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1. Motivation: The big-bang and laboratory experiments

1.1. A short history of quark and hadron Universe

At early times (5 < t < 20µs) in the Standard Model of the Big
Bang, matter, as we know it, was dissolved in a state known as the quark-
gluon plasma (QGP), in which leptons, gauge mesons, and quarks u, d, s
were deconfined and propagated freely — all hadrons dissolved into their
constituents. At that time, strongly interacting nearly massless particles
u, d, s,G controlled the fate of the Universe: allowing for their interaction
these degrees of freedom comprised nearly 70% of all energy and pressure.
The remaining 30% was shared by νe,µ,τ , e, µ, γ [1].

The epoch we address begins just before the quark-gluon Universe turns
into the hadron Universe and ends when we reach the era of the electron,
positron, neutrino, and photon dominated Universe. Our interest is to de-
scribe in detail how hadronization in the Universe happened and to explore
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the Universe’s properties while it expands towards neutrino decoupling. In
outline, this epoch proceeds as follows: Around the hadronization (Hage-
dorn) temperature Th ∼ 160MeV, a phase transformation to the confining
state occurs, and matter, as we know it today, forms. In the first moments
this hot hadronic ‘gas’ phase (HG) is nearly symmetric in its matter and
antimatter components, and it still comprises about 70% of all energy, so
that for a short instant the Universe is hadron matter dominated. It takes
about 0.1µs for hadrons and antihadrons to annihilate so thoroughly that,
in essence, only the net baryon number we see around us today remains:
baryons in the present day Universe retain a residual 4.6% energy contri-
bution, but only 10−10 fraction of particle number. Therefore, when the
Universe was at a temperature prior to nucleo-synthesis but after neutrino
freeze-out, let us say near T = 2MeV, this residual baryon matter fraction
was not larger than 10−7 and the Universe was dominated by photon and
neutrino ‘radiation’.

There is consensus that at approximately 1ms (T ' 35MeV), the matter–
antimatter annihilation was nearly complete. What we do not see in the
literature is that the truly interesting feature of the early Universe in the
following epoch is an enormous remaining pion component, with an abun-
dance 107 exceeding that of nucleons, and which becomes subdominant to
nucleons only at T = 5MeV. Similarly, strangeness is present and becomes
subdominant in abundance to baryons only at T = 20MeV. Strangeness,
and, in particular, CP asymmetric neutral kaons, are recreated at a time
scale which is hadronic while the Universe evolves. There are many reac-
tions potentially enhancing the outcome of a small CP breaking in the kaon
system, prompting the question, could we have too quickly discounted the
possibility of baryon asymmetry originating in the hadron Universe? To an-
swer this question, we must first find an accurate and precise description of
the Universe in this time period.

This report presents a brief synthesis of our effort to improve the un-
derstanding of the early quark and hadron Universe which we pursued over
the past decade. Our efforts were initiated in the study of time scales of
the transformation from QGP to HG phase [2]. We soon added to this
a more detailed description of the Universe properties [3], assuming that
chemical equilibrium prevails. Later, using kinetic theory, we showed that
the expansion of the Universe is indeed slow enough to assure that chemical
equilibrium prevails [4, 5].

1.2. Laboratory experiments addressing the early Universe

Relativistic heavy ion collision experiments at RHIC and the LHC pro-
vide an important opportunity to simulate some aspects of these early Uni-
verse conditions. In particular, in most central heavy ion collisions, a small
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nuclear-sized volume attains energy density and temperature comparable to
those that prevailed in the QGP in the early Universe, this is the micro-bang.
The particles observed later in the detectors are products of the following
rapid, explosive hadronization, an energy-to-matter conversion analogous to
the one occurring very slowly in the early Universe. Moreover, the QGP
formed this way in the laboratory has several differences: the characteristic
timescale of the heavy ion collision is much shorter τ ∼ 10−23 s which means
that only strongly interacting particles equilibrate, and the baryon density is
much higher, though baryon density attained at the LHC is now so low that
we have yet to measure it. Taking into account these differences, we show,
in this report, how the tools developed to study ‘micro-bangs’ are applied
to the early Universe hadronization and subsequent annihilation dynamics.

An important question we can address quantitatively is, what conditions
in the early Universe QGP phase yield the observed matter asymmetry? The
present-day small value of the baryon-to-photon ratio (which quantifies the
amount of residual matter — see Section 3.1) is seen by many as the result of
near-complete annihilation following hadronization. This is supported by the
homogeneity of the Universe which is seen as being consistent with absence
of antimatter on large scales, and some workers think that separation into
matter–antimatter domains on a scale smaller than the observable Universe
is unlikely [6, 7].

However, more recent views on the subject sound different [8], we cite:
“Though observation strongly restricts possible existence of antimatter do-
mains and objects, . . . , it is still not excluded that antimatter may be abun-
dant in the Universe and even in the Galaxy, not far from us. That is why
there is an active search for cosmic antimatter . . . ”. A prominent exam-
ple of active antimatter search is the AMS experiment [9] running at the
International Space Station, searching for anti-α. Discovery of anti-α would
provide the first evidence that matter–antimatter separation has occurred.
Such separation could arise in the early Universe in slow hadronization of
QGP. We study this process and quantify the electrical charge distillation
in Section 3.3.

We proceed starting in Section 2 by first recalling the statistical physics
of relativistic quantum particles, and how it is used to describe the properties
and transition from the QGP to HG in the early Universe. Special attention
is given to the understanding of chemical potentials which play a pivotal
role in the understanding of particle abundances: in a Universe in thermal
and chemical equilibrium the matter–antimatter asymmetry is expressed
by non-zero values of the chemical potentials. We study their magnitude
quantitatively in Section 3 assuming that the Universe is on average charge
neutral, the lepton number is equal to the baryon number, and entropy per
baryon is derived from baryon-to-photon ratio.
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Our study of particle abundances relies on hadron reactions occurring
even in relatively low T environment at sufficient speed to assure the pres-
ence of all hadrons and we establish this considering key relaxation times
in Section 4. The key reactions are introduced, which connect hadrons with
highly abundant photons and leptons, and equilibrate with the surviving
pions. The final Section 5 concludes.

2. Statistical hadronization and the early Universe

2.1. Statistical hadronization, qualitatively

A key feature of hadronic and QCD interactions is that the interac-
tions are strong, so that at moderate temperatures or densities collisions are
frequent. In fact, they are frequent enough that statistical equilibrium is
(partially) attained even within the duration of relativistic heavy ion colli-
sions ∆t ∼ R/c = 5–8 fm/c. The temperature and energy density achieved
in the collision are sufficiently high that quarks and gluons are expected to
be ‘deconfined’ and the relevant degrees of freedom across the volume in-
volved in the collision; in other words, a thermalized drop of QGP is created
in the lab. This dense and highly compressed state of matter expands in
a ‘micro-bang’ and as temperature drops, hadronizes. The produced yield
of hadrons relates is described within a statistical hadronization approach
which relies on use of phase space size to predict particle abundances.

In consequence, relativistic heavy ion collisions evolve via several steps,
summarized here for comparison to the evolution of the early Universe
plasma [2].

1. Initially, a small thermalized quark-gluon ‘fireball’ is formed from the
collision. Thermalization is very rapid in the QGP; the timescale for
a species i is approximately its mean scattering time with all other
species j

τtherm,i ∼
1∑

j nj〈σij vij〉
, (1)

where σij is the cross-section for energy-exchanging interactions,
vij → c is the relative velocity of massless components and nj is num-
ber density. For typical QGP parameters,

τtherm,i = 0.2−2 fm/c , nj ∼ 2−10 fm−3 , σij ∼ 2−5 mb . (2)

This estimate agrees with the thermalization timescale τtherm . 10−23 s
determined from particle spectra and yields. The microscopic mech-
anisms leading to such rapid thermalization are still the subject of
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intense study. Even so, we expect this result to be valid qualitatively
in the early Universe, and, comparing to the early Universe timescales
below, implies the primordial QGP is thermalized.

2. Chemical equilibration of quarks u, d and later s takes somewhat
longer, ∼ 1.5 fm/c for u, d and ' 5 fm/c for s. In general, chemi-
cal equilibration timescales are longer than thermalization timescales,
due to smaller cross sections for particle (quark pair) production as
compared to energy-exchange. However, detailed studies of the QGP
properties suggest that time is sufficient for chemical equilibration of
u, d, s at the LHC. However, the heavy quarks c, b do not have time
to come to chemical equilibrium due to their higher masses imply-
ing longer chemical relaxation times. Remarkably, their abundance at
the LHC heavy ion collisions is expected to be well above chemical
equilibrium due to production in initial high energy parton collisions.
The same kinetic theory approach that produced relaxation times for
strangeness, also allows us to compute the relaxation time of c, b quarks
and we find that heavy quarks are in chemical equilibrium at the time
scale (microseconds) governing the end phase of QGP in the Universe
near to T ' 160MeV.

3. Hadronization occurs as the fireball expands and its temperature drops.
In the QGP hadronization that follows on its formation at the LHC, the
matter expands into empty space explosively and thus the hadroniza-
tion process is too rapid to allow re-equilibration of the final state
hadrons. When chemical equilibrium of a particular flavor can no
longer be maintained in the expanding fireball, the flavor ‘freezes out’
— its particle number in the comoving volume remains approximately
constant while its density is diluted by the expanding the volume.
Here, the early Universe differs; hadronization encompasses all the
volume and is expected to be much slower with chemical equilibrium
maintained throughout.

The dynamics of chemical equilibration is especially important in rela-
tivistic plasma, in which energy can be converted to and from particles and
antiparticles. Note that there are two distinct senses of chemical equilibrium:

(i) Absolute chemical equilibrium is the level to which energy is shared into
accessible degrees of freedom. A black body photon gas achieves abso-
lute chemical equilibrium almost instantaneously because the photon
is massless and photons are equilibrated easily at the hot walls of the
oven. However, a massive particle whose particle number is initially
zero takes time to achieve chemical equilibrium due to the necessity of
finding particles able to react and create the massive particle.
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(ii) Relative chemical equilibrium reflects the distribution of an already
existent element or component among different compounds. Relative
chemical equilibrium is thus associated with the ‘usual’ sense of chem-
ical potential ensuring the conservation of conserved ‘charges’, such as
baryon number.

In order to be able to describe in time the approach to absolute chemical
equilibrium, it is necessary to introduce, aside of chemical potentials such as
µb for baryons, additional abundance fugacity γf (t) controlling the absolute
yields of pairs of particle f so that the total fugacity, e.g., for nucleons and
antinucleons is

ΥN = γN (t)eµb/T , ΥN = γN (t)eµb̄/T , µb̄ = −µb . (3)

Note that a quark is always produced paired with an antiquark so that the
net baryon number is not changed. The change in chemical potential due to
an antiparticle is for this reason opposite in sign to that due to a particle as
indicated above provided, of course, the overall yield is scaled appropriately
by the fugacity γ(t) taking into account the approach to absolute chemical
equilibrium.

The consequences for the energy budget are seen in the first law of ther-
modynamics

dE = −P dV + T dS + T lnΥf dN + T lnΥN dN

= −P dV + T dS + µb
(
dN − dN

)
+ T ln γN

(
dN + dN

)
. (4)

While in pair production the coefficient of µb vanishes, the energy required
to change the number of nucleon–antinucleon pairs is related to γN . Near
to absolute chemical equilibrium γN → 1, the last term vanishes; small
fluctuations in the number of pairs do not influence the energy balance.

Statistical hadronization incorporates these dynamics of the quark and
hadron ‘chemistry’ to provide quantitative predictions of the statistical prop-
erties of the final state HG. It successfully describes particle production in
heavy ion collisions [2], and, as a general framework derived from the under-
lying theory of QCD and phenomenology of the HG phase, we can apply it
to study the early Universe hadronization and the following HG dynamics.

2.2. Statistical models of QGP and HG

Thermodynamic properties of the QGP and HG phases are computed
from the partition functions lnZQGP and lnZHG; for details see [2], we
give here a short introduction. An important difference to usual classroom
circumstance is that particle numbers vary. This possibility of evolving
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changes in (quasi-)particle number is accounted for in the grand canonical
partition function Z

Z (β, V, Υf ) = V
∑
f

gf

∫
d3p

(2π)3

(
ln
(

1± Υfe−βεf
)

+ ln
(

1± Υf̄e−βεf
))

,

(5)
which is a function of the volume V , inverse temperature β and the fugacity
Υf,f̄ which accounts in its properties Eq. (3) for the possibility that absolute
chemical equilibrium is not reached. The total partition function for each
component is sum over the (quasi-)particles f present. Here, ε2f = ~p2 +m2

f
is the energy.

For the QGP in absolute chemical equilibrium the momentum integral
can be carried out when the mass is ‘small’

T

V
lnZQGP = −B +

8

45π2
c1(πT )4

+
∑

f=u,d,s

1

15π2

(
7

4
c2(πT )4 +

15

2
c3

(
µ2
f (πT )2 +

1

2
µ4
f

))
, (6)

c1 = 1− 15αs

4π
+ . . . , c2 = 1− 50αs

21π
+ . . . , c3 = 1− 2αs

π
+ . . .

which describes quantum gases of quarks and gluons, including also the first
order perturbative QCD corrections, see the αs terms in the ci coefficients,
and a confining vacuum energy–pressure component B ' 0.19GeV fm−3.
The temperature provides the scale for the evaluation of αs(µ) and is esti-
mated as µ = 2πT or with finite chemical potential µ = 2

√
π2T 2 + µ2

f .
The HG partition function, used in our computation, included a sum

of partial gas contributions from all hadrons having mass less than 2GeV,
and we apply finite volume corrections [10]. Together with the QGP-liquid
model [11], this framework is a phenomenological description of QGP equa-
tions of state which agrees with properties of quantum chromodynamics
(QCD) at finite temperature obtained in lattice QCD in the limit of vanish-
ing particle density (µb → 0) [12–14].

Recall that the statistical partition functions imply the thermodynamical
relations. Therefore, the entropy and number density in each phase can be
obtained by introducing the free energy

1

V
F = −T

V
lnZ = −P , (7)
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where P is the pressure. We will require below the entropy density s and
the baryon number density nB, being 1/3 the quark density

s = − 1

V

dF
dT

, nB = −1

3

1

V

dF
dµq

, (8)

see Chapters 4, 10 and 16 of [2] for more details.

2.3. Early Universe conditions

First, let us check that local thermal equilibrium prevails throughout
the period of interest using Eq. (1). In the HG phase, where n ∼ T−3

and particle velocity is non-relativistic v ∼ T 1/2, τtherm ∼ T−7/2. Scaling
τtherm ∼ 10−23 s from hadronization means τtherm . 10−14 s at T = 1MeV.
Comparing to the age of the Universe t ∼ 1 s shows that the assumption of
local thermal equilibrium has a large margin of error for the whole process
of hadronization and equilibration discussed below.

In [2], it is estimated that the phase transformation from QGP to HG
takes τh ∼ 10µs in the early Universe, many orders of magnitude longer than
chemical equilibrium timescales. Therefore, chemical equilibrium of hadrons
made of u, d, s quarks is firmly established at the end of the phase trans-
formation. Baryon annihilation reactions cease near T = 40MeV. Hadron
abundance evolution in the early Universe and possible deviations from the
local equilibrium will be studied down to T ∼ 2MeV in Sec. 4. Our de-
tailed study here demonstrates that chemical equilibrium prevails down to
neutrino decoupling.

An essential characteristic of the expansion and cooling of the Universe is
that the evolution is isentropic. Combining the first law of thermodynamics
Eq. (4) with the Friedmann equation, there is a direct relation between the
total energy density of the system and the scale factor of the Universe

dε

dt
= −3

1

R

dR

dt
(ε+ P ) , (9)

(t is the comoving coordinate time in Friedmann–Lemaître–Robertson
–Walker coordinates). For this reason, the scale factor of the Universe will
remain implicit, and the system (= the Universe) will be tracked in terms
of its thermodynamical properties T, µf . T is effectively the clock tracking
the progression of the system from QGP through hadronization to HG and
subsequent equilibration, and, in the next section, a system of constraints
relating the µf will be developed and solved at each T . The explicit value of
the expansion rate dR/dt is needed only later in Sec. 4, when reaction rates
must be compared to dR/dt to determine freeze-out times/temperatures.
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The framework so far is fixed by well-established conditions of the early
Universe expansion and the statistical models of the QGP and HG phases,
which are motivated by experiment. However, we should mention several
assumptions implicit in this setup and relevant to cosmology: (i) dark energy
is irrelevant at this stage of the Universe’s evolution; (ii) dark matter does
not affect the populations of visible (Standard Model) particles, neither by
its decay/freeze-out nor by secondary effects; and (iii) there are only left-
handed neutrinos and corresponding antineutrinos.

3. From QGP to cold hadron gas: 200 & T & 2MeV

In a system of non-interacting particles, the chemical potential µf of
each species f is independent of the chemical potentials of other species,
resulting in a large number of free parameters. In the early Universe QGP
and HG, the number of independent parameters is reduced by the many
chemical particle interactions occurring between the species.

First, in thermal equilibrium, photons assume the Planck distribution,
implying a zero photon chemical potential: µγ = 0. Second, for any reaction
νfAf = 0, where νf are the reaction equation coefficients of the chemical
species Af , chemical equilibrium occurs when νfµf = 0, which follows from
minimizing the Gibbs free energy.

Next, chemical and thermal equilibrium means that particle–antiparticle
pairs can be created from and annihilate into the thermal bath of photons,
i.e., the reaction f + f̄ 
 2γ proceeds freely in both directions. There-
fore, µf = −µf̄ whenever chemical and thermal equilibrium is attained. In
particular, when the system is chemically equilibrated with respect to weak
interactions, the following relationships hold, see, e.g., [15]

µe − µνe = µe − µνµ = µτ − µντ ≡ ∆µl , (10)

µu = µd −∆µl , µs = µd . (11)
The baryon chemical potential is

µb = 3
2(µd + µu) = 3µd − 3

2∆µl . (12)

In relative chemical equilibrium, the chemical potential of hadrons is equal to
the sum of the chemical potentials of their constituent quarks. For example,
Σ0(uds) has chemical potential µΣ0 = µu + µd + µs = 3µd −∆µl.

Finally, neutrino oscillations, especially with the large mixing angle now
strongly supported by experiment [16], imply that neutrino number is freely
exchanged between flavors νe 
 νµ 
 ντ and hence

µνe = µνµ = µντ ≡ µν . (13)

Together, these conditions reduce the number of independent chemical
potentials to three. We choose to track µd, µe, and µν .
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3.1. Three constraints

When the Universe is in a single phase (QGP or HG phase), the three
free chemical potentials are determined by the following three criteria

(i) Charge neutrality (Q = 0) is required to eliminate Coulomb energy.
This is written as

nQ ≡
∑
f

Qf nf (µf , T ) = 0 , (14)

where Qi is the charge of species f , and the sum is over all particle
species present in the considered particle phase.

(ii) Net lepton number equals net baryon number (L = B) is phenomeno-
logically motivated in the context of baryogenesis. This leads to the
constraint

nL − nB ≡
∑
f

(Lf −Bf )nf (µf , T ) = 0 , (15)

where Lf and Bf are the lepton and baryon numbers of species f . This
condition is, of course, not proved by experiment and future studies
must consider drastically different variants.

(iii) Constant entropy-per-baryon (S/B) is equivalent to the statement that
the Universe evolves adiabatically, and hence can be written

s

nB
≡

∑
f sf (µf , T )∑

f Bf nf (µf , T )
= const , (16)

where sf is the entropy density of species f .

The constant s/nB is estimated from the value of the ratio

η ≡ nγ
nB

, η10 ≡ 1010η . (17)

At 100 ≥ T ≥ 2MeV, there are 43/4 degrees of freedom [1] due to
photons, e, µ, τ -neutrinos, and electron–positron pairs, which provide the
dominant fraction of the entropy and pressure, controlling the dynamics of
the Universe and thus the speed of expansion at the time Big Bang Nucle-
osynthesis (BBN) occurs. We are interested in the Universe entropy content
per baryon

s

nB
=

1

nB

∑
i=γ,ν,e

si =

(
sγ
nγ

+
nν
nγ

sν
nν

+
ne
nγ

se
ne

)
nγ
nB

. (18)
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In the Standard Model, with only left-handed neutrinos, the relative num-
ber of degrees of freedom of each species is known and relates the number
densities by (4/3)ne = 2nγ and (4/3)nν = 2nγ . The factor 4/3 is the Bose
to Fermi ratio of particle densities arising from the quantum statistics of the
massless quanta. The entropy per particle for a boson is (s/n)boson = 3.601
and for a fermion is (s/n)fermion = 4.202. Inserting this into Eq. (18), we
find the known outcome.

However, recent BBN analysis combined with the cosmic microwave
background (CMB) fluctuations have suggested that the number of rela-
tivistic degrees of freedom present at T > 1MeV is somewhat higher than
the Standard Model expectation [17]. This possibility is discussed in terms
of extra neutrino degrees of freedom 3ν → 3ν + ∆Nν , the ∆Nν–η fits from
BBN, see circles (red) showing the best fits in Fig. 1, taken from figure 4
of [17]. The BBN best fit values [17] arise for ∆Nν = 0.66+0.47

−0.45 and for
η = nB/nγ = 6.27± 0.34 10−10.

Fig. 1. (Color online) The fit of η and ∆Nν from BBN (deuterium and 4He abun-
dances) obtained in figure 4 of [17]. The major axes of the 68% (solid) and 95%
(dashed) confidence ellipses align with the overlaid contours of constant s/nB . Each
contour means a change of s/nB by 0.5 1010.

We generalize Eq. (18) to variable neutrino abundance and obtain

s

nB
=

(
3.601 + (3 + ∆Nν)

3

4
4.202 + 2

3

4
4.202

)
nγ
nB

= (19.35 + 3.15∆Nν)
nγ
nB

. (19)
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Note that this relation applies at/after BBN. We assume that there is no
change in entropy content, thus s/nB we find at time of BBN applies in the
Universe prior to BBN. Baryon number is conserved.

We are interested in understanding what this means for the variable s/nB
which enters our evaluation of the Universe properties. In Fig. 1, we overlay
contours of constant s/nB in figure 4 of [17] with lines of constant s/nB. We
recognize that the relevant thermodynamic variable in these considerations
is the entropy per baryon, and this analysis leads to s/nB = 3.42+0.42

−0.39 1010.
In the following figures, however, the numerical results shown are based on
an older value obtained for s/nB = 4.5+1.4

−1.1 1010 based on similar analysis
of 10 years ago [18]. Since this value of s/nB is consistent within its 1σ
expectation with the updated 2012 value, we can expect the quantitative
outcome changes only slightly.

3.2. Chemical potentials and particle abundances in early Universe

For each temperature T , the conditions Eqs. (14)–(16) form a system of
three coupled, nonlinear equations of the three chosen unknowns (µd, µe,
and µν). These equations were solved numerically [3] using the Levenberg–
Marquardt method [19] and the results shown in Fig. 2. The bottom axis
shows the age of the Universe and the top axis the corresponding tempera-
ture. At low temperature, µd approaches (weighted) one-third the nucleon
mass (2mn −mp)/3 = 313.6MeV reflecting the dominance of protons and
neutrons in their classical Boltzmann limit T � mf .

From Fig. 2, the value of the baryon chemical potential just before the
phase transition is

µB = 0.33+0.11
−0.08 eV . (20)

More generally, we can say with near certainty that the values of the chem-
ical potentials required to generate the observed matter–antimatter asym-
metry are

µf . 0.5 eV , f = d, e, ν . (21)

This statement admits a generous margin of error for uncertainty in the
transition temperature Th ∼ 160MeV as well as the displayed error bars,
which show the effect of the uncertainty in s/nB obtained from η. These
error bars could be improved using the updated measurements of η [20].

From the solution for the chemical potentials, the evolution of particle
numbers follows. These are shown in Fig. 3. Strangeness, present in kaons,
persists in significant number down to T = 10MeV. Pions are even more
abundant, their density falling below density of nucleons only at T ' 6MeV.
Among the leptons, note that muons also persist to relatively low tempera-
tures in the HG phase. Pion and muon evolution and chemical equilibration
are discussed in more detail in Section 4.
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(total) indicates the sum of K+,K−,K0 and K

0
. Note pion–nucleon ‘equality’ at

T ' 6MeV. Right: The evolution of lepton densities after hadronization, and (tot.)
indicates the sum over neutrino flavors.

Fig. 4 summarizes by showing the fraction of the luminous energy (den-
sity) in baryons as a function of temperature. At the QGP–HG phase trans-
formation, the fraction of energy in baryons is ∼ 10%, a local maximum
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before annihilation rapidly reduces it. The baryons contribute significantly
to the energy budget again only once the Universe has cooled and entered
the matter (rest mass) dominated era.

Fig. 4. (Color online) The fraction of the luminous energy in light particles (photons
and leptons), mesons and baryons. Note that temperature decreases from right
to left.

3.3. Mixed phase in QGP–HG transformation

It is by now well established that at low baryon density the QGP to
HG phase change is a smooth transformation. The macroscopic conditions
(i)–(iii). above are satisfied on average and for the system as a whole, but
can be violated locally.

To solve the conditions Eqs. (14)–(16) in the simultaneous presence of
both phases, the total partition function is parametrized as

lnZtot = fHG lnZHG + (1− fHG) lnZQGP , (22)

in which fHG represents the fraction of total phase space occupied by the
HG phase. For example, Eq. (14) is now generalized as

Q = 0 = nQGP
Q VQGP + nHG

Q VHG = Vtot

[
(1−fHG)nQGP

Q + fHG n
HG
Q

]
, (23)

and analogous expressions hold for Eqs. 15 and 16. The total volume Vtot is
not relevant to the solution.

Solving Eq. (23) and its companions determines baryon number fraction
in each phase as a function of fHG, shown in Fig. 5. The QGP preserves a
larger fraction of the baryon number density throughout the transformation,
and the ratio is nearly constant nQGP

B /nHG
B ≈ 3.
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With the additional assumptions that fHG evolves linearly in time and
that the total duration of the phase transformation is 10µs, we obtain the
solution for the Universe during the transformation, indicated by the vertical
lines in Fig. 2. In reality, both assumptions are sensitive to the equations of
state of each phase and the dynamics of the phase transformation. A more
complete solution would be obtained from transport theory applied to the
coexisting phases.

Fig. 5. (Color online) The fraction of baryons in each phase as a function of the
parameter fHG, which is the fraction of total phase space occupied by the HG
phase.

From this solution, the net charge per baryon nQ/nB is calculated in
each phase as a function fHG, which is independent of the additional as-
sumptions. As shown in figure 6, the HG takes on a positive charge as soon
as the transformation begins due to protons and neutrons being the low-
est excitations in the HG. The QGP, therefore, takes on a negative charge
density, which is initially tiny since it occupies the larger volume, yet it
can cause large variation in local electric potentials. This charge distilla-
tion arising as a dynamical asymmetry has been discussed in the context of
strangeness separation and strangelet formation [21, 22].

The sign of the charge distillation remains the same throughout the trans-
formation, and therefore the total charge of the remaining QGP is increas-
ingly negative as the transformation proceeds. One expects the resulting
electromagnetic potential to alter the chemical potentials for charged species
and thereby to have a feedback effect. Flows of charged particles will alter
the uniformly small net baryon density and thus any local initial baryon–
antibaryon asymmetry. Resolving these dynamics clearly requires transport
theory, as an example of the remark above.
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Fig. 6. (Color online) Net charge (including leptons) per net baryon number in the
HG and QGP as function of the HG fraction fHG. Horizontal line at zero guides
the eye.

4. Pion and lepton equilibration: 50 & T & 2 MeV

We now move to a closer study of the period of annihilation, decay and
chemical equilibration immediately following the QGP–HG phase transfor-
mation. As shown in Fig. 4, this involves a large number of mesons produced
during hadronization which subsequently decay, affecting the lepton popula-
tions. The point we address here is that the same reaction that drives decay,
by detailed balance, also recreates the decaying particle. Here of great sig-
nificance is that the Universe is filled with a background gas of photons and
leptons that act as a buffer to all hadron decay processes.

We demonstrate the importance of the background gas considering the
pivotal reaction

π0 
 γ + γ (24)

which keeps hadrons in chemical equilibrium throughout the Universe evolu-
tion. This outcome is in contrast with the naive expectation that π0 disap-
pears, based on considering only the π0 lifetime in vacuum τ0 = 8.4×10−17 s
to the much longer time scale of the Hubble rate of expansion

H = 1.66
√
g∗

T 2

MPl
= (0.014 s)−1

(
T

10 MeV

)2

, (25)

in which g∗ is the number of degrees of freedom contributing to entropy
at the time (fermionic contributions are modified by the factor 7/8) and
MPl = 1.22 1019 GeV is the Planck mass.
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Note that the large pion abundance that goes along with reaction in
Eq. (24) can influence the relic neutrino density and potentially even BBN
which immediately follows this ‘pion’ era — we hope to return to these topics
in the near future. Reaction in Eq. (24) is example of important family of
one-to-two reactions which have only been studied recently [4, 5]. Another
example is the decay of charged pions π± can impact the residual populations
of muons, electrons and neutrinos both through decay and scattering

π± 
 µ± + νµ(ν̄µ) . (26)

The decay of muons also contributes to neutrino density

µ± 
 e± + νe(ν̄e) + ν̄µ(νµ) . (27)

Two-to-two reactions maintain equilibrium within and between charged
pion populations

π0 + π0 
 π+ + π− , γ + γ 
 π+ + π− , (28)

and lepton populations

e+ + e− 
 µ+ + µ− , γ + γ 
 l+ + l− ,

π+ + π− 
 l+ + l− , (l = µ, e) . (29)

In the following we describe the chemical relaxation times of each of these
reactions and compare it to the other relevant timescales, especially the
expansion of the Universe.

Consider the first example, Eq. (24) controlling π0 chemical equilibra-
tion with the background of thermal photons. The population equation de-
scribing the evolution of π0 number can be cast into the form a differential
equation for the π0 fugacity Υ3

d

dt
Υ3 =

1

τT
Υ3 +

1

τS
Υ3 +

1

τ3
(Υ1Υ2 − Υ3) , (30)

see discussion in [24], partially recounted in the appendix. We keep numer-
ical subscripts here rather than simplifying with 1 = 2 = γ so that later
generalization is clear. Here, the τT and τS are kinematic relaxation times
for the temperature and entropy

1

τT
= −g∗T 3

(
dn3

dΥ3

)−1 d

dT

(
n3

Υ3g∗T 3

)
dT

dt
, (31)

1

τS
= −n3

Υ3

(
dn3

dΥ3

)−1 d ln
(
g∗T

3V
)

dT

dT

dt
. (32)

The leading minus signs mean that τT , τS > 0.
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τ3 is the chemical relaxation time incorporating effects of the background
gas [5]

τ3 =
1

V

dN3

dΥ3
Υ3

(
dW3→12

dV dt

)−1

=
1

V

dN3

dΥ3
Υ1Υ2

(
dW12→3

dV dt

)−1

, (33)

where N3 is pion number. dW/dV dt is the rate per unit volume for the
process in subscript accounting for the presence of the background gas of re-
actants and products, and which, therefore, contains dependence on the cor-
responding fugacities of the reaction participants. Thus, in the Boltzmann
limit the combination Υ3(dW3→12/dV dt)

−1 is independent of the fugacity.
The second equality follows from the detailed balance condition, Eq. (A.2).

Entropy is conserved in the expanding Universe, and in the radiation
dominated Universe we have d(T 3V )/dT = 0, and hence 1/τS = 0 for the
present discussion. 1/τT describes the effect of dilution of phase space and
can be dominant in situations, where the number of the type ‘3’ particles
is preserved but their density decreases due to expansion of the volume. In
the early Universe, comparing τT to the chemical relaxation time τ3 provides
the quantitative condition for freeze-out from chemical equilibrium

τ3 ' τT '
T

m3H
. (34)

In the second equality, we have given the relevant estimate of τT for the
early Universe [5].

We can now study the reaction of Eq. (24) quantitatively. In the early
Universe, the number of photons is high and is characterized by the observed
value of η, see below Eq. (19), and pions are also copious immediately after
the phase transformation. These conditions, specifically chemical equilib-
rium of the HG, mean the fugacities Υf are unity and therefore the quantum
statistics of the gases are important, leading to Bose enhancement and Fermi
blocking as the case may be, recognized by Uehling and Uhlenbeck [23]. The
importance of this effect is shown at left in figure 7.

Comparing τ3 to τT (1/H) at right shows that π0 remains in chemical
equilibrium even as its thermal number density gradually decreases, consis-
tently with falling thermal production rates. Even so at all times π0 remain
in chemical equilibrium: this phenomenon can be attributed to the high
population of photons, within which it remains probable to find photons
of high enough energy to fuse into π0, and as the number of high energy
photons decreases, described by photons’ Planck distribution, so does the
number of π0 which need to be maintained.

One can generalize Eq. (30) for the three-body muon decay Eq. (27) and
the 2-to-2 reactions in Eqs. (28), (29) relevant for pion and lepton equilibra-
tion [4, 5, 24]. For example, for the three-body decay there would be three
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numerical subscripts 1, 2, 3 on the right, each for a distinguishable particle
species and the product of their three fugacities appears in the equation for
chemical relaxation time, τ4, similar to Eq. (33).
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(dashed/blue line) to the quantum statistical gas (solid/green line) with fugacity
Υf = 1. Right: π0 equilibration time τ3 (solid/blue line) and Universe expansion
time 1/H (dashed/green line) as functions of temperature.

From this study, we learn several important characteristics of the plasma
present in the Universe preceding and up to the time of BBN. First, π±
and µ± remain in chemical equilibrium until T ' 6MeV and ∼ 4MeV,
respectively [5], alone due to the specific reactions considered — if and when
other reactions are important the actual freeze-out temperature could be still
lower. Note here that we evaluate the reaction rate for muons Eq. (27) at low
temperatures T � mµ based on the muon lifespan in vacuum 2.20× 10−6 s,
muon equilibrium is, therefore, preserved due to detailed balance. However,
muon decay is a process in which helicity considerations keep the reaction
slow, and in the dense early Universe plasma muon decay rate can increase,
which by detailed balance argument implies that the back reaction also is
enhanced, and the chemical equilibrium is maintained longer.

All this means that a significant number of µ± is present along with
π0 to interact with nucleons even at low (but not necessarily BBN-range)
temperatures, as shown at left in figure 3. A further consequence of the
maintenance of π, µ chemical equilibrium is a relatively large effective de-
generacy, implied also by the significant fraction of mesons in the energy
budget, Fig. 4.
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From neutrino population dynamics, we learn that relatively heavy par-
ticles (m � T ), in this case pions and muons, can be important influences
on light particles’ equilibration and population. At right, in figure 8, one
can see how important the pion–muon–neutrino reaction of Eq. (26) is in
maintaining neutrino chemical equilibrium in this epoch. It appears to be
more important than

e+ + e− 
 νe,µ + ν̄e,µ , (35)
whose rate is obtained in the limit of small neutrino chemical potential
µν � T [25] (shown as the dotted and dashed dotted lines).
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Fig. 8. (Color online) Neutrino reaction relaxation times compared to Hubble rate.
Solid (blue) line is for Eq. (26) while dotted (red) and dash-dotted (green) are for
the electron– and muon–neutrino processes Eq. (35).

We have only highlighted here a few outcomes of the study to illustrate
the necessity of studying quantitatively the chemical evolution and equili-
bration of the early Universe plasma. More results and discussion are found
in [5].

5. Conclusions

We have shown that hadrons remain in chemical equilibrium through-
out the evolution of the Universe. The same mechanism that allows π0 to
rapidly decay in reaction of Eq. (24) is present when two photons collide in
the thermally equilibrated Universe, and photon ‘fusion’ reactions fill any
missing π0. In order to see that there is no freeze-out of pions, a quantitative
study is required [4, 5].
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Given that hadron chemical equilibrium is maintained, one can use meth-
ods of hadro-chemistry to study particle abundances. We have shown how
to compute the values of the quark and lepton chemical potentials that
yield the observed matter–antimatter asymmetry in the Early Universe after
hadronization and equilibration of the HG. Furthermore, we have seen that
the non-zero chemical potentials drive charge distillation during the phase
transformation, with the QGP and HG having negative and positive charge
densities, respectively. Separation of baryons and antibaryons into domains
could maintain a homogeneous zero charge density Universe, a phenomenon
which could, e.g., play a significant role in amplifying a pre-existent, much
smaller net baryon yield.

We have described the chemistry of the HG in the Universe evolution pe-
riod down to T ∼ 3MeV noting a significant yield of pions and muons which
remain in chemical equilibrium throughout. Consequently, they remain a
significant fraction of the particle number and energy in pre-BBN Universe.
Their presence and reactions can impact the relic neutrino population.

The lessons of this study are manifold, perhaps the most salient of which
is the importance of studying the chemistry of the early Universe quark and
hadron plasma quantitatively. Future work will be necessary to explore the
implications of the findings here for, e.g., baryon separation, relic neutrino
background, and thus Big Bang Nucleosynthesis.

Appendix A

Fugacity evolution equation

Consider the case of an unstable particle 3 with a two-body decay to
particles 1 and 2. The number of ‘3’ particles is governed by the population
equation

1

V

dN3

dt
=
dW12→3

dV dt
− dW3→12

dV dt
(A.1)

which gives the change in number of particle 3 as increased by production
(particles 1 and 2 fuse into 3) and decreased by the two-body decay 3→ 1+2.

In the absence of ambient populations of particles 1, 2, 3, there will be
no production and decay will occur as in vacuum. In this case, Eq. (A.1)
reduces to V −1dN3/dt ' −(γτ0)−1N3/V , where τ0 is the lifetime of particle
3 in vacuum, and results in the usual exponential decay of particle 3 number.
Here, γ is the Lorentz boost factor relating the particle rest frame (where τ0

is determined) to the observer frame; in our case, the observer is the heat
bath of the Universe.
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The explicit forms of the rates dW12→3
dV dt and dW3→12

dV dt are discussed in
[5, 24]. Considering their structure, energy-momentum conservation and
time-reversal symmetry of the 3
 1 + 2 matrix element together imply the
detailed balance relation

dW12→3

dV dt
Υ3 =

dW3→12

dV dt
Υ1Υ2 . (A.2)

Therefore, in chemical equilibrium, when dN3/dt = 0, Eq. (A.1) shows that
the fugacities must satisfy

Υ3 = Υ1Υ2 (A.3)

which corresponds to the Gibbs condition for the chemical potentials.
Using Eq. (A.2), one can rewrite Eq. (A.1) into the differential equation

for Υ presented in Eq. (30).
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