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The Keplerian motion of accretion disks in Active Galactic Nuclei
(AGN) is usually believed to be generated by a heavy central mass. We
investigate accreting disk systems with polytropic gas in Keplerian rotation
and obtain a phenomenological formula that relates the Keplerian angular
frequency to the ratio of disk and central masses. Central mass approaches
the Keplerian value, if the inner boundary of a disk is close to the minimal
stable orbit of a black hole. These results are applied to NGC 4258, the
unique AGN with a finely measured Keplerian rotation curve of the central
disk, with the conclusion that its rotation curve is, in fact, determined by
the central black hole. The mass of the accretion disk exceeds 100M�.
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In the astrophysical literature, the velocity of rotation of disks in Ke-
plerian motion is typically associated with a heavy central mass Mc and
a light disk mass Md. The discovery of the massive black hole in the masing
nucleus of NGC 4258 exemplifies this interpretation [1]. On the other hand,
it is known that even the selfgravity of heavy disks can be compatible with
the Keplerian rotation [2]. Huré et al. [3] investigated thin dust disks and
pointed out that the rotational Keplerian velocity gives only information on
the enclosed mass of the system, and it is not possible to separate masses of
the two components — of a disk and a central mass.

We show in this paper that the Keplerian rotation curve, with the fre-
quency ω, does depend on the two masses but they do not contribute addi-
tively. A phenomenological formula expresses McG/(r

3ω2) (r and G are the
cylindrical radius and the gravitational constant, respectively) as a function
of x ≡ Md/Mc and of the ratio y ≡ rin/rout, where rin and rout are the

(2141)
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innermost and outermost disk radii, respectively. If y is small enough then
the central mass is reasonably well approximated by the Keplerian value
r3ω2/G.

Consider a stationary, axially symmetric, selfgravitating disk of gas, ro-
tating around a central point mass Mc. The gravitational potential of the
system can be written as the superposition Φ = −GMc/|x| + Φg. The po-
tential Φg is due to the gravity of the disk and satisfies the Poisson equation

∆Φg = 4πGρ , (1)

where ρ denotes the mass density of the gas. In the following, we use the
cylindrical coordinates (r, φ, z). The velocity of the gas reads U = ω(r, z)∂φ.
For a barotropic equation of state the frequency ω depends only on the
cylindrical radius r [4]. We assume polytropic equations of state p = KρΓ ,
where p is the gas pressure, and K and Γ are constant. The Euler equations

∇p+ ρ(U · ∇)U + ρ∇Φ = 0

can be integrated, yielding

h+ Φc + Φ = C (2)

in the region, where ρ 6= 0. Here, h denotes the specific enthalpy of the fluid
dh = dp/ρ, and

Φc = −
r∫
dr′r′ω2

(
r′
)

is the centrifugal potential. The structure of the disk can be obtained from
Eqs. (1) and (2) provided that the equation of state and the rotation law
ω = ω(r) are known.

Let the Keplerian rotation law be ω = ω0/r
3/2. It follows from Eq. (2)

that
ω2
0 = GMc +

rinrout (Φg(rout)− Φg(rin))

rout − rin
, (3)

where Φg(rin) = Φg(r = rin, z = 0) and Φg(rout) = Φg(r = rout, z = 0). We
fix rout and the maximal density ρmax. Then, we find that the limit of the
right-hand side of Eq. (3) for rin → 0 is the Keplerian angular frequency
ω2
0 = GMc. To show that, note that Φg is a bounded function on R3. It is

also possible to prove that ω2
0 → GMc as rin → rout.

In the numerical analysis, we apply the Self-Consistent Field (SCF)
scheme [5–7]. Numerical solutions converge quite well for Keplerian ro-
tation, although the drawback of the method is the need to employ a large
number l of Legendre polynomials for thin disks. We find accurate solu-
tions with l = 400 and large grids (up to 5000 × 5000). Such resolutions
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are permitted because of the simplicity of the SCF method. Our numerical
solutions have been tested by the new version of the virial theorem that in-
cludes a point mass [8]. It should be pointed out, however, that even l = 400
does not suffice to resolve structures in the gravitational potential that are
thinner than thinnest disks considered in this paper. We performed tests on
thicker disks, demonstrating that important quantities are insensitive to the
addition of a higher number of expansion polynomials, which could model
fine structures of the gravitational potential within the disk. This conclu-
sion is also supported by the heuristic argument provided by the analysis
of infinitely thin disks — they give a regular gravitational potential, i.e.,
without any structure comparable with the disk thickness.

We found a few thousands of numerical solutions for polytropic disks,
mainly with two polytropic indices Γ = 5/3 (which can be thought to rep-
resent monoatomic gas) and Γ = 4/3 (which might well be associated with
vapor water maser disks) and for a few dozens of values of the interior ra-
dius corresponding to y ∈

(
10−4, 0.5

)
. Calculations have been done also for

a range of polytropic indices in between 4/3 and 5/3, and the internal radius
corresponding to y = 10−4.

Below, we shall report results concerning the case Γ = 5/3, but the
essential features of solutions are similar in other cases. The obtained results
can be quite well approximated in the quadrant 0 < x < 1, 10−5 < y < 0.55
by the following phenomenological formula

ω2
0

GMc
= 1 + xf (y)

g (y) + x

h (y) + x
, (4)

where x ≡Md/Mc and f , g and h are defined as follows

f(y) = 1.322y − 3.719y2 + 13.47y3 − 44.48y4

+116.9y5 − 206.2y6 + 208.9y7 − 90.60y8 ,

g(y) = 0.4778 + 0.9495y − 31.67y2 + 258.4y3

−1431y4 + 5169y5 − 11100y6 + 12760y7 − 6034y8 ,

h(y) = 0.7423 + 0.6313y − 43.57y2 + 375y3

−2059y4 + 7281y5 − 15390y6 + 17520y7 − 8242y8 .

Functions f , g and h are nonnegative and smaller than 1 for arguments
0 ≤ y ≤ 1.

It is clear from these formulae that the central mass is always smaller
than ω2r3/G. At the same time, it is easy to see from (4) that if y is
sufficiently small and Md < Mc, then the rotation curve of the gaseous disk
is almost exclusively influenced by the central mass.
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The number of known AGNs with masers has been increasing in recent
years [9–16] (see also for a review [17]), but there is only one case of well
resolved Keplerian rotation curve — in the AGN of NGC 4258. Observa-
tions of supermasers near the center of the galaxy NGC 4258 [1, 18] provide
evidence for a rotating disk of gas surrounding a black hole with a mass
Mc = (3.9 ± 0.3) × 107M�. The motion is Keplerian to high precision, of
about a part in a hundred [1, 19–21], and this mass estimate assumes that
velocities are due solely to the gravitational force of the central body. A sim-
ilar result has been obtained by Siopis et al. [22], who determined the mass of
the black hole by constructing axisymmetric dynamical models of the galaxy
NGC 4258. Their best mass estimate yields Mc = (3.3± 0.2)× 107M�.

The masers are observed in the annular region that extends from 0.13 pc
to 0.26 pc from the center, and the region with detected masers is thin —
the maximal relative height is circa 1/800 (these distances can be expressed
in terms of the Schwarzschild radius: rg ≡ GMc/c

2 = 5.8 × 1012 cm and
1pc = 5.4 × 105rg). There exists evidence that the disk fills not only the
annular region in which masers are detected, but that it extends outwards
from a vicinity of the black hole horizon. Reynolds et al. [23] investigated
the weakly radiating AGN in NGC 4258 using data from Suzaku, XMM-
Newton, and the Swift/Burst Alert Telescope survey. They constrained its
luminosity region to between 10 and 4×104 Schwarzschild radii of the black
hole. In the numerical calculations we assume that the disk extends from
rin = 2.6×10−5 pc to rout = 0.26 pc, and its relative height is equal to 1/800.

It is clear from (4) — see also Fig. 1 — that if Md ≤ Mc then
ω2
0/(GMc) ≈ 1 with the deviation from unity much smaller than 0.001. The

disk’s mass, obtained numerically for the polytropic index Γ = 5/3 and
assumed geometrical parameters of the disk reads Md = 2.62 × 10−6Mc ≈
100M�.

The results for other polytropes, 5/3 > Γ ≥ 4/3, suggest that disk’s
mass depends rather weakly on the equation of state and increases (up to
Md = 190M�) with the decrease of the polytropic index. The disk’s size
can be larger than that detected in observations, which, in turn, would yield
a larger mass. Therefore, Md = 100M� can be regarded as a conservative
lower bound on the mass of the gaseous disk in the AGN of NGC 4258.
A sample distribution of the mass density within the disk, obtained for
Γ = 5/3, is shown in Fig. 2.

The above results are consistent with those rough mass estimates that
base on such values of the baryonic number density ρn within the disk that
favor the existence of water masers. If one assumes that ρn is around 1010

per cm3, then the mass is around 104M� [1, 18]. Herrnstein et al. [21] note
that the allowed density is 108/cm3 < ρn < 1010/cm3; the lower bound gives
the disk mass ≈ 100M�.
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Fig. 1. The dependence of ω2
0/(GMc) on the mass ratio x. The plot is obtained

for the adiabatic index Γ = 5/3 and rin/rout = 10−4. The dashed line depicts
analytic fit (4). Crosses correspond to numerical solutions obtained for different
values of Mc.
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Fig. 2. Mass density profile within a disk model obtained for Γ = 5/3. The units
are g cm−3.

This analysis is entirely Newtonian, and since it applies to systems with
black holes, it should be repeated in the general-relativistic context. We do
not expect essential changes concerning those systems, where the inner disk
boundary is well separated from a black hole horizon, rin � 6Mc.
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