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Electromagnetism becomes a nonlinear theory having (effective) photon–
photon interactions due at least to electron–positron fluctuations in the
vacuum. We discuss the consequences of the nonlinearity for the force felt
by a charge probe particle, and compare the impact of Euler–Kockel QED
effective nonlinearity to the possibility of Born–Infeld-type nonlinearity.
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1. Lorentz force and quantum vacuum as polarizable medium

Given the weakness of gravity, a natural question is, if nonlinear electro-
magnetic interactions can, on stellar scales, lead to transport of matter in
ways differing from the Lorentz force expectation. This question is especially
pertinent for stellar objects having extreme magnetic fields (magnetars), and
we investigate here in a covariant formulation additional forces induced in
extreme magnetic fields.

The Lorentz force predicts that a charged particle moving in a magnetic
field of arbitrary strength will experience a force normal to both the field
direction and the direction of motion. This pivotal property decides the
fate of charged particles in the magnetic field-filled Universe. Even a very
small field suffices to determine the particle dynamics when acting over a
distance large compared to the natural microscopic particle scale, and does
so as a function of their velocity. Electric fields play a subdominant role on
macroscopic scale since their presence requires a separation or imbalance of
charge which normally cannot be maintained for a long time or/and in a
large volume.
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The Lorentz force has not been well tested on a macroscopic scale. It
could be modified even on planetary scale, considering the material constants
of a planetary space plasma, the dielectric polarizibility ε and magnetic per-
meability µ. The question we wish to address here is if, and under what
conditions analogue physical effects originate in the empty space vacuum
polarizibility due to vacuum fluctuations and/or a natural nonlinearity of
electromagnetism. These effects are normally studied in atomic environ-
ments, and in comparison to the dominant Coulomb force are exceedingly
small. Precision atomic experiments in part compensates this smallness.
However, as we will argue here, the astrophysical environment may offer an
alternate approach to this physics domain of nonlinear electromagnetism.

The most famous example of modification of the classical electromag-
netic theory is the anomalous (since absent unless quantum fluctuations
are considered) light–light scattering phenomenon. Early in the develop-
ment of quantum electrodynamics, Euler and Kockel [1] (and Heisenberg
and Euler [2], see below) recognized that electron–positron fluctuations in
the vacuum would generate an effective self-interaction for the electromag-
netic field. This effect is visualized in the language of Feynman diagrams as
the four electromagnetic field legs attached to an electron loop, see Fig. 1.

Fig. 1. Feynman diagram expressing effective field–field interaction going through
electron–positron fluctuation.

One may also view this phenomenon as the presence of the external field
Fµν polarizing the electron fluctuations in the vacuum. This polarization
of vacuum fluctuations is analogous to the modification of electromagnetic
properties in a material body, e.g. plasma, but with several important dif-
ferences of fundamental origin:

1. The QED vacuum is Lorentz invariant, whereas a material body has
a preferred reference frame in which the medium is at rest. This
means that, among other things, the framework discussed here and
the physics it represents provide a consistent Lorentz invariant theory
of nonlinear electromagnetism with sources.

2. In QED, the linear polarization

FµνFµν →
(
1 + (α/3π) ln

(
−q2/m2

e

))
FµνFµν
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is divergent and is absorbed in the renormalization of charge. In a
material body, the linear polarization ~E → ~D = (1+

↔
ε 0) ~E is typically

finite.

3. The (consequences of QED) polarization we discuss arise from the
nonlinear response, such as visualized in Fig. 1, and can be presented
in terms of a dielectric tensor ↔ε that is necessarily a covariant function
of the applied quasi-constant field.

Heisenberg and Euler showed how to calculate the polarization effect to
all orders in the applied (external) field [2]. In so doing, they obtained the
first non-perturbative result in quantum field theory, which has been stud-
ied and generalized extensively in the intervening years; for a survey of this
development we refer the reader to the recent review [3]. The outcome is an
effective potential Veff for the electromagnetic field, providing the paradig-
matic example of effective field theory, in this case arising by integrating
out a “heavy” electron in the low energy (ω � me) limit of large scale (in
space and time) quasi constant fields. Their result contains the Euler and
Kockel result seen in Fig. 1 at the lowest finite non-vanishing order (after
renormalization) expansion in the fine structure constant α.

However, the full Heisenberg–Euler nonlinearity of electromagnetism is
important, considering certain compact stellar objects, ‘magnetars’, which
are now widely expected to be harboring magnetic fields of equal or greater
magnitude to the so-called “critical” strength of QED [4, 5]∣∣∣ ~Bc

∣∣∣ = m2c2

e~
= 4.41 1013 G . (1)

Near this field strength, all higher order terms in the effective potential
become of the same order as is the lowest Euler–Kockel term, see Fig. 1.

We will also explore in this report the effective force in a natural nonlinear
extension of Maxwell linear electromagnetism, that is the limiting field Born–
Infeld electromagnetism [6]. Considering microscopic physics, we show that
new constraints on the Born–Infeld theory require first understanding the
dominant QED (Heisenberg–Euler) effects at the percent level.

In the following, we will recall briefly the framework of classical nonlinear
electrodynamics and how to derive the dynamics of charged particles and
fields. We will discuss why it is necessary to consider energy-momentum
conservation explicitly in deriving the effective electromagnetic force and
obtain a general formula for the leading terms in the force valid in the leading
order in the expansion of the nonlinear effective potential. This corrects our
earlier presentation in theoretical detail [7], though the magnitude of the
effects remains.
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2. Classical dynamics

The Lorentz equation of motion of particles, and Maxwell field equations,
are derived by minimizing the total action

Itot =

∫
d4xLtot, Ltot = −S + Veff + jµAµ +m1

2(u
µuµ − 1) . (2)

Here the Maxwell electromagnetic action −S = ( ~E2− ~B2)/2 is supplemented
by an effective potential, such as the Heisenberg–Euler Veff . The Maxwell
electromagnetic field equations follow from the Euler–Lagrange equations,
varying Eq. (2) with respect to Aµ.

Note that the Lorentz force emerges as consequence of variation of the
path a charged particle takes in the field-filled space. However, a more uni-
fied view of paths with fields arises when we consider the Lorentz force
as emerging from conservation of energy-momentum tensor. The Feynman
path integral formulation of QED offers yet greater unification of both dy-
namical elements (fields and paths) but this discussion goes well beyond the
scope of this report.

At first, we will not specify what Veff is, in order to provide a general
derivation and discussion of the consequences of the presence of any Veff . The
third term in Eq. (2) is the gauge invariant minimal coupling of the elec-
tromagnetic potential to the current, and the last term encodes the charged
particles’ (inertial) mass m and four-velocity uµ = γ(1, ~v ). Note that at this
point we do not differentiate between electromagnetic and mechanical mass
of a particle: there is inertia in the electromagnetic field that accompanies a
charged particle and a redefinition of mass is required. This will be achieved
below in Eq. (10), where we consider the force related to the nonlinearity of
the field.

The effective electromagnetic Lagrangian

L = −S + Veff (3)

can depend only on the scalar and pseudoscalar Lorentz invariants

S = 1
4F

µνFµν , P = 1
4 F̃

µνFµν , F̃µν ≡ 1
2ε
µνκλFκλ . (4)

Varying Eq. (2) with respect to Aµ then yields

∂µH
µν = jν , (5)

where Hµν defined as the displacement field tensor (see for example §6 of [8])

Hµν ≡ −∂Ltot

∂Fµν
= Fµν − ∂Veff

∂S
Fµν − ∂Veff

∂P
F̃µν . (6)

When Veff → 0, note that Hµν → Fµν , and Eq. (5) becomes the standard
Maxwell equation with source, ∂µFµν = jν .
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Current conservation means the field tensor is the 4-dimensional curl of
a vector potential Aµ and implies the homogeneous Maxwell equation

∂µF̃
µν = 0 . (7)

3. Charged particles in external fields

The dynamics of the charged particle plus field system can be derived
from the statement of joint electromagnetic and matter energy-momentum
conservation

∂µ (T
µν
e.m. + Tµνmatter) = 0 . (8)

The matter (last) part of the action Eq. (2) defines Tµνmatter with the property

∂µT
µν
matter = uµ∂µ(mu

ν) = dpµ/dτ . (9)

At this point, one might be tempted to identify −∂µTµνe.m. as the force
applied to the charged probe particle. However, this calculation yields the
standard Lorentz force jµFµν , even in the presence of nonlinear electro-
magnetism (see Appendix A). The correct approach to recognize the force
is inherent in the work of Born–Infeld [6], which considers the field energy-
momentum of individual particles to be identified with their electromagnetic
inertia, and hence included in the definition of inertial massm of the particle
sourcing the field. We extend this also to the case of vacuum fluctuation
nonlinearity.

By subtracting the energy-momentum of the separate probe particle and
external field components as they appear in isolation, only the nonlinear
interaction part of the electromagnetic field tensor is retained as sourcing
the particle–particle force, see Sec. 4 in Ref. [12]

Tµνint = Tµνe.m. − Tµνp − Tµνe . (10)

The electromagnetic force is exhibited as the divergence of interaction energy-
momentum Tµνint . This procedure will show the usual Lorentz force, as well
as further contributions due to the nonlinear interaction of the charged par-
ticle’s electromagnetic field with the external field, see Appendix B.

For a general nonlinear electromagnetic theory, the energy-momentum
tensor can be written [9] (see also Eq. (5) of [10])

Tµνe.m. = εTµνMax + gµνT /4 , TµνMax = gµνS − FµκF νκ . (11)
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The deviation from the Maxwell energy-momentum tensor TµνMax is described
by the two Lorentz-scalar functions

ε = −∂(−S + Veff)

∂S
= 1− ∂Veff

∂S
, (12)

T ≡ Tµµ = −4
(
Veff − S

∂Veff

∂S
− P ∂Veff

∂P

)
. (13)

The energy-momentum trace T must arise from Veff , because the energy-
momentum tensor of the Maxwell theory TµνMax is traceless, and it must start
at order e4, being related to the presence of (effective) field–field interac-
tions [11], such as displayed in Fig. 1.

For the case of an external magnetic field, the interaction energy-mo-
mentum Tµνint is calculated to leading order in Appendix B. This depends
on three powers of the external field and is order e4, which one can see in
Fig. 1 by counting the vertices, each of which comes with a power of e1.
In the case of QED nonlinearity, we are thus finding the effect represented
schematically in Fig. 2.

Fig. 2. Diagram expressing contribution to the effective force arising from light-
by-light scattering in QED. In the Born–Infeld theory, the loop is to be seen as
collapsed to a point.

Taking the divergence of Eq. (B.7), we obtain

dpµ

dτ
= −∂νTµνint = −jνF νµe + δfµ . (14)

For the second equality, the Lorentz force (density) is obtained from the
divergence of the Maxwell–Lorentz interaction Tµνep Eq. (B.8) and separated.

1 We count powers with the QED Heisenberg–Euler Veff in mind, and we will see that
the count is simply decreased by 2 for Born–Infeld theory [6] due to the absence of
α/π arising from the fermion loop.
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The remainder is the sought-for modification

δfµ ' ∂ε

∂S
F e
κλH

κλ
p ∂νT

µν
Max,e + TµνMax,e∂ν

(
∂ε

∂S
F e
κλH

κλ
p

)
−gµν∂ν

(
1

4

∂T
∂S

F e
κλH

κλ
p

)
, (15)

where the Maxwell energy-momentum tensor TµνMax,e and partial derivatives
∂ε/∂S, ∂T /∂S are evaluated at the external field.

4. Born–Infeld — Euler–Kockel comparison

The action of Born–Infeld electrodynamics is

LBI = (Ec)2 − (Ec)2
√

1 + 2S/E2
c − P2/E4

c

= −S +
1

2Ec
(
S2 + P2

)
− S

2E2
c

(
S2 + P2

)
+ . . . . (16)

Born selected originally the limiting electric field strength, Ec, such that the
inertia of the electromagnetic field of an electron was equal to the electron
mass. Appearance of other fundamental charged particles, the quantum-
field theory path to mass renormalization, and further mechanisms (such
as Higgs) to generate mechanical particle mass reveal that Ec ≡ M2/e is a
free parameter, constrained by experiment [13]. Limitations of the possible
range of values of the associated mass scale M will be discussed below in
comparison with QED.

The expression for the 4-force Eq. (15) is given in terms of ε and T ,
which we can obtain analytically from Eq. (16). The coefficient functions
appearing in Eq. (22) are

∂ε

∂S
= −

(
1 + 2S/E2

c − P2/E4
c

)−3/2 E−2
c = −ε3E−2

c

' − e2

M4
+

3e4S
M8

− e6

M12

3

2

(
5S2 + P2

)
+ . . . , (17)

1

4

∂T
∂S

= ε3
(
S/E2

c − P2/E4
c

)
' S
E2
c

− 3
S2

E4
c

− P
2

E4
c

. . . (18)

given also in weak-field expansion in the second line.
The Euler–Kockel effective potential, which is the first term of Euler–

Heisenberg power series in e2/m4
e is given by

Veff '
α

90π

e2

m4
e

(
4S2 + 7P2

)
+

2α

315π

e4

m8
e

S
(
8S2 + 13P2

)
+ . . . . (19)



2244 L. Labun, J. Rafelski

The common single power of α/π is due to the calculation being a one-loop
evaluation of electron fluctuations. For the coefficient functions, one finds

∂ε

∂S
' − 4

45

α

π

e2

m4
e

+
32

105

α

π

e4

m8
e

S + . . . , (20)

1

4

∂T
∂S
' 4

45

α

π

e2

m4
e

S − 4

315

α

π

e4

m8
e

(
24S2 + 13P2

)
+ . . . . (21)

Let us compare Born–Infeld results Eq. (17) and Eq. (18) to Euler–Kockel
result Eq. (20) and Eq. (21): we see that the QED effects are apparently
more strongly suppressed because they arise from quantum corrections, sig-
naled by the presence of α/π. With the smallness of α/π, the Born–Infeld
coefficients are ∼ 5000(m4

e/M
4) times the QED coefficients and clearly this

is excluded by precision QED tests. In fact, the latest published constraint
on Born–Infeld M & 60 MeV [14], meaning m4

e/M
4 . 6 10−5, which assures

that QED dominates Born–Infeld corrections.

5. Physical effects of the nonlinear force

The force derived from the nonlinear action of QED or/and Born–Infeld
type theory will originate in an increase in field energy when superposing
fields. Thus in general, the force should act in such a way as to screen
and reduce the total field strength. In the case of a magnetic-only external
field, this means the sign of the force depends on ~Be · ~Hp displaying the
relative orientation of the external field ~Be and probe magnetic field ~Hp.
For example, when the fields are aligned, ~Be · ~Hp > 0 and the force acts to
expel the probe from this domain. On the other hand, when the fields are
anti-aligned, the force acts to pull probe deeper into the strong field domain
to increase the screening.

The effect is manifested in the 4th (time-like) component of the force
determines the change in energy of the probe current and is related the
3-force given shortly by the covariant requirement uµdpµ/dτ = 0. In the
0-component of Eq. (15), we take the external electric field to be negligible,
so the first term in Eq. (15) does not appear. With F e

κλH
κλ
p = 2 ~Be · ~Hp, we

obtain

δf0 = Se ∂t

(
∂ε

∂S
2 ~Be · ~Hp

)
− ∂t

(
1

4

∂T
∂S

2 ~Be · ~Hp

)
= 4Se∂t

(
∂ε

∂S
~Be · ~Hp

)
+ 2

∂ε

∂S
~Be · ~Hp∂tSe . (22)

To obtain the second line, we use the identity

−1

4

∂T
∂S

= S ∂ε
∂S

+ P ∂ε
∂P

(23)
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which follows from the respective definitions Eqs. (12) and (13). Again,
since the external electric field is vanishing, the second term in this identity
proportional to P = ~E · ~B does not appear.

The 3-force corresponding to Eq. (22) is

δ~f = 2 ~Be · ~Hp
∂ε

∂S
~Be ×

(
~∇× ~Be

)
+

(∣∣∣ ~Be

∣∣∣2 ~∇− ~Be

(
~Be · ~∇

))(
2 ~Be · ~Hp

∂ε

∂S

)
+~∇

(
2 ~Be · ~Hp

1

4

∂T
∂S

)
= 2 ~Be · ~Hp

∂ε

∂S
~Be ×

(
~∇× ~Be

)
− 2 ~Be · ~Hp

∂ε

∂S
~∇Se

+


∣∣∣ ~Be

∣∣∣2
2

~∇− ~Be

(
~Be · ~∇

)(2 ~Be · ~Hp
∂ε

∂S

)
. (24)

The second equality is obtained again using Eq. (23). The first term in
Eq. (24) corresponds to the first term in Eq. (15) and as seen in consideration
of δf0 does no work on the probe current. It remains to be shown that the
remaining two terms in Eq. (24) are physically relevant.

We consider two competing forces in an astrophysical plasma near a
compact star: the gravity of the star and the internal energy (pressure) of
the plasma. For order of magnitude estimates of the force Eq. (24), we
can use the Newtonian approximation for the star’s gravity and replace the
gradients by 1/L, where L is the compact star length scale, i.e. its radius
∼ 10 km. Then, the ratio of radial forces is

∣∣∣r̂ · δ~f ∣∣∣∣∣∣r̂ · ~fgrav

∣∣∣ ' ∂ε

∂S

∣∣∣ ~Be

∣∣∣3 ∣∣∣ ~Hp

∣∣∣
L

L2

GMρ
=

4α

45π

∣∣∣ ~Be

∣∣∣2∣∣∣ ~Bc

∣∣∣2
∣∣∣ ~Be

∣∣∣ ∣∣∣ ~Hp

∣∣∣
ρ

L

GM
, (25)

where ρ is the mass density of the plasma ρ ∼ mp10
11 cm−3 for a neutral

astrophysical plasma. G is the Newton gravitational constant and M the
mass of the star, so that L/GM ∼ 5–10 for a compact star. We have
replaced ∂ε/∂S by its QED value so that | ~Bc| is the QED “critical” field
strength Eq. (1). | ~Hp| & a few mG according to estimates and models of
accreting plasmas [15]. Putting in the numbers shows that the nonlinear
electromagnetic force dominates gravity for | ~Be|/| ~Bc| & 10−7, confirming
the previous analysis [7]. We estimate the pressure P in the plasma from
the ideal gas law and compare it to the interaction energy density, which is
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essentially the force derived here without the gradients. Thus, the ratio is

∣∣T 00
int

∣∣
P

=
∂ε

∂S

∣∣∣ ~Be

∣∣∣3 ∣∣∣ ~Hp

∣∣∣
nT

, (26)

where n is the number density (∼ 1011 cm−3) and T is the temperature,
suggested by observations to be of the order of 10–100 eV [16]. Since this
differs from the previous estimate Eq. (25) only by the factors mp/T ∼ 107

and GM/L, the immediate conclusion is the nonlinearity of the electromag-
netic interaction may be more important than the plasma dynamics near to
the surface of the star. Note, of course, that a dipole field falls off rapidly
as |Be| ∼ 1/r3 and these nonlinear field effects will be subdominant farther
from the surface, say at 200 times the stellar radius where | ~Be|3 has fallen
to 10−7 its value at the surface.

6. Conclusions

After reviewing the framework of nonlinear electromagnetism, we showed
here how to calculate the force arising from the nonlinear field–field inter-
action, shown schematically in Fig. 2. The procedure involves separately
identifying the polarization of energy-momentum tensor related to presence
of two components, here external field and particle field, so that we can
account for the electromagnetic mass of particles.

With only magnetic fields and Lorentz–Maxwell electrodynamics, the en-
ergy of charged particles near stellar objects is determined solely by gravity.
We have shown that once Euler and Kockel [1] (effective) QED nonlinear
electromagnetism is accounted for, magnetic fields can do work on charged
particles and this effect beats out gravity for fields that are quite strong
yet still very far from critical. This insight may have considerable physics
impact, considering that there is no a priori limit to the magnetic field that
a ferromagnetic star can source. It is for this reason that exploration of the
physical consequences arising in ultra strong magnetic fields remains a topic
of current intense discussion relevant to extreme astrophysical events [17]
and in various areas of elementary matter physics [18–23].

To close, we note that the current report must be seen as a first step on
the way to understand the classical charged particle dynamics in presence
of ultra strong external magnetic fields and gravity. Beyond the effects
we considered here, we further expect radiation reaction to be relevant in
proximity of the critical field strength where acceleration is so strong that
the radiation field impacts the source dynamics.



Nonlinear Electromagnetic Forces in Astrophysics 2247

Appendix A

Finding the Lorentz force in NLEM

In this appendix, we calculate the divergence of the electromagnetic energy-
momentum tensor Eq. (11)

∂µT
µν
e.m. = (∂µε)T

µν
Max + ε∂µT

µν
Max + ∂µg

µνT /4 . (A.1)

First, we write out the first two terms

(∂µε) =

(
−∂µ

∂L
∂S

)
(gµνS − FµκF νκ) , (A.2)

∂µT
µν
Max = ∂µ(g

µνS − FµκF νκ) (A.3)

with L = −S + Veff a shorthand for the total electromagnetic Lagrangian.
Then for the divergence of the trace T , we use the form given in Eq. (13)

∂µT /4 = +

(
∂µ
∂L
∂S

)
S +

(
∂µ
∂L
∂P

)
P (A.4)

simplified by virtue of dL = (∂L/∂S)dS + (∂L/∂P)dP. Note that it does
not matter whether one writes L or Veff in the variation because any terms
linear in S manifestly cancel between the first and second terms of Eq. (13).
The first term in Eq. (A.4) then cancels with the first term in Eq. (A.2).
Next, we observe that

−gµνP = FµκF̃ ν
κ (A.5)

and find for Eq. (A.1)

∂µT
µν
e.m. =

(
∂µ
∂L
∂S

)
FµκF νκ −

∂L
∂S

∂µ(g
µνS − FµκF νκ) + gµν

(
∂µ
∂L
∂P

)
P

=

((
∂µ
∂L
∂S

)
Fµκ +

∂L
∂S

∂µF
µκ +

(
∂µ
∂L
∂P

)
F̃µκ

)
F νκ

+
∂L
∂S

(Fµκ∂µF
ν
κ − gµν∂µS) . (A.6)

Now using the definition of the displacement tensor Eq. (6), we recognize
the first three terms in brackets as an expanded expression of the divergence
of −Hµν . Note that ∂µF̃µν vanishes according to the homogeneous Maxwell
equation (7). From Eq. (7) one can also show that

∂µS = 1
2F

κλ∂µFκλ = −1
2F

κλ(∂κFλµ + ∂λFµκ) = −F κλ∂κFλµ (A.7)

which means the final two terms in Eq. (A.6) cancel. Thus, we obtain

∂µT
µν
e.m. = jµF

µν . (A.8)

A slightly different proof, starting from a different but equivalent form of
Tµνe.m. can be found in §6 of [8].
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Appendix B

Lorentz force correction derivation

Considering the external field to provide the dominant part of the elec-
tromagnetic energy-momentum, we expand in the displacement tensor of the
probe particle

Tµνint = Tµνe.m. − Tµνe − Tµνp = Tµν(1) + Tµν(2) , (B.1)

Tµν(1) =
∂Tµνe.m.

∂Hαβ

∣∣∣∣
e

Hαβ
p , (B.2a)

Tµν(2) =
∂2Tµνe.m.

∂Hαβ∂Hκλ

∣∣∣∣
e

Hκλ
p Hαβ

p

2
− Tµνp (B.2b)

with the subscript “e” reminding that derivatives are evaluated for the ex-
ternal field. The zeroth order term is just Tµνe , which is subtracted, and the
energy-momentum of the probe particle is found at second order in Tµν(2) and
subtracted. The expansion is in terms of the probe particle displacement
tensor, because it is defined by the Maxwell equation with source Eq. (5).

The derivatives with respect to Hµν are related to derivatives with re-
spect to Fµν by

∂Fαβ

∂Hµν
= 1

2

(
δαµδ

β
ν − δαν δ

β
µ

)
+ ∂2Veff

∂Fµν∂Fαβ
+ . . . (B.3)

obtained from inverting Eq. (6). The 1/2 is a symmetry factor arising from
the equivalence under permutations of antisymmetric indices. The two terms
shown correspond to expanding up to order e4 as needed in the present
approximation. Since Tµν is quadratic in Fµν , expanding Eq. (B.3) in powers
of e is the primary expansion involved in obtaining the result here.

Using Eq. (11), the calculation of the tensor derivatives in Eq. (B.2) is
split into pieces:

∂TµνMax

∂Hκλ
=

∂TµνMax

∂F ρσ
∂F ρσ

∂Hκλ
=
∂TµνMax

∂F ρσ

(
1
2(δ

ρ
κδσλ− δ

ρ
λδ
ρ
κ) +

∂2Veff
∂F ρσ∂Fκλ

)
, (B.4)

∂ε

∂Hκλ
=

∂ε

∂F ρσ
∂F ρσ

∂Hκλ
,

∂T
∂Hκλ

=
∂T
∂F ρσ

∂F ρσ

∂Hκλ
. (B.5)

Because Veff and so ε, T depend only on S,P, derivatives with respect to
Fµν can be split into partial derivatives

∂ ·
∂Fµν

=
∂ ·
∂S

Fµν +
∂ ·
∂P

F̃µν . (B.6)
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We see then that ∂ε/∂S, ∂T /∂S, ∂ε/∂P, ∂T /∂P are all of the order of e4,
and the next-to-leading-order term in ∂F/∂H Eq. (B.3) can be dropped.

Looking to the study of astrophysical magnetic fields, we specialize to
the case ~E · ~B = P = 0 for the external field. Because Veff must be parity
invariant, it contains only even powers of P2 and, therefore, the partial
derivatives ∂ε/∂P and ∂T /∂P vanish being proportional to P. In this case
then

Tµνint = Tµνep − T
µν
Max,e

∂ε

∂S
F e
αβH

αβ
p + gµν

1

4

∂T
∂S

F e
αβH

αβ
p . (B.7)

Here TµνMax,e is the Maxwell energy-momentum tensor, compare Eq. (11), for
the external field and the (linear) Maxwell–Lorentz interaction is separated

Tµνep = −
(
Fµκe Hνλ

p + F νλe Hµκ
p

)
gκλ + gµν 1

2F
e
αβH

αβ
p . (B.8)

By going to the rest frame of the probe particle, it is easy to show that this
term produces the Lorentz force

∂µT
µν
ep = jµF

µν
e . (B.9)

Taking the negative divergence of Eq. (B.7) yields Eq. (15).
Now, studying the second order term Tµν(2) it turns out there are terms

of the order of e4. Most can be seen to have form of the electromagnetic
energy-momentum of the probe Tµνp (in its nonlinear form Eq. (11)). One
term has the form of a scalar modification to the Lorentz force, which is seen
by differentiating ε and TµνMax each once. However, we will consider the probe
field to be much weaker than the external field, in which case these terms are
all smaller than those calculated by a factor | ~Hp|/| ~Be| � 1. Incorporating
these terms would provide the complete result for the 4-force at order e4.
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