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Merging binary neutron stars are among the strongest known sources
of gravitational waves, have features compatible with the events produc-
ing short-hard gamma-ray bursts, and might be the long–sought formation
sites of high-mass number r-process elements. Numerical relativity has
reached a stage where a complete description of the inspiral, merger and
post-merger phases of the late evolution of close binary neutron-star sys-
tems is possible. This is allowing the systematic investigation of such a
many-sided subject. This paper presents an overview of numerical rela-
tivity simulations of binary neutron star mergers and the evolution of the
resulting black hole–torus systems. Such numerical work is based upon
a basic theoretical framework which comprises the Einstein’s equations for
the gravitational field and the hydrodynamics equations for the evolution of
the matter fields. The most well-established formulations for both systems
of equations are briefly discussed, along with the numerical methods best
suited for their numerical solution, specifically high-order finite-differencing
for the case of the gravitational field equations and high-resolution shock-
capturing schemes for the case of the relativistic Euler equations. A number
of recent results are reviewed, namely the outcome of the merger depending
on the initial total mass and equation of state of the binary, as well as the
post-merger evolution phase once a black hole–torus system is produced.
Such system has been shown to be subject to non-axisymmetric instabilities
leading to the emission of large amplitude gravitational waves.
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1. Introduction

For over a decade, there have been many efforts in numerical relativis-
tic astrophysics to simulate the coalescence and merging of binary neutron
stars (BNS hereafter). Progress has been steady but somewhat understand-
ably slow, the reason being that the accurate simulation of BNS mergers is
one of the most challenging ventures in numerical relativity. This scenario
involves strong gravitational fields, matter motion with relativistic speeds,
strong relativistic shock waves, and extreme magnetic fields. The numerical
difficulties are aggravated by the intrinsic multidimensional character of the
problem and by the inherent complexities in Einstein’s theory of gravity,
such as coordinate degrees of freedom and the possible formation of cur-
vature singularities (e.g. collapse of matter configurations to black holes).
In spite of these obstacles, current simulations have largely extended the
scope of the early works. A number of factors have made this possible:
improvements on the mathematical aspects (formulation of the equations),
on the physical aspects (incorporation of equations of state (EOS) from
nuclear physics), on the numerical aspects (use of high-resolution methods
and adaptive mesh refinement) and on the computational aspects (increased
computational resources). Large initial separations can now be considered
and some of the existing simulations have expanded the dynamical range
spanned by the models well beyond black hole formation (see e.g. [1–10]
and references therein).

These efforts are allowing the computation of the entire gravitational
waveform for the first time, from the early inspiral to the decaying tail of
the late ringing of the formed black hole. The generation of reliable gravi-
tational wave templates from BNS mergers has become one of the most ur-
gent needs for data analysis groups eager to anticipate the expected signals
through computations which strongly rely on matched filtering techniques.
The sense of urgency is revealed by the major advances accomplished on
the experimental front — the two major interferometer detectors (LIGO
and Virgo) have already taken data at the original design sensitivity and
are presently undergoing significant upgrades. In addition, the path for
research in gravitational wave physics beyond the advanced detectors fore-
sees the Earth-bound Einstein Telescope (ET) as a major large-scale project
(costs on the billion Euro scale), whose construction would start at the end
of the decade and after the first detection with the advanced detectors. The
ASPERA organization1, a European network of national agencies responsi-
ble for coordinating and funding national research efforts in Astroparticle
Physics, includes ET in the Magnificent Seven list in its roadmap. ASPERA
considers ET one of the “few projects whose funding has to be kept at sub-

1 www.aspera-eu.org



Simulations of Binary Neutron Stars and Black Hole–Torus Systems . . . 2287

stantial levels, be it because they have an impressive momentum that needs
to be maintained, because they enter a phase with high discovery potential,
because they go hand in hand with LHC physics, because they are technologi-
cally ready and have a worldwide community behind them, or finally, because
a delay of crucial decisions and funding could even jeopardize the project.”

In addition to being regarded as the only option to build templates of
gravitational waves for the most dynamical phase of the merger itself, the
second major incentive to perform BNS simulations is to establish whether
the end-product of the merger can be regarded as the underlying mechanism
operating at the central engine of short-hard gamma-ray bursts (GRBs)
[11, 12]. The consensus emerging from the existing simulations indicates
the formation, depending on the suitability of the initial parameters of the
simulated model, of a black hole of stellar mass surrounded by a dense hot
disk. Driven by neutrino processes and magnetic fields such a compact
system may be capable of launching a relativistic fireball with an energy of
∼ 1048 erg on a timescale of 0.1–1 s [13].

This article presents an overview of the theoretical physical framework
upon which most of today’s BNS simulations are based, along with a brief
description of the numerical tools employed. A glimpse of the basic facts
occurring during a BNS event and during its final outcome, once a black
hole surrounded by a dense, thick torus has been produced, will be given
to close the article. There exists recent literature, where the topic of this
paper is discussed at greater length, e.g. references [14–16], and which the
interested reader may want to look at.

2. Theoretical model

Compressible fluid dynamics plays a central role in many numerical appli-
cations of Computational Astrophysics, as most astrophysical objects (plan-
ets, stars, jets, galaxies, etc.), as well as the ISM and the IGM can be
modelled at a theoretical level as fluids or plasmas. In the context of rela-
tivistic astrophysics, general relativity is a key player to describe the physics
and dynamics of compact objects (i.e. white dwarfs, neutron stars, and
black holes). Some of the distinctive scenarios of relativistic astrophysics
being explored by numerical relativity are core collapse supernovae leading
to neutron stars or black holes, GRBs, accretion on to compact objects,
the launching of relativistic jets in AGNs, and the coalescence of compact
neutron star (and black hole) binaries.

A powerful way to improve our understanding of these scenarios is
through numerical simulations. The equations governing the dynamics of
relativistic astrophysical systems are an intricate, coupled system of time-
dependent partial differential equations, comprising the general relativis-
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tic hydrodynamics equations and the Einstein gravitational field equations.
In some situations the “test-fluid” approximation, in which the fluid’s self-
gravity is neglected against the background gravitational field, may provide
an accurate description of the dynamics. Additionally, a description employ-
ing ideal hydrodynamics (inviscid fluids) is also commonly used in numerical
astrophysics. On the other hand, there are situations, where the number of
equations must however be augmented to account for e.g. magnetic field
effects, radiative processes or improved microphysics (realistic EOS for nu-
clear matter and nuclear physics). We limit the following discussion to the
basic set of theoretical tools necessary to perform numerical simulations in
relativistic astrophysics — the hydrodynamics equations and the gravita-
tional field equations. The interested reader is addressed to [14, 16–19] and
references therein for details additional to the ones covered here.

2.1. General relativistic hydrodynamics equations

In general relativity, the hydrodynamics equations are obtained from the
local conservation laws of the stress-energy tensor and of the matter current
density (continuity equation)

∇µ (ρuµ) = 0 , ∇µTµν = 0 . (1)

As usual, the Greek indices appearing in the previous equations run from 0
to 3. Moreover, ∇µ is the covariant derivative associated with the spacetime
4-metric gµν . The density current is given by Jµ = ρuµ, with uµ representing
the fluid 4-velocity and ρ the rest-mass density in a locally inertial reference
frame.

The stress-energy tensor for a non-perfect fluid is defined as

Tµν = ρ(1 + ε)uµuν + (p− µΘ)hµν − 2ξσµν + qµuν + qνuµ , (2)

where ε is the specific internal energy density, p is the pressure, hµν is the
spatial projection tensor, hµν = uµuν + gµν , and qµ is the energy flux.
In addition, µ and ξ are the shear and bulk viscosity coefficients. The
expansion, Θ, describing the divergence or convergence of the fluid world
lines is defined as Θ = ∇µuµ. The symmetric, trace-free, and spatial shear
tensor σµν is defined by

σµν = 1
2 (∇αuµhαν +∇αuνhαµ)− 1

3Θh
µν . (3)

In what follows, we neglect non-adiabatic effects, such as viscosity or heat
transfer, assuming the stress-energy tensor to be that of a perfect fluid

Tµν = ρhuµuν + pgµν , (4)
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where we have introduced the relativistic specific enthalpy, defined as h = 1+
ε+ p/ρ. Introducing an explicit coordinate chart, the previous conservation
equations read

∂

∂xµ
(√
−gρuµ

)
= 0 , (5)

∂

∂xµ
(√
−gTµν

)
=
√
−gΓ νµλTµλ , (6)

where the scalar x0 is used to define the foliation of the spacetime with
hypersurfaces (with coordinates xi; Latin indices run from 1 to 3). In the
previous equations, g = det (gµν) and Γ νµλ are the so-called Christoffel sym-
bols.

The system formed by the equations of motion and the continuity equa-
tion must be supplemented with an EOS relating the pressure to some fun-
damental thermodynamical quantities, e.g. p = p(ρ, ε). In the test-fluid
approximation the dynamics of the matter fields is fully described by the
previous conservation laws and the EOS. When such approximation does
not hold, the previous equations must be solved in conjunction with Ein-
stein’s equations for the gravitational field which describe the evolution of
a dynamical spacetime. Those will be discussed in the next section.

There exist different formulations to cast the conservation equations into
forms suitable for numerical work. Those depend on

• The choice of slicing of the spacetime, namely the level surfaces of x0

can be spatial (as in the 3+1 approach of general relativity) or null
(as in the characteristic initial value problem of general relativity).

• The choice of physical (primitive) variables (ρ, ε, ui, . . .) to carry out
the mathematical analysis of the system of equations.

The hydrodynamics equations were written as a set of advection equation
within the 3+1 formalism by Wilson in 1972 [20]. This approach sidesteps
an important guideline for the formulation of nonlinear hyperbolic systems
of equations, the preservation of their conservation form. This is a neces-
sary feature to guarantee a correct evolution in regions of entropy generation
(i.e. shocks). As a result, some amount of numerical dissipation (artificial
viscosity) must be used to stabilize the numerical solution across disconti-
nuities. Conservative formulations well-adapted to numerical methodology
were developed in the 1990s, see [18, 21–23].

Numerically, the hyperbolic and conservative nature of the general rela-
tivistic hydrodynamics equations allows to design a solution procedure based
on the characteristic speeds and fields of the system, translating to rel-
ativistic hydrodynamics existing tools of Computational Fluid Dynamics.
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The extension of modern high-resolution shock-capturing (HRSC) schemes
from classical fluid dynamics to relativistic hydrodynamics was accomplished
in three steps:

• Casting the equations as a system of conservation laws.
• Identifying the suitable vector of unknowns.
• Building up an approximate Riemann solver.

The associated numerical scheme has to meet a key prerequisite — be-
ing written in conservation form, as this automatically guarantees the cor-
rect propagation of discontinuities as well as the correct Rankine–Hugoniot
(jump) conditions across discontinuities (the shock-capturing property). In
1991, Martí, Ibáñez, and Miralles presented a new formulation of the general
relativistic hydrodynamics equations, in 1+1, aimed at taking advantage of
their hyperbolic character [21]. The corresponding 3+1 extension was pre-
sented in [24] in special relativity and in [18] in general relativity. Details on
the derivation of the equations can be found in the previous references. Here,
we simply summarise the resulting first-order, flux-conservative hyperbolic
system of equations well-adapted to numerical methodology

1√
−g

(
∂
√
γU

∂x0
+
∂
√
−gF i

∂xi

)
= S , (7)

where the state vector U and the vectors of fluxes F i and sources S are
respectively given by

U = (D,Sj , τ) , (8)

F i =

(
D

(
vi − βi

α

)
, Sj

(
vi − βi

α

)
+ pδij , τ

(
vi − βi

α

)
+ pvi

)
, (9)

S =

(
0, Tµν

(
∂gνj
∂xµ

− Γ δνµgδj
)
, α

(
Tµ0∂lnα

∂xµ
− TµνΓ 0

νµ

))
. (10)

The state vector comprises the relativistic densities of mass, momentum, and
energy, and are defined as D = ρW , Sj = ρhW 2vj and τ = ρhW 2 − p−D.
In these expressions W is the Lorentz factor of the flow, W 2 = 1/(1− vjvj),
with vj being the 3-velocity of the Eulerian observer, defined as

vi =
1

α

(
ui

ut
+ βi

)
. (11)

In many of the above equations appear the quantities α and βi. This is
a consequence of the fact that we are implicitly using the so-called 3+1
formulation of general relativity in the derivation of the hydrodynamics
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equations (see e.g. [16] and references therein for details). In this formu-
lation, spacetime is foliated with a set of non-intersecting spacelike hyper-
surfaces Σ. Within a given hypersurface, distances are measured with the
spatial 3-metric γij . There are two kinematical variables that describe the
evolution from one hypersurface to the next: the lapse function α which
describes the rate of proper time along a timelike unit vector nµ normal
to the hypersurface, and the shift vector βi, spatial vector which describes
the movement of coordinates in the hypersurface. The line element of the
spacetime is then given by the following expression

ds2 = −
(
α2 − βiβi

)
dt2 + 2βi dx

i dt+ γij dx
i dxj . (12)

Hyperbolic conservation laws such as Eq. (7) are accurately solved by em-
ploying HRSC numerical schemes. These schemes are based on approximate
Riemann solvers that make explicit use of the local characteristic structure of
the hyperbolic system of equations. For the relativistic hydrodynamics equa-
tions this information was reported in [18]. The eigenvalues (characteristic
speeds) are all real (but not distinct, one showing a threefold degeneracy),
and there exists a complete set of right-eigenvectors. The above system sat-
isfies, hence, the mathematical definition of hyperbolicity. The interested
reader is addressed to [14] for further details.

2.2. Einstein’s equations and Numerical Relativity

The dynamics of the gravitational field is described by Einstein’s field
equations

Gµν ≡ Rµν − 1
2gµνR = 8πTµν . (13)

These equations relate the spacetime geometry (left-hand side) with the
distribution of matter and energy (right-hand side). Paraphrasing the rel-
ativist John Archibald Wheeler: Matter tells spacetime how to curve, and
spacetime tells matter how to move. Einstein’s equations are a system of 10
nonlinear, coupled, partial differential equations in 4 dimensions. Behind
their seemingly inoffensive look when written in covariant form, when they
are written with respect to a general coordinate system they may contain
hundreds of terms.

There are plenty of exact solutions of Einstein’s field equations, but
very few of such solutions have astrophysical significance. Due to their
complexity exact solutions of such equations have only been found when
adopting simplifying symmetries:

• Schwarzschild solution (static and spherically symmetric).
• Kerr solution (stationary and axisymmetric).
• Cosmological solutions (isotropic, homogeneous, or both).
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When dealing with more complex systems with astrophysical significance
(e.g. gravitational collapse or mergers of compact binaries) is not feasible to
solve Einstein’s equations in an exact way. The field of Numerical Relativity
emerged in the mid 1960s from the need to study such kind of astrophysical
problems, aiming at trying to solve the field equations with supercomputers
using numerical approximations. Nowadays, Numerical Relativity’s main
goal is to provide templates of the gravitational radiation produced in astro-
physical sources to facilitate its detection and the analysis of the available
data by the ongoing experiments such as LIGO and Virgo.

To derive a set of equations in a way suitable for 3+1 numerical investi-
gations from the covariant equations given by Eq. (13), we need to start by
defining a few geometrical quantities (see e.g. [16] for a complete account).
First, we need to distinguish between the intrinsic and the extrinsic curva-
ture of the spatial hypersurfaces. While the intrinsic curvature is given by
the 3-dimensional Riemann tensor and is defined in terms of the 3-metric γij ,
the extrinsic curvature measures the change of the vector normal to the hy-
persurface as it is parallel-transported from one point in the hypersurface
to another. In order to obtain its mathematical form, we need to define the
projection operator

Pαβ ≡ δαβ + nαnβ , (14)

where δαβ = gαµgµβ and nα is the unit normal vector, which is defined as

nµ =

(
1

α
,−β

i

α

)
, nµ = (−α, 0) , (15)

with the normalization condition nµnµ = −1. The extrinsic curvature is
then defined as

Kαβ = −PµαP νβ∇µnν = −∇αnβ − nαnµ∇µnβ . (16)

Substituting the form of the normal vector in the definition of the extrinsic
curvature, we obtain

Kij =
1

2α
(−∂tγij +∇iβj +∇jβi) . (17)

Using the projection operator and the normal vector, Einstein’s equa-
tions can be separated in three groups:

• Normal projection (1 equation; energy or Hamiltonian constraint)

nαnβ (Gαβ − 8πTαβ) = 0 . (18)
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• Mixed projections (3 equations; momentum constraints)

Pµα
[
nβ (Gαβ − 8πTαβ)

]
= 0 . (19)

• Projection onto the hypersurface (6 equations; evolution of the extrin-
sic curvature)

PµαP
ν
β (Gµν − 8πTµν) = 0 . (20)

After some algebra, it can be shown [16] that the above equations take
the following canonical 3+1 form

∂tγij = −2αKij +∇iβj +∇jβi , (21)
∂tKij = −∇i∇jα+ α

(
Rij +K Kij − 2KimK

m
j

)
+ βm∇mKij

+Kim∇jβm +Kmj∇iβm − 8πα
(
Tij − 1

2γijT
m
m + 1

2ργij
)
,(22)

and

R+K2 −KijKij = 16πρ ,

∇i
(
Kij − γijK

)
= 8πSj . (23)

The first group of equations is a set of 12 evolution equations2. The first 6
are, in fact, the definition of the extrinsic curvature, Eq. (17), while the
remaining 6 describe its time derivative. Correspondingly, the second group
of equations is a set of 4 constraint equations. This set of 16 equations
constitute what is called the 3+1 formulation of Einstein’s equations [25–28].
There are several quantities that need to be defined in the above equations:
∇i is the covariant derivative with respect to the induced 3-metric, Rij is
the Ricci tensor, given by

Rij = ∂nΓ
n
ij − ∂jΓnin + ΓnmnΓ

m
ij − ΓnjmΓmin , (24)

Γ ijk are the Christoffel symbols

Γ ijk =
1

2
γin
(
∂γnj
∂xk

+
∂γnk
∂xj

−
∂γjk
∂xn

)
, (25)

R = Rijγ
ij is the scalar curvature, and K = Kijγ

ij is the trace of the
extrinsic curvature. In addition, some of the terms in the equations contain

2 It is also common to encounter these equations written in terms of the so-called Lie
derivative, which is a directional derivative that evaluates the change of a given scalar,
vector or tensor field along the direction of a vector field (see [16] for details). Using
such compact notation Eq. (21) can be written as (∂t − Lβ)γij = −2αKij .
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the matter fields, which are given by the following definitions:

ρ ≡ Tµνnµnν = ρhW 2 − p , (26)
Si ≡ −P iµTµνnν = ρhW 2vi , (27)

Sij ≡ Pµi P
µ
j Tµν = ρhW 2vivj + γijp , (28)

S ≡ ρhW 2viv
i + 3p . (29)

The Einstein equations in 3+1 form compose a Cauchy (initial value)
problem: first, we need to specify the initial data, γij and Kij at the initial
slice t = 0 subject to the constraint equations. Next, we have to specify
the coordinates through the choice of the (freely specifiable) kinematical
variables α and βi. Finally, the initial data are evolved in time using the
evolution equations.

In recent years, the 3+1 system has been reformulated into forms bet-
ter suited for numerical work, aiming at getting rid of unstable evolutions
commonly encountered when simulating black hole spacetimes. Among the
various choices investigated the so-called BSSN formulation [29–31] has be-
come the preferred choice for most groups. The basic idea to improve the
stability of the numerical solutions was to remove the mixed second deriva-
tives in the Ricci tensor by introducing auxiliary variables. By doing this
the evolution equations resemble wave equations for the 3-metric and the ex-
trinsic curvature. We start with a conformal decomposition of the 3-metric

γ̃ij = ψ4γij , (30)

with the condition det γ̃ij = 1. The BSSN evolution variables are then the
following ones (notice that the trace of extrinsic curvature is a separate
variable)

φ = 1
4 logψ , γ̃ij = e−4φγij , (31)

K = γijKij , Ãij = e−4φ
(
Kij − 1

3γijK
)
, (32)

together with a new set of evolution variables (gauge source functions)

Γ̃ a = γ̃ijΓ̃ aij = −∂iγ̃ai . (33)

It can be shown that the final system of evolution equations in the BSSN
formulation takes the following form:

(∂t − Lβ)γ̃ij = −2αÃij (34)
(∂t − Lβ)φ = −1

6αK (35)

(∂t − Lβ)K = −γij∇i∇jα+ α
[
ÃijÃ

ij + 1
3K

2 + 1
2 (ρ+ S)

]
(36)
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(∂t − Lβ)Ãij = e−4φ [−∇i∇jα+ α (Rij − Sij)]TF (37)

+α
(
KÃij − 2ÃilÃ

l
j

)
(38)

(∂t − Lβ)Γ̃ i = −2Ãij∂jα+ 2α
(
Γ̃ ijkÃ

kj − 2
3 γ̃

ij∂jK − γ̃ijSj + 6Ãij∂jφ
)

+∂j

(
βl∂̃lγ

ij − 2γ̃m(j∂mβ
i) + 2

3 γ̃
ij∂lβ

l
)
. (39)

Despite the augmented number of evolution equations with respect to
the 3+1 system, BSSN is currently the standard 3+1 formulation in Numer-
ical Relativity. Long-term stable applications have been achieved with this
system, including strongly gravitating systems such as neutron stars (both
isolated and binaries) and, remarkably, single and binary black holes.

2.3. Numerical methods for conservation laws

There are a variety of numerical methods to solve the equations of fluid
dynamics, either classical or relativistic. Among the main schemes we can
list the following:

• Finite difference methods. Require numerical viscosity to stabilize the
solution in regions where discontinuities develop.

• Finite volume methods. Written in conservation form. Use Riemann
solvers to solve the equations in the presence of discontinuities and are
commonly known as high-resolution shock-capturing schemes.

• Symmetric methods. Written in conservation form. Based on centred
finite differences and high spatial order.

• Particle methods. Smoothed Particle Hydrodynamics [32]. Integrate
movement of discrete particles to describe the flow.

Just as their Newtonian counterparts, the equations of general relativistic
hydrodynamics is nonlinear hyperbolic system of conservation laws. A dis-
tinctive feature of such systems is that smooth initial data can develop dis-
continuities during the time evolution. Finite difference schemes may show
important deficiencies when dealing with such systems. Typically, first order
accurate schemes are too dissipative across discontinuities while second order
(or higher) schemes produce spurious oscillations near discontinuities [33].

Finite difference schemes provide numerical solutions of the discretised
version of the partial differential equations (PDEs). Therefore, convergence
properties under grid refinement must be enforced on such schemes to guar-
antee the validity of the numerical result. The Lax–Wendroff theorem states
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that for hyperbolic systems of conservation laws, schemes written in conser-
vation form converge to one of the so-called weak solutions of the PDEs
(C1 solutions in smooth parts of the flow and with a finite number of dis-
continuities). However, the class of all weak solutions is too wide as there is
no uniqueness for the initial value problem. Thus, among all weak solutions,
the numerical scheme must guarantee convergence to the physically admis-
sible solution, a property whose mathematical characterisation was given by
Lax for hyperbolic systems of conservation laws.

A conservative scheme for the hyperbolic system (7) can be straightfor-
wardly devised by using the corresponding integral form∫

Ω

1√
−g

∂
√
γU

∂x0
dΩ +

∫
Ω

1√
−g

∂
√
−gF i

∂xi
dΩ =

∫
Ω

SdΩ , (40)

where Ω is a region of the 4-dimensional manifold enclosed within a
3-dimensional surface ∂Ω which is bounded by two spacelike surfaces Σt,
Σt+∆t and two timelike surfaces Σxi , Σxi+∆xi . For numerical purposes the
above relation can be written as

Ū t+∆t − Ū t = −

 ∫
Σx1+∆x1

√
−gF̂ 1

dx0dx2dx3 −
∫
Σx1

√
−gF̂ 1

dx0dx2dx3


−

 ∫
Σx2+∆x2

√
−gF̂ 2

dx0dx1dx3 −
∫
Σx2

√
−gF̂ 2

dx0dx1dx3


−

 ∫
Σx3+∆x3

√
−gF̂ 3

dx0dx1dx2 −
∫
Σx3

√
−gF̂ 3

dx0dx1dx2


+

∫
Ω

SdΩ , (41)

where

Ū =
1

∆V

x1+∆x1∫
x1

x2+∆x2∫
x2

x3+∆x3∫
x3

√
γUdx1dx2dx3 (42)

and

∆V =

x1+∆x1∫
x1

x2+∆x2∫
x2

x3+∆x3∫
x3

√
γdx1dx2dx3 . (43)
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The main advantage of this procedure is that those variables which obey
a conservation law are conserved during the evolution, as long as the balance
between the fluxes at the boundaries of the computational domain and the
source terms are zero. The numerical fluxes appearing in Eq. (41) are calcu-
lated at cell interfaces where the flow conditions can be discontinuous. Those
numerical fluxes are approximations to the time-averaged fluxes across an
interface, i.e.

F̂ i+ 1
2

=
1

∆t

tn+1∫
tn

F
(
U
(
xi+ 1

2
, t
))

dt , (44)

where the flux integral depends on the solution at the numerical interfaces,
U(xi+1/2, t), during the time step. Godunov first proposed to calculate
U(xi+1/2, t) by exactly solving Riemann problems (initial value problems
with discontinuous data) at every cell interface to obtain U(xi+1/2, t) =
U(0;Un

i ,U
n
i+1), which denotes the Riemann solution for the (left and right)

states Un
i , U

n
i+1 along the ray x/t = 0. This procedure had far-reaching

consequences as it was incorporated in the design of numerical schemes
for solving the Euler equations of classical gas dynamics in the presence
of shock waves, which led to major advances in the field. One of the steps
in the derivation of the exact Riemann solution involves the computation of
the full wave speeds to find where they lie in state space. This is a com-
putationally expensive procedure, which explains the gradual development
of approximate Riemann solvers, which despite being much cheaper than
the exact solver yield equally good results. An excellent introduction to
the existing approximate solvers in relativistic hydrodynamics can be found
in [34]. We also note that the exact solution of the Riemann problem in
special relativistic hydrodynamics is reported in [35, 36].

The spatial accuracy of the numerical solution can be increased by re-
constructing the primitive variables at the cell interfaces before the actual
computation of the numerical fluxes. Diverse cell-reconstruction procedures
are available in the literature (see references in [33, 34]). Correspondingly,
the temporal accuracy of the scheme is improved by advancing in time the
equations in integral form using the method-of-lines in tandem with a high-
order, conservative Runge–Kutta method.

For the numerical solution of the subset of evolution equations in Ein-
stein’s field equations the time integration is also performed via a method-of-
lines approach. The system of PDEs, which can be cast in hyperbolic form as

∂tu +Ai∂iu = s(u) , (45)

can be recast into the form of an ODE in time

∂tu = L(u) , (46)
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where L represents a spatial discretization operator. Different numerical
methods use different ways to express the spatial derivatives appearing in
this operator. The most common choice by far in numerical relativity is to
use high-order finite difference approximations for the derivatives, although
there are also successful implementations which use spectral expansions and
finite elements.

3. Simulations

3.1. Binary neutron star mergers

As mentioned in the introduction, there are quite a few numerical rela-
tivity groups worldwide which are nowadays performing increasingly more
realistic simulations of BNS (see [15] and references therein for an up-to-date
account). Interestingly, the numerical framework upon which most of the
simulations are based is becoming standardized. Hence, most of the available
codes deal with the gravitational field equations using the BSSN conformal
and traceless 3+1 formulation of Einstein’s equations as the basic evolution
system. As gauge conditions most codes employ 1+log slicing for the lapse
function and hyperbolic Gamma-driver for the shift vector evolution. The
evolution equations are integrated using high-order schemes, typically 4th
to 8th order finite-differencing. As for the initial data, consistent config-
urations of irrotational BNS in quasi-circular orbit have so far been used.
Finally, the gravitational wave-extraction is carried out with two comple-
mentary approaches, either using the Newman–Penrose approach which in-
volves the projection of the Weyl tensor onto components of a null tetrad or
using gauge-invariant perturbations on a Schwarzschild background expand-
ing the spatial metric into a tensor basis of Regge–Wheeler harmonics (spe-
cific details can be found in e.g. [37]). Correspondingly, the hydrodynamics
equations are solved with the kind of Riemann-solver-based HRSC meth-
ods outlined in the preceding section with high order cell reconstruction
techniques. The time integration is done with a method-of-lines based on
high-order conservative Runge–Kutta algorithms (see [14] for further infor-
mation).

The seminal studies of BNS mergers in full general relativity carried out
by Shibata and co-workers about 10 years ago [38–40] using an ideal fluid
EOS, showed that the final outcome of the merger depends in a significant
manner on the initial compactness of the neutron stars before plunge. It was
found that, depending on the stiffness of the EOS, controlled through the
value of the adiabatic index Γ , if the total rest mass of the system is ∼ 1.3–
1.7 times larger than the maximum rest mass of a spherical star in isolation,
the end product is a black hole. Otherwise, a marginally-stable massive neu-
tron star forms, supported against self-gravity by rapid differential rotation.
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This hypermassive neutron star (HMNS) may eventually collapse to a black
hole once sufficient angular momentum is dissipated via neutrino emission
and/or gravitational radiation. In turn, the different outcome of the merger
is imprinted in the gravitational waveforms, as first noted by [40]. Owing to
this feature, future detection of high-frequency gravitational waves from a
BNS merger event could help constrain the maximum allowed mass of neu-
tron stars along with the composition of neutron star matter. This has been
recently scrutinized in simulations performed by the Kyoto group [41, 42] in
which a number of new ingredients have been incorporated in the numeri-
cal modelling (namely nucleonic and hyperonic finite-temperature EOS and
neutrino cooling).

Numerical simulations from the AEI group [2] have also shown that while
the qualitative trend taking place during a BNS merger is fairly general
(formation of a HMNS followed by the appearance of a black hole–torus
system), there are significant quantitative differences in the course of events
worth stressing. These differences are produced either by differences in the
total mass of the binary for the same EOS or vice versa. In the former case a
binary with smaller mass (in [2] binaries with total ADM masses of 2.681M�
and 2.982M� were considered) will produce a HMNS which is further away
from the stability threshold and will collapse at a later time. In the latter
case, a binary with an EOS allowing for a larger thermal internal energy
(which will be hotter after merger) will have an increased pressure support
and will also collapse at a later time. Moreover, a polytropic EOS leads
either to the prompt formation of a rapidly rotating black hole surrounded
by a dense torus in the high-mass case, or, in the low-mass case, to a HMNS
which develops a bar, emitting large amounts of gravitational radiation until
it eventually collapses to a black hole.

Likewise, numerical simulations have also revealed that the key param-
eter controlling the amount of mass left in the disk for a given initial mass
in the system and EOS is the neutron star mass ratio [1, 6, 9, 43]. Namely,
the larger the departure from equal-mass ratio, the more important tidal ef-
fects become in the less massive star, resulting in its tidal disruption. Since
this takes place when the separation is still comparatively large, the angular
momentum of the matter is still large and it results in larger-size and more
massive disks. Early, low-resolution simulations with an ideal-gas EOS [43]
produced a disk mass of several percents of the total mass of the system for
a mass ratio of ∼ 0.85. Improved simulations by [1] which adopted a hybrid
EOS to mimic realistic, stiff nuclear EOS, indicate that the mass of the disk
is ∼ 0.01M� or slightly larger in the most favourable case when the merger
results in the formation of a marginally-stable HMNS of large ellipticity.
Similar disk masses, as large as ∼ 0.02M�, are also reported in the simula-
tions of [6], in which the initial orbital separation of the two stars is larger
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than in previous works. Finally, the most recent investigation of this topic
by [9] report that equal-mass binaries do not produce significant tori if they
have a total baryonic mass Mtot ≥ 3.7M�. Those produced have masses
Mtor ∼ 10−3M� and a radial extension of ∼ 30 km. Tori with masses as
large as ∼ 0.2M� have been measured with binaries having Mtot ∼ 3.4 M�
and mass ratios in the range ∼ 0.75–0.85. The tori in these cases are much
more extended with typical sizes ≥ 120 km. Figure 1, extracted from the
work of [9], presents a comparison of the resulting disk morphology following
two such illustrative BNS mergers. Both tori differ in size by about a factor 3
and in mass by about a factor 200. However, they have comparable mean
rest-mass densities. Overall, the existing literature proves that large-scale
tori with large masses and quasi-stationary evolutions can be produced as
the result of the inspiral and merger of unequal-mass BNS. Hence, they may
indeed provide the energy reservoir needed to power short-hard GRBs.

Fig. 1. Isodensity contours for two of the BNS mergers studied in [9]. The left
panels show the morphology of the resulting black hole–torus system for a model
with equal-mass ratio, while the right panels show the corresponding morphology
for a binary with a 0.7 mass ratio between the two stars. The upper rows shows the
(x, y) plane and the lower ones show the (x, z) plane. Note that the disks in the two
panels have very different lengthscales. The disk resulting from an unequal-mass
merger (right panel) is not only ∼ 3 larger on the equatorial plane, but it also
shows an increased thickness in the vertical direction.
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3.2. Black hole–torus systems

Black hole–torus systems are common in the universe. The central re-
gion of AGNs is believed to consist of a supermassive black hole of mass
∼ 106–1010 M� surrounded by a torus. Such systems may form through
the collapse of supermassive stars [44, 45]. On the other hand, mergers of
neutron star binaries (and black hole–neutron star binaries) often result in
a black hole and a torus, as we have just discussed [6, 9]. Moreover, such
systems can also be produced at the end of the life of massive stars [46].
The merger and collapsar scenarios are linked to short- and long-duration
GRBs, respectively [11, 47].

In a GRB, the energy supply comes from the energy released by the
accretion of disk material onto the black hole and from the rotational en-
ergy of the black hole itself, which can be extracted, for instance, via the
Blandford–Znajek mechanism. This vast amount of energy (of the order of
1053–1054 erg, depending on the mass of the disk and on the black hole ro-
tation and mass) is sufficient to power a GRB if the energy released can be
converted into gamma-rays with an efficiency of about a few percent. This
scenario requires a stable enough system to survive for a few seconds. In par-
ticular, the internal-shock model [48] implies that the duration of the energy
release by the source has to be comparable with the observed duration of the
GRB. Any instability which might disrupt the system on shorter timescales,
such as the so-called runaway instability and the Papaloizou–Pringle insta-
bility, could pose a severe problem for the accepted GRB models.

In a black hole–torus system the gas flows in an effective (gravitational +
centrifugal) potential whose structure is similar to that of a close binary. The
Roche torus has a cusp-like inner edge at the Lagrange point L1, where mass
transfer driven by the radial pressure gradient is possible. These systems
may be subject to a runaway instability [49–51]: due to accretion from
the disk the black hole mass and spin increase and the gravitational field
changes. Two evolutions are feasible to reach a new equilibrium solution:
(a) either the cusp moves inwards toward the black hole, slowing down the
mass transfer (stable situation), or (b) the cusp moves deeper inside the disk
material, speeding up the mass transfer (unstable situation).

Recent axisymmetric numerical relativity simulations by [52] have shown
that the runaway instability does not have a significant impact on the dy-
namics even if the torus self-gravity is taken into account. These simulations
use equilibrium configurations of self-gravitating tori around black holes, us-
ing the method developed by [53]. The tori built do not overflow their Roche
lobes and have both constant and non-constant distributions of the angular
momentum. The simulations reveal that such tori are remarkably stable
irrespective of the angular momentum distribution.
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On the other hand, the fully three-dimensional simulations of [9] show
that all black hole–torus systems formed self-consistently as the result of
BNS mergers do not manifest signs of any dynamical instability either, at
least on the short dynamical timescales investigated by [9]. In particular, it
was found that tori formed from equal-mass binaries exhibit a quasi-periodic
form of accretion associated with the radial epicyclic oscillations of the tori,
while those from unequal-mass binaries exhibit a quasi-steady form of accre-
tion. When analysing the evolution of the angular-momentum distribution
in the tori, no evidence for the onset of non-axisymmetric instabilities was
found. Moreover, the angular momentum is transported outwards more effi-
ciently for smaller values of the neutron star mass ratio, yielding Keplerian
angular-velocity distributions.

However, on longer timescales than those investigated by [9], a non-
axisymmetric (m = 1) instability may set in. Using perturbation theory,
Papaloizou and Pringle [54] first established in 1984 that tori with constant
specific angular momentum are unstable to non-axisymmetric global modes.
Global unstable modes have a co-rotation radius within the torus, located
in a narrow region, where waves cannot propagate. This region separates
inner and outer regions, where wave propagation is possible. Waves can
tunnel through the co-rotation zone and interact with waves in the other
region. Such transmitted modes can be amplified only if there is a feedback
mechanism, in the form of a reflecting boundary at the inner and/or outer
edge of the torus.

Only very recently the nonlinear growth and saturation of the Papaloizou–
Pringle instability in black hole–torus systems has been explored in three-
dimensional numerical simulations in full general relativity [55] (see [56–58]
for previous investigations neglecting the spacetime dynamics; see also [59]
for numerical relativity simulations involving only constant angular momen-
tum models and short evolution times). The simulations of [55] have shown
that the instability sets in for a wide range of black hole–torus systems, and
that the resulting non-axisymmetric structure is maintained for dozens of
orbital periods well beyond the saturation of the instability. As a result,
such systems can be strong sources of detectable gravitational waves for the
upcoming detectors.

As an example, figure 2 illustrates the non-axisymmetric morphological
features present in the tori of the two angular momentum profiles consid-
ered by [55], once the instability has saturated and a stationary accretion
phase has been reached. As found in earlier test-fluid simulations in general
relativity [57] the manifestation of the Papaloizou–Pringle instability is in
the form of counter-rotating epicyclic vortices, or “planets”, with m planets
emerging from the growth of a mode of order m. The instability grows ex-
ponentially with time, with the m = 1 mode, whose presence is apparent in
the figure, being the fastest growing mode.
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Fig. 2. Snapshots of the rest-mass density distribution on the equatorial plane for a
constant angular momentum disk at t = 15.11 torb (left: torb stands for the orbital
timescale) and a non-constant angular momentum disk at t = 20.02 torb (right).
Vectors show the velocity fields, and black filled circles around the centres show the
region inside the apparent horizons of the black holes. By the time of the evolution
plotted the existence of m = 1 structures in the disk is manifest in both models.
See [55] for further details.

4. Summary

This paper has presented an overview of numerical relativity simulations
of binary neutron star mergers and the evolution of black hole–torus sys-
tems. Such numerical work is based upon a basic theoretical framework
which comprises the Einstein’s equations for the gravitational field and the
hydrodynamic equations for the evolution of the matter fields. The most
well-established formulations for both systems of equations have been dis-
cussed and presented in some detail, along with the numerical methods best
suited for their numerical solution — high-order finite-differencing for the
case of the gravitational field equations and high-resolution shock-capturing
schemes for the case of the relativistic Euler equations.

Among the results considered we have reviewed the outcome of a BNS
merger event depending on the initial total mass and EOS of the binary.
The formation of a HMNS followed by the appearance of a black hole–torus
system show strong dependence on the total mass and EOS, and the same
applies to the associated gravitational waveforms. The increasing body of
work on the subject proves that large-scale tori with large masses (∼ 0.1–
0.2 times the total mass of the system) can be produced as the result of the
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inspiral and merger of unequal-mass BNS, providing the energy reservoir
needed to power short-hard GRBs. When analysing the evolution of the
angular-momentum distribution in the tori, the existing simulations show
no evidence for the onset of the runaway instability. However, on longer
time scales non-axisymmetric (Papaloizou–Pringle) instabilities set in, the
m = 1 mode being the fastest growing mode. The m = 1 structure (planet)
survives with significant amplitude well beyond the nonlinear growth and
saturation of the instability, which leads to the emission of quasi-periodic
gravitational waves of large amplitude. Advanced detectors may reveal such
kind of gravitational wave source. For stellar mass black holes, these results
suggest that the so-called collapsar hypothesis of GRBs may be verified via
observation of gravitational waves.

I am very grateful to the Organizers of the LII Cracow School of The-
oretical Physics, and, in particular, to Prof. Michał Praszałowicz, for the
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in collaboration with a number of colleagues — L. Baiotti, B. Giacomazzo,
K. Kiuchi, D. Link, P. Montero, L. Rezzolla, and M. Shibata — to whom I
am most grateful. This work has been supported by the Spanish MICINN
(under grant AYA 2010-21097-C03-01) and by a VESF fellowship from the
European Gravitational Observatory (EGO-DIR-69-2010).
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