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Data coming from many fields of science and technology, ranging from
hydrology through network traffic to economics, show long range depen-
dence and self-similarity. These properties result in significant consequences
and usually require a redefinition of well grounded assumptions and theo-
ries. In the case of financial markets, the classical models which often as-
sume that the dynamics of economic time series is described by the random
walk, may incorrectly evaluate the investment risk. Therefore, it is impor-
tant to understand the dynamics of returns generated by different financial
instruments. In this work, we tested fifteen different mutual funds invest-
ing in stocks through a stock exchange. We found that the distribution
of funds daily returns cannot be described by the random walk. Further-
more, using several different method, we provide empirical evidence, that
the daily returns of the analysed funds may exhibit long-range correlations
and fractal behaviour.
DOI:10.5506/APhysPolB.43.2103
PACS numbers: 89.65.Gh

1. Introduction

Lots of research have been made over the years in order to explain how
information diffuses amongst investors and how it is then influencing on the
prices of financial instruments. Since financial markets are regarded as com-
plex systems, therefore, the models that have been created to describe and
explain their behaviour usually have comprised too many simplified rules.
One of the important findings in the statistical characteristics of financial
markets were long-range correlations and self-similarity in the return se-
ries, produced by different kinds of financial indicators or traded securities.
However, it is not always clear what are the causes of these statistical prop-
erties, and to what extent they are present in a different kind of financial
instruments like e.g. mutual funds.

(2103)
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Mutual funds are investment vehicles that pools funds collected from
many investors for the purpose of investing in securities such as stocks,
bonds money market instruments and similar assets. They are operated
by money managers, who invest the collected money from investors and
attempt to produce capital gains and income for the investors. Mutual funds
may be interesting investment opportunity for small investors, being able to
access professionally managed, diversified portfolios of equities, bonds and
other securities, which would be difficult to create with a limited amount of
capital. Based on the investment objective and the degree of investment risk,
the funds can be classified into stock funds, bond funds, active configuration
fund, etc. For example, a stock fund is one that invests mainly in stocks, and
a bond fund adopts a collective investment scheme that invests mostly in
bonds and other debt securities. In this work, we focus on the stock funds.

An assessment of a mutual fund gain versus its risk is of paramount im-
portance for policy makers and regulators since it provides some guidance
on appropriate classification strategies. Furthermore, it is crucial for the
investment funds industry, portfolio and risk management purposes. One of
the key factor when assessing the investment risk is the volatility of the fund
price. The term volatility represents a generic measure of the magnitude of
market fluctuations. It is also directly related to the amount of information
arriving in the financial market at a given time. In the case of a mutual fund,
the volatility is a measure of how much the fund price is liable to fluctuate.
As the volatility is of great interest to investors, because it quantifies the
risk, understanding its statistical properties has important practical impli-
cations. Nonetheless, financial markets, as it was shown in numerous works
[1–3], are non-linear dynamic systems producing non-random, non-linear
time series, which often exhibit long-term correlations, self-similarity or
trends. Therefore, the employment of standard statistical analysis meth-
ods to price volatility can give misleading results. Thus, taking into account
the above considerations, we focus on several basic statistical properties of
time series composed of mutual fund prices: the probability distribution, au-
tocorrelation, long range dependence and self-similarity. The main objective
of this paper is to explore if the “new” analytical techniques, which form the
bedrock of quantitative capital market theory: a concepts of chaos, fractals,
long-range correlations, concern also the mutual fund market. The analysis
focus on fifteen mutual funds which operate on the Polish stock market.

2. Long range dependence and self-similarity

Long range dependence (LRD) is a property of certain stationary time
series. In the time domain, the LRD exhibits itself as a high degree of cor-
relation between distantly separated data points, while in the frequency do-



Tracking Scaling Effects in Mutual Funds Return Time Series 2105

main, a significant level of power at frequencies near zero can be observed.
The LRD is inherently defined over a range of scales, and in many ways,
may be a difficult statistical property to estimate. In the time-domain, it
is measured only at high lags (strictly at infinite lags) of the autocorrela-
tion function: those very lags where only a few samples are available, and
where the measurement errors are the largest. In the frequency domain, it
is measured at the frequencies near zero, again where it is hardest to make
measurements.

There are several way of characterising LRD processes. A widespread
definition takes into account the autocorrelation function γ(k), where we
define a process as a long-memory process if for k → ∞ there exist the
relation

γ(k) ∼ k−αL(k) , (1)

where 0 < α < 1 and L(k) is a slowly varying function at infinity. The
degree of the LRD, or a process memory, is given by the exponent α; the
smaller α, the longer the process memory.

In many publications, the terms LRD and self-similarity are used inter-
changeably, which may lead to confusion. A self-similar process behaves the
same when viewed at different degrees of magnification, or different time
scales. Self-similar processes can sometimes be described using heavy-tailed
distributions, what in the case of financial time series translates to heavy-
tailed distribution of financial instrument returns. The fractal characteris-
tics is a result of the LRD of the time series and fat-tail distributions of
its returns. Some self-similar processes may exhibit the LRD, but not all
processes having the LRD are self-similar.

The LRD and self-similarity are also discussed in terms of the Hurst
exponent H, which is simply related to α from (1). For a stochastic process
there exists a relation

H = 1− α/2 . (2)

WhenH ∈ (0.5, 1] the process is positively correlated, which implies that the
time series is persistent. The persistence is characterised by the LRD effects
on all time scales, i.e. if the series has been up or down in the last period,
then the chances are that it will continue to be up or down, respectively, in
the next period. Consequently, all daily price changes are correlated with
all future daily price changes; all weekly price changes are correlated with
all future weekly price changes and so on. Short-memory processes have
H = 1/2, and its autocorrelation function decays faster than the autocorre-
lation of the LRD process. On the other hand, when H ∈ [0, 0.5) we have
anti-persistence. This means that whenever the time series has been up in
the last period, it is more likely that it will be down in the next period.
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Thus, an anti-persistent time series will be more ragged than a pure random
walk with H = 0.5. While the Hurst parameter is perfectly well-defined
mathematically, it may be a difficult property to measure in real life.

3. Previous works

In an economics and capital market theory, it had been long assumed
that there exists a natural balance between a supply and demand of stocks or
currencies. This balance should have been preserved as long as a significant
event would have changed the supply or demand. After such event occurred,
the market was supposed to find a new equilibrium and stabilised itself until
a next event would throw it off balance again. These assumptions led to a
market efficiency hypothesis. According to [4], in an efficient capital market,
all information available to investors is already reflected and discounted in
the securities prices. Investors react to information instantaneously after the
information has been received, and not in a cumulative fashion to a series
of events. The security prices only move when new information arrives in
the market. This means that today change in the security price is caused
only by today unexpected new information. Yesterday news is no longer
important, and today returns are unrelated to yesterday returns, i.e. the
security returns are independent. Additionally, if to collect enough historical
data, the distribution of the security returns should, according to the theory
of large numbers, approach the Gaussian distribution, i.e. the security price
returns behave like a sequence of i.i.d. Gaussian random variables. However,
it was shown that the financial data are usually characterised by a probability
distribution that exhibits power-law behaviour and cannot be fitted using
the Gaussian distribution [5]. Some prominent approaches, including the
Levy stable distribution [6], leptokurtic distribution [7], q-Gaussians [8, 9]
were reported.

Therefore, taking into account the above cited works, the current re-
searches clearly show that capital markets are complex and interdependent
systems, where the state of the system is continuously fluctuating, with no
natural equilibrium state. The financial time series generated by markets
have long-term correlations and trends, which are a result of feedback ef-
fects, and can be more or less chaotic. Furthermore, researches show that
historical time series derived from financial markets typically exhibit distinct
non-periodic cyclical patterns that indicate the presence of significant power
at low frequencies manifested as the LRD [10, 11]. The above mentioned
findings have often become a source of controversies, primarily because of
the wide range of implications that the presence of the LRD in financial
series returns has on many of the paradigms used in economics. Above all,
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such findings are inconsistent with the efficient market hypothesis and re-
quire redefining statistical and stochastic analysis techniques which has been
used in finance theory and its applications.

In economics and finance, the LRD has a long history and has remained
a topic of active research is the studies of economic and financial time series.
The range of applications of the LRD processes spans from macroeconomics
to finance. In the macroeconomics, for example, the authors of [12] found
evidence of long-memory in the gross national product (GNP) data of the
USA. Although several criticisms have been raised to this work, further
studies confirmed the evidence of LRD properties in the GNP data. In [13],
it was shown that the monthly US Consumer Price Index (CPI) had LRD
properties. A related study by [14] confirmed the presence of the LRD in
inflation time series. The LRD and self-similarity were also observed in stock
indices [1, 2], foreign exchange markets [3, 15, 16], traded volumes [17] and
interest rates [18].

In addition to finance and economics, LRD processes have been ob-
served in different natural and human phenomena ranging from hydrol-
ogy [19], through meteorology [20] to geophysics, e.g. the temperature of
the Earth [21]. The LRD has also started to play an important role in the
analysis and performance modelling of traffic volume in communications net-
works. The LRD and self-similar traffic was observed in local networks [22]
as well as in the Internet [23]. The latest comprehensive review of LRD
presence in different domains may be found, among others, in [24].

Motivated by the aspiration to reduce the literature gap, in this paper,
we investigate non-linear properties embedded in the return series of several
mutual funds which invest at least 75% of their assets in stocks. Therefore,
we analyse a return distribution, autocorrelation and we estimate the Hurst
exponent of the funds daily returns. As the result of our analysis, we found
that the distribution of daily returns does not follow Gaussian distribution,
which is often applied to modelling of financial instruments returns. Fur-
thermore, we found that the examined mutual fund market exhibits the LRD
and self-similar properties, and the intensity of these phenomena depend on
a particular mutual fund.

4. Measurements

While the Hurst parameter is mathematically well defined, the empirical
determination of the LRD property of a time series usually is not trivial.
The basic reason lays in a strong autocorrelation of LRD processes, which
makes statistical fluctuations quite large. Thus, tests for the LRD usually
require a considerable amount of data because the measurement should be
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done at tails of a distribution, where not so much data are available. Fur-
thermore, different methods of the Hurst parameter estimation often give
inconclusive or even contradictory results. The assessment results may be
biased by trends, periodicity and corruptions in the data. Therefore, some
authors suggested the use of a “portfolio” of estimators instead of relying
on a single estimator, which could give a misleading assessment caused by
properties of the time series under investigation [25]. Thus, in this paper,
we use three widespread, well-known techniques, which have been used for
some time, to estimate the Hurst exponent: R/S, Aggregated Variance (AV)
and Differenced Aggregated Variance (DAV). All the chosen techniques have
freely available code and are implemented, amongst others, in Rmetrics soft-
ware [26], which is a part of the Cran R environment. We shortly describe
the above mentioned methods in the next sections.

4.1. R/S

The main concept of the R/S analysis is to calculate the relation between
the range of the values exhibited in a portion of the time series and the
standard deviation of the values over the same portion of the time series.
Thus, for a given set of observations {Xi}, i ∈ {1 . . . N}, with the partial
sum

Yn =
n∑
i=1

Xi , n ∈ {1 . . . N} ,

and sample variance

S2
n =

1

n

n∑
i=1

(
Xi −

1

n
Yn

)2

, n ∈ {1 . . . N} ,

the rescaled adjusted range statistic or R/S-statistic is defined by

(R/S)n =
1

Sn

[
max
0≤t≤n

(
Yt −

t

n
Yn

)
− min

0≤t≤n

(
Yt −

t

n
Yn

)]
, (3)

where we compute the difference between rescaled cumulative deviations ad-
justed to their mean. As we see from (3), to determine H parameter, a given
sample of N observations is subdivided into blocks, each of size n. Then,
for each lag n, n ≤ N , one estimates (R/S)n. The graphical R/S approach
consists then of plotting the estimates (R/S)n versus logarithmically spaced
values of n. The parameter H can be estimated by fitting a line to the points
in the plot.
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4.2. Aggregated Variance

This method estimates the Hurst parameter from the variance of an
aggregated (averaged) time series. The original time series {Xi} is divided
into blocks of size m, and for each block an average is computed

X
(m)
k = 1/m

km∑
i=(k−1)m+1

Xi , k = 1, 2, . . . , [N/m] .

Then the sample variance within each block is computed according to the
formula

VarX(m) =
1

N/m

N/m∑
k=1

(
X

(m)
k − X̂

)2
,

where X̂ is the mean of the time series {Xi}. If the series is Gaussian or
at least has finite variance, X(m) scales proportionally to m2H−2 for large
N/m and m. When this procedure is repeated for different values of m, one
can plot the logarithm of the sample variances versus the logarithm of the
block sizes. The resulting points should form a straight line with the slope
2H − 2.

4.3. Differenced Aggregated Variance

This method calculates the differences between sample variances of suc-
cessive blocks of a time series. The method tries to distinguish non-stationary
elements of a time series: jumps and slowly decaying trends, from the LRD.
The calculations are performed according to the formula

VarXmi+1 −VarXmi , (4)

where mi are the successive values of m as defined in the AV method. The
slope 2H − 2 from the least square fit of the logarithm of the differenced
sample variances (4) versus the logarithm of the block sizes provides an
estimate for the Hurst exponent H.

5. Dataset

We took data from fifteen mutual funds which invest majority of their
capital in a stock exchange purchasing stocks offered to the public. The
selected funds publish every trading day their net asset value (NAV). The
NAV is the price at which open-end funds stand ready to issue new shares or
redeem existing shares, and is computed each trading day after the market
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close. The NAVs are believed to reflect the “fair value pricing” what is prac-
tice that gives fund companies discretion in reporting their best estimate of
fund share value taking into account the estimated market value of infre-
quently traded securities or securities listed on foreign exchanges. The NAVs
data were downloaded from popular Polish stock data provider bossa.pl and
have the following symbols in the provider database: PIO3, PKCA, SEB3,
AASW, AIFA, AIP7, AIPA, ARNE, INGA, DWA+, UNIA, AFAZ, AIP6,
AIP8, ARDS. In our work, we identify the above listed funds by giving them
consecutive numbers from 1 to 15, and we refer to them using the conven-
tion: Fund number, e.g.: Fund 1 refers to the PIO3 fund, Fund 4 refers to
the AASW fund, etc. For our analysis, we took the NAVs from January 2001
to October 2012. The data set contains only trading days, thus excluding
holidays and weekends. This means that five-day returns are the returns
of five consecutive trading days, which may not necessarily need to be the
days from Monday to Friday. A plot of daily closing prices for the three
selected funds, analysed in this work, is shown in Fig. 1. In order to im-
prove the comparison, the fund returns were adjusted to a common starting
value of 100 for each presented time period. As we can observe, there is a
certain degree of correlation between the fund NAVs. However, the investing
strategies for the presented funds are different what can be noticed when to
rescale the NAV plot in Fig. 1 (b) and 1 (c).

As the real life data is susceptible to trends and periodicity resulting
from daily usage patterns, thus, running it through an off-the-shelf estima-
tion method may give an inaccurate assessment of the Hurst parameter.
Financial time series generally exhibit significant autoregressive tendencies,
therefore, an empirical investigation of LRD properties in financial assets re-
turns should take into account the presence of trends and oscillations which
are the result of high-frequency autocorrelations [10]. During the Hurst
parameter estimation, it is important to minimize the above mentioned dis-
turbances in a time series. Otherwise, the estimation algorithm may classify
the time series as having a long-term “memory” when it has in reality a short-
term “memory” property. In order to avoid misleading results, we employ a
method called de-trending, which was used amongst others in [10].

To apply de-trending procedure, let us assume that Xt is the NAV of a
mutual fund on a time t. As a result of the procedure, we obtain

Rt = ln(Xt+1/Xt) . (5)

After applying (5) to the mutual fund NAV series, the obtained results Rt
were further processed by the Hurst estimation procedures, described in
Sec. 4.
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Fig. 1. Evolution of mutual fund returns.

6. Results

Firstly, we look at the returns distribution of three randomly selected
mutual funds covering the period from 2001 to 2012, Fig. 2. We plotted the
empirical distributions of NAVs (fund returns) daily changes and compared
them to the normal distribution with the same mean and variance. The
figure reveals that the normal distribution is not suitable for the descrip-
tion of the NAVs distribution of the examined mutual funds. The return
distribution of the examined mutual funds is clearly narrower and has fatter
tails compared to the normal distribution. This is an indication that mutual
funds returns do not follow a random walk. In this case, the investment
decisions based on the assumption of the Gaussian price distribution may
over- or underestimate risk and return potential on all trading horizons.

Secondly, we calculated the autocorrelation function Cτ for the de-trended
data series Rt, computed in (5), of the three selected funds, where τ ∈
{1, 2 . . . 64} denotes consecutive trading days. As it was already mentioned
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Fig. 2. Distribution of the mutual funds daily returns.

in Sec. 2, the autocorrelation of a LRD process is likely to decrease to zero
in a manner described by (1). As shown in Fig. 3, the autocorrelation for
the funds 2 and 3 decreases relatively slowly, clearly different from an expo-
nential decay, although with some breaks in the slope. In the case of Fund 1,
when we increase the autocorrelation lag, we can observe fluctuations of the
autocorrelation coefficient.
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Fig. 3. Autocorrelation function Cτ for the de-trended NAV series Rt of mutual
funds.

In order to further explore the autocorrelation function, we plotted its
decay in a logarithmic scale in Fig. 4. Employing regression analysis, we
found that the autocorrelation function for the examined funds decreases
proportionally to k−α with α ≈ 1.01 for about 21 days for Fund 1, α ≈ 0.58
for about 55 days for Fund 2, and α ≈ 0.71 for Fund 3 for about 50 days.
These findings indicate that the empirical autocorrelation function may be
reasonably approximated by the power-law relation (1) at least for funds 2
and 3.

The logarithmic plot of R/S analysis, described in Sec. 4.1, for the de-
trended NAVs of Fund 1 is presented in Fig. 5 (a). As may be seen, the
results are well described by the linear regression with the Hurst exponent
H ≈ 0.51, which indicates a short-memory property of the fund NAVs.
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Fig. 4. Log-scaled autocorrelation function Cτ for the de-trended NAV series Rt of
mutual funds.

The comparative analysis of all fifteen funds, which we take into account
in our work, is shown in Fig. 5 (b). As we can see, the value of the Hurst
parameter ranges from about 0.48 to 0.73. For most of the analysed funds,
with the exception of Fund 9, the Hurst parameter is higher than 0.5. When
to use (2) to compute the relation between H and α parameters presented
in Fig. 4, the results for the funds 1, 2 and 3 are generally in an agreement
with the results obtained from the autocorrelation function analysis.
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Fig. 5. Estimation of the Hurst parameter using R/S method for the de-trended
NAV series Rt of mutual funds.

The results of the Hurst parameter assessment using the AV method,
described in Sec. 4.2, are presented in Fig. 6 (a). In this analysis, the Hurst
parameter ranges from about 0.52 for Fund 9 to 0.73 for Fund 5, which in
most cases can be interpreted as a weak form of persistence in returns of the
funds daily prices. Furthermore, usually the values of the Hurst parameters
are higher compared to those obtained using the R/S method in Fig. 5 (b).
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The DAV method, described in Sec. 4.3, gives correlated results to the
AV method, Fig. 6 (b). The Hurst parameter ranges from about 0.52 for
Fund 9 to 0.73 for Fund 6. This time, the analysis also suggests that most of
the examined funds may possess LRD property. The estimations for funds 3,
5 and 6 are noticeable different compared to their the estimations using the
AV method presented in Fig. 6 (a).
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Fig. 6. Estimation of the Hurst parameter using aggregate variance methods for
the de-trended NAV series Rt of mutual funds.

7. Conclusions

In this paper, we investigated the statistical properties of several mu-
tual funds returns investing in a stock exchange. We analysed their return
distribution, autocorrelation and long range dependence. We provided em-
pirical evidences that the mutual fund return distribution does not match
the Gaussian distribution. Furthermore, most of the investigated funds show
a long-range dependence behaviour which is significantly different from what
a random walk would produce. Using R/S and aggregated variance meth-
ods, we estimated the Hurst parameter, which is a measure of the LRD, for
every analysed fund. The value of the Hurst parameter ranges for the ex-
amined funds from about 0.48 to 0.73 depending on the estimation method
used which indicates a certain degree of self-similarity in fund returns. The
differences in the assessment may be a result of different investing strategies
employed by the funds managers e.g.: some of the funds prefer investing
rather in large liquid companies (blue-chips funds), others funds may spe-
cialise in small and medium size companies (small-caps funds); some of the
funds may be interested in dividend stocks (dividend funds), while the other
prefer locating their capital in growth stocks.
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As a result of our study, we can state that methods based on the assump-
tion of random walk of mutual fund prices may not correctly estimate the
investment risk. Our results may contribute to development of new financial
models which will better describe the price dynamics of this kind of financial
instruments. A natural continuation of this work would be to extend the
performed analysis on funds which undertake a wider range of investment
and trading activities than mutual funds like e.g. hedge funds.
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