as in the case of the
oscillatory external potential in the two-dimensional space.

4. Discussion and conclusion

The temperature behavior of the chemical potential as the function of
the temperature is important from the point of view of establishing the kind
of the phase transition, if such a transition indeed takes place. There is
a well-known Ehrenfest classification of the phase transitions according to
which the transition is of the first order, if the energy (in particular, the
chemical potential) is discontinuous, of the second order, if the derivative
of the energy over temperature (the heat capacity) is discontinuous, etc. If
one treats the Bose–Einstein condensation as the phase transition, then the
results of the preceding section help to establish the kind of this transition.
One can see that in all cases except the one with α = 2, the BEC transition
is indeed the phase transition of some particular kind. Specifically, when
α > 2, the phase transition is of the second kind (see Eq. (3.4)), when
α = 1 + 1/k, where k ≥ 2, the transition is of the (k + 1)-th kind (see
Eq. (3.10)). But in the singular case of α = 2, which is realized in D = 4
for the bosons in zero external potential (unphysical case), and in the two-
dimensional oscillator (physically realized in [5]), the BEC transition is the
phase transition of the third kind.

The kind of the phase transition could be established in the caloric exper-
iments, i.e. via the measurement of the temperature dependencies of various
thermodynamical quantities. Is the crossover character (3.12) of the BEC
transition realized or not, was not studied in the experiment [5] with the
D = 2 Bose gas of photons in the oscillator potential U(r) ∝ r2. The fact is
that the Bose–Einstein condensation in the experiment [5] took place at the
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fixed room temperature. BEC was manifested as the macroscopic occupa-
tion of the state with the energy E0 = ~cs/D0, see Eq. (1.1), upon reaching
some critical pump power of the laser corresponding to N ∼ 104 photons in
the cavity. This type of the experiment is not the caloric one.

To summarize, the power γ of the trapping spherically symmetric poten-
tial, U ∝ rγ , for dimension of the space D which admits the Bose–Einstein
condensation of the ideal Bose gas, is found. The degree of singularity of
the chemical potential and other thermodynamic functions appears to be
very different for different space dimensions D and different power γ of the
coordinate dependence of the trapping potential encoded in the quantity
α = D/2 +D/γ. In particular, the case α = 2 corresponding to D = 2 and
γ = 2, accessible through the recent experiment [5] with photons in the cav-
ity, results in the non-analytic behavior of the temperature dependence of
the chemical potential and other thermodynamic functions. The results ob-
tained in the paper, could be possibly applied in the case of the hypothetical
axionic BEC as the dark matter [6], in some power-like spherical-symmetric
potentials in 3D, realized in the self-gravitating distributions of the above
hypothetical particles.

The author is grateful to an anonymous Referee for the careful refereeing
and the constructive remarks and suggestions. I am grateful to Prof. Martin
Weitz for correspondence which helped to reveal the error in the first draft
of the manuscript.

Appendix

Polylogarithm function

The polylogarithm function Liα(z) is defined by the following integral
and series representations [10]

Liα(z) =
z

Γ (α)

∞∫
0

xα−1dx

ex − z
=
∞∑
k=1

zk

kα
. (A.1)

This function is defined at |z| ≤ 1, and α > 1. As is clear from this definition,
Liα(1) = ζ(α). In particular, another equivalent representations for Li2(z)
is used in the paper

Li2(z) = −
z∫

0

ln(1− t)dt
t
. (A.2)
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To prove this representation, one should use the series expansion of ln(1− t)
[11]. Then

ln(1− t)
t

= −
∞∑
k=1

tk−1

k
,

and

−
z∫

0

ln(1− t)dt
t

=
∞∑
k=1

zk

k2
= Li2(z) .

The expansion of Li2(z) near z = 1, used in the body of the paper, is

Li2(1− ε) ≈ π2

6
+ ε ln ε , (A.3)

where ε� 1. Indeed, one has the following chain of equations

Li2(1− ε) = −
1−ε∫
0

ln(1− t)dt
t

= −

 1∫
0

−
1∫

1−ε

 ln(1− t)dt
t

= Li2(1) +

1∫
1−ε

ln(1− t)dt
t

= Li2(1) +

ε∫
0

du lnu

1− u

≈ π2

6
+ ε ln ε .

The approximate equality has the logarithmic accuracy, and the relation
ζ(2) = π2/6 is taken into account.
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