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The quantum theory of the Coulomb field has been developed by
Andrzej Staruszkiewicz in the long series of papers. This theory explains
the universality and quantization of the electric charge observed in Nature.
Moreover, the efforts have been made to determine the value of the ele-
mentary charge from its mathematical structure. Nonetheless, no other
immediate applications of this theory have been proposed. We make such
an attempt by (i) considering the classical energy operator and defining its
counterpart in the quantum theory of the Coulomb field; (ii) determining
the eigenstates of the energy operator and assigning energy to the exci-
tations of the theory; and (iii) proposing a simple theoretical scheme to
estimate the effect of the quantum fluctuations of the Coulomb field on the
energy levels of hydrogen-like atoms. We argue that the recent experimen-
tal advances in hydrogen and muonic-hydrogen spectroscopy may provide
the unique window of opportunity for the verification of the Staruszkiewicz
theory.
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1. Introduction

The theory of the quantum Coulomb field (QCF) has been proposed
by Staruszkiewicz [1, 2, 3] (see also Ref. [4] for the discussion of this the-
ory from a different angle and Refs. [5, 6, 7] for other approaches to the
quantization of long-range fields). It supplements standard quantum elec-
trodynamics (QED) by describing long-range quantum fluctuations of the
Coulomb field [8]. The principal need for the development of this theory is
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that even though the electric charge of every particle type could be arbitrary
in the QED framework, all electric charges are multiples of a single quantum
with a stunning accuracy [9].

The studies of the quantum Coulomb field have been centered on charge
quantization and universality as well as on the extensive search for a dis-
tinguished value of the fine structure constant (see e.g. Ref. [10]). While
the former efforts have succeeded, the Staruszkiewicz theory predicts that
charged particles carry an integer multiple of the same elementary charge,
the latter efforts are still ongoing. Indeed, even though it was found that the
mathematically distinguished interval of the allowed values of α is 0 < α < π,
the hunt for the theoretical determination of the exact value of the fine struc-
ture constant α = 1/137.036 . . . is unfinished. We remark that, to the best
of our knowledge, the Staruszkiewicz theory provides the first theoretical
framework in which such a hunt is at all possible.

Our goal is to extend the QCF theory to study its experimentally-
relevant implications. We discuss the electric and magnetic field operators
of the QCF, define a set of distinguished states of the QCF that might be
carried by charged particles, and develop a simple theory providing a ba-
sis for the quantitative studies of the shifts of the energy levels of atoms
resulting from the quantum fluctuations of the Coulomb field. The possi-
bility that there may be additional level shifts absent in standard QED is
strongly suggested by the puzzling recent precision spectroscopy experiment
on muonic hydrogen [11].

2. Basics of the quantum Coulomb field theory

In this section, we will briefly summarize Staruszkiewicz’s QCF theory.
The central object of the theory is the phase field S(x). It may be derived
on the classical level in two ways.

Such a degree of freedom is always present for charged fields. This is
seen by writing the action for the electromagnetic field and its source in the
form

− 1
16π

∫
d4xFµνFµν +

∫
d4xL [eAµ + ∂µS, . . .] , (1)

where the phase S of the charged matter field appears in the gauge-invariant
combination eAµ + ∂µS, while the dots stand for other degrees of freedom
of the charged matter field, e.g., its real amplitude, relative phases between
the different components of a spinor, etc.

To illustrate this point, one can consider the simplest example of a
field theoretical system with the electric charge: the Klein–Gordon the-
ory discussed in this context in Ref. [12]. Its gauge-invariant action reads
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− 1
16π

∫
d4xFµνFµν + 1

2

∫
d4x|(∂µ + ieAµ)φ|2 −m2|φ|2. Writing the Klein–

Gordon field φ as R exp(iS) one finds that this action equals

− 1
16π

∫
d4xFµνFµν +

1
2

∫
d4x [∂µR∂µR

+R2 (∂µS + eAµ) (∂µS + eAµ)−m2R2
]
,

in agreement with Eq. (1). In this particular case, the dots in the argument
of L stand for R (the real amplitude of the charged matter field) and its
derivatives.

Coming back to the discussion of Eq. (1), we note that its variation with
respect to Aµ defines the current jµ to be equal to 1

4π∂
νFµν . The variation of

the action with respect to S leads to the charge conservation law: ∂µjµ = 0.
The momentum canonically conjugated with the phase field S is

πS =
∂L

∂
(
∂S
∂t

) = −j0
e
.

The canonical quantization [Ŝ(x), π̂S(y)]x0=y0 = iδ(x− y) results in[
ĵ0(x), Ŝ(y)

]
x0=y0

= ieδ(x− y) .

Integrating it over the hyperplane x0 = y0, one obtains[
Q̂, Ŝ

(
y0,y

)]
= ie , (2)

where Q̂ =
∫
d3x ĵ0 is the charge operator, e = 1/

√
137.036 . . . stands for

the unit of the electric charge, and ~ = c = 1. This interesting relation,
however, is rather useless unless further input is provided about the phase
field Ŝ(x). This is done in the following way.

The electric charge can be also defined by looking only at the electromag-
netic field. In order to find the minimal framework for such a consideration,
one investigates the following scalar functional of the electromagnetic po-
tential Aµ(x)

s(x) = −exµAµ(x) .

It can be shown that it characterizes the electromagnetic fields of the
Coulomb type completely. Namely, all electric and magnetic fields falling
off as 1/r2 can be uniquely expressed as the appropriate derivatives of s(x)
through the relation −exνFµν = ∂µs(x) (see e.g. Ref. [9]). Moreover, s(x)
satisfies the d’Alembert equation: 2s = 0.
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In Ref. [1], Staruszkiewicz formulated a complete field-theoretical sys-
tem by reflecting on the Gauss law. He identified S(x) (the property of the
charged matter) with s(x) (the property of the electromagnetic field), and
used the commutation relation (2) as the basis of the quantum field theory
of the Coulomb field. Note that the identification of a degree of freedom
of matter with some degree of freedom of the electromagnetic field is neces-
sary if matter is required to carry a true electric charge even in asymptotic
future/past (see e.g. Ref. [7]).

The quantization of the phase field proceeds in two steps. Firstly, as
the consequence of both the d’Alembert equation satisfied by S(x) = s(x)
and the required fall-off condition for S(x), one obtains the appropriate field
operator [1]

Ŝ(x) = Ŝ0 − eQ̂ tanh(ψ) +
∞∑
`=1

∑̀
m=−`

[ĉ`mf`m + h.c.] ,

f`m(ψ, θ, ϕ) =
[

2F1

(
− `+1

2 , `2 ; 1
2 ; tanh2 ψ

) G`
2

− i

G`
tanh(ψ)2F1

(
− `

2 ,
`+1
2 ; 3

2 ; tanh2 ψ
) ]
Y`m(θ, ϕ) ,

where (r, θ, ϕ) are the spherical coordinates around the charge, ψ =
arctanh(t/r) and

G` =

√
`

`+ 1
Γ
(
`
2

)
Γ
(
`+1
2

) .
The phase field Ŝ is quantized outside of the light cone xµxµ = t2−x2 = 0,
i.e., for r > |t|. The non-vanishing commutators are[

ĉ`m, ĉ
†
`′m′

]
= 4πe2δ``′δmm′ ,

[
Q̂, Ŝ0

]
= ie .

As the second step of quantization, the representation space for the the-
ory is defined to be the Fock space constructed upon the “vacuum” state |0〉,
which is supposed to be annihilated by all ĉ`m and Q̂ (the last relation being
highly non-trivial; see also [13]).

The “simplest” state carrying n units of the electric charge, |n〉, is created
from vacuum via exp(−inŜ0)

|n〉 = exp
(
−inŜ0

)
|0〉 , Q̂|n〉 = ne|n〉 , 〈n|m〉 = δnm . (3)
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We will refer to |n〉 as the n-charged vacuum state as it is annihilated by
all ĉ`m. One should remember that |n〉 is a short cut for |n; {n`m}〉, where
n`m, the occupation of the (`,m) modes, is set to zero. The (`,m) modes are
responsible for the global angular distortions of the Coulomb field. Another
distinguished charged state of the QCF was found in Ref. [14].

Finally, we would like to draw attention of the reader to the fact that
independently of the beautiful physical relevance attached to the field Ŝ(x),
the quantum theory of this field is a perfectly well-defined, highly interesting,
and well worked-out quantum field theory in 2 + 1 dimensional de Sitter
space-time (see e.g. the recent non-trivial results on the structure of the
boost operators and the spectral decomposition of the vacuum state [15,16]).

3. Fluctuations of the quantum Coulomb field

It is convenient for our calculations to switch to the following notation.
For m = 0, we define

ĉ`0 =
√

4πie b̂`0 , Ỹ`0(θ, ϕ) = Y`0(θ, ϕ) ,

while for m > 0, we define

ĉ`,±m =
√

2πie
(
b̂`m ± b̂`,−m

)
, Ỹ`,±m(θ, ϕ) =

Y`m(θ, ϕ)± Y`,−m(θ, ϕ)√
2

.

The redefined operators satisfy [b̂`m, b̂
†
`′m′ ] = δ``′δmm′ and [b̂`m, b̂`′m′ ] = 0.

From a given Ŝ(x) = ŝ(x) the corresponding electromagnetic Coulomb
fields can be computed using

Âµ(x) = −1
e

xµ

xx
Ŝ(x) .

In the standard spherical orthonormal tetrad (N ,Θ,Φ)

N = (sin θ cosϕ, sin θ sinϕ, cos θ) ,
Θ = (cos θ cosϕ, cos θ sinϕ,− sin θ) ,
Φ = (− sinϕ, cosϕ, 0) ,

we find

Ê = − 1
er

[
N

∂

∂t
+

t

r2 − t2

(
Φ

sin θ
∂

∂ϕ
+Θ

∂

∂θ

)]
Ŝ ,

Ĥ =
1
e

1
r2 − t2

(
Θ

sin θ
∂

∂ϕ
−Φ ∂

∂θ

)
Ŝ .
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Within the theory of Staruszkiewicz, the Coulomb electromagnetic fields
are given only in the space-time region |t| < r (the theory is originally for-
mulated in spatial infinity outside of the light cone, where this condition
does not cause problems; we extrapolate the fluctuations from the spatial
infinity to near the charge center assuming homogeneity of the Coulomb
field). This reflects the lack of a complete theory of charged matter accom-
panied by such fields (for attempts in this direction see Ref. [7]). In this
paper, we circumvent that difficulty by dealing exclusively with effects on
the surface t = 0, for which the theory gives complete information about the
electromagnetic fields (apart from the singular point r = 0)

Ê(0,x) =

[
Q̂−

√
4π

∞∑
`=1

∑̀
m=−`

(
Ỹ`m
G`

b̂`m + h.c.

)]
N

r2
, (4)

Ĥ(0,x) =
√
π

r2

[
Θ

sin θ
∂

∂ϕ
−Φ ∂

∂θ

] ∞∑
`=1

∑̀
m=−`

(
iỸ`mG`b̂`m + h.c.

)
. (5)

Several remarks are in order now.
First, these expressions show that there is a fluctuating electric and mag-

netic field around a charge: an expected feature of the quantum Coulomb
field. The amount of fluctuation depends on the quantum state of its
Coulomb field. Physically sound states describing the QCF of a charge
at rest are those reproducing the classical result〈

Ê(0,x)
〉

= ne
N

r2
,

〈
Ĥ(0,x)

〉
= 0 . (6)

This condition, however, is satisfied by the infinite number of states. For
example, by any single Fock state |n, {n`m}〉, where n`m is an arbitrary
non-negative integer. It is therefore fundamentally important to ask which
quantum state of the Coulomb field is carried by a charged particle, say an
electron or a proton?

Second, the amount of the fluctuation of the quantum Coulomb field
should be experimentally measurable through the studies of the level shifts
of atoms (especially hydrogen-like for which the techniques of precision spec-
troscopy work best [17,18]; we will come back to this point later). This is a
simple conclusion well founded on the success of QED to explain the Lamb
shift. The Lamb shift, originally the splitting of the 2S1/2 and 2P1/2 levels
in hydrogen, results from the coupling between the orbiting charge and the
fluctuating vacuum field [19,20,21].

Third, one easily sees from (4) that the relative fluctuation of the QCF
with respect to its classical counterpart is (i) independent of the distance
from the charge center as both decay as 1/r2 and (ii) decays as the inverse
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of the charge carried by the QCF (fluctuations are charge independent while
the classical field goes linearly with charge). The (i) effect is in stark contrast
to what one finds in QED, where the relative modification of the classical
Coulomb field by virtual electron–positron pairs is short-ranged [21,22].

4. Energy associated with the quantum Coulomb field

Having realized that there are many quantum states of the Coulomb field
that are physically allowed, we propose a simple physically-motivated ap-
proach allowing for finding a set of distinguished states of the QCF. Namely,
we propose to “label” different configurations of the QCF by an energy as-
sociated with them. To this end, we define electromagnetic energy operator
on the surface t = 0

ÊC =
1
8π

∫
d3x : Ê(0,x)Ê(0,x) + Ĥ(0,x)Ĥ(0,x) : , (7)

where :: stands for normal ordering [23].
In classical electrodynamics the expression (7) corresponds to the energy

of field configurations. In the QCF theory states reproducing on average the
classical Coulomb field do exist, and we feel it justified to claim that their
energy should be computed from the quantum version of the classical energy
functional. However, since Ê(0,x) and Ĥ(0,x) scale as 1/r2, this operator
has problems due to the divergence of the integral at r = 0. Moreover,
it does not have the interpretation of the generator of the time-translation
symmetry (the Hamiltonian). We will discuss the former problem below and
mention here that it is our assumption to assign the energy to the excitations
of the QCF through the operator (7).

Putting operators (4) and (5) into the above expression, we obtain

ÊC =
εc
e2
Q̂2 +

εc
e2

∞∑
`=1

γ`Ê` , (8)

Ê` = b̂†`0b̂`0 +
β`(−1)`

2

(
b̂2`0 + b̂†2`0

)
+
∑̀
m=1

[
b̂†`mb̂`m+b̂†`,−mb̂`,−m+(−)m+`β`

2

(
b̂2`m−b̂2`,−m+h.c.

)]
. (9)

We introduced above

β` =
4−G4

``(`+ 1)
4 +G4

``(`+ 1)
, γ` =

2
G2
`

+
G2
``(`+ 1)

2
,
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and

εc =
e2

8π

∫
d3x

r4
. (10)

The latter corresponds to the classical electromagnetic energy of a unit
charge at rest. We do not propose any new solution to the obvious lack
of convergence of this integral at r = 0. On general grounds, however, we
expect that in any such solution, the parameter εc should be of the order of
the electron’s rest mass me. This is in line with the century long efforts to
associate the mass of an electron with the energy of its field [24] (see also
Ref. [25] for the relevant hadronic example). We shall also argue below that
the actual spectroscopic consequences of the quantum theory of Coulomb
field will be in a good position to determine the numerical value of εc.

To look for the spectrum of the electromagnetic energy operator, we
diagonalize (8). This is done by applying the Bogolubov transformation

B̂`m = cosh(u`m)b̂`m − sinh(u`m)b̂†`m , (11)

where assuming that m > 0

u`0 =
(−)`+1arctanh(β`)

2
, u`,±m =

∓(−)m+`arctanh(β`)
2

. (12)

The transformation (11) can be easily expressed as the explicit function of
` employing

arctanh(β`) = ln
2

G2
`

√
`(`+ 1)

.

Finally, we note that [B̂`m, B̂
†
`′m′ ] = δ``′δmm′ and [B̂`m, B̂`′m′ ] = 0 hold for

the redefined operators.
Putting Eqs. (11) and (12) into Eqs. (8) and (9), we find

ÊC = Q̂2 εc
e2

+
εc
2e2

∞∑
`=1

γ`

(√
1− β2

` − 1
)

(2`+ 1)

+
2εc
e2

∞∑
`=1

∑̀
m=−`

√
`(`+ 1)B̂†`mB̂`m , (13)

where we have employed the identity γ`
√

1− β2
` = 2

√
`(`+ 1) to simplify

the result.
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The first term in (13) recovers the classical electromagnetic energy of a
charge at rest. The second one is the contribution of the zero point modes
(see also [23])

εc
2e2

∞∑
`=1

γ`

(√
1− β2

` − 1
)

(2`+ 1) ≈ −5× 10−2 εc
e2
. (14)

The third term in Eq. (13) provides the spectrum of the electromagnetic
energy operator, which is degenerate for all m in every ` sector. We define
the ground state of ÊC, say |G〉, as the state that is annihilated by all B̂`m
operators. For generality, we assume that it carries n quanta of the electric
charge: Q̂|G〉 = ne|G〉. The excited states are created in the n-charged
sector by acting (an arbitrary number of times) B̂†`m on |G〉. It is worth to
mention that the excitation gap to the ` sector equals

2εc
√
`(`+ 1)
e2

, (15)

which is a huge number assuming that indeed εc = O(me). Given the phys-
ical interpretation of the electromagnetic energy operator and an expected
huge gap in the excitation spectrum, we propose the ground state |G〉 as
the natural candidate for representing the quantum state of the Coulomb
field of a stable charged particle (e.g. an electron or a proton [26]). Note
that both the charged vacuum state |n〉 and the ground state |G〉 are spher-
ically symmetric. The expectation value of the energy operator is lowest in
the state |G〉 (the state |n〉 is not an eigenstate of this operator). In what
follows, we describe some of its basic properties.

First, we note that the expectation value of the electric and magnetic
field operators, calculated in the ground state |G〉, reproduces the clas-
sical result (6). States supposed to correspond to moving particles can
be constructed because the generators of the boosts are explicitly known
(see Refs. [27, 28] and the Appendix). For example, the quantum state of
the Coulomb field of the charge moving in the +z direction with velocity
v = tanhλ is

|G,λ〉 = exp
(
−iλM̂03

)
|G〉 ,

where M̂03 is the boost operator (A.6).
We expect that the averages,

〈G,λ|Ê(0,x)|G,λ〉 , 〈G,λ|Ĥ(0,x)|G,λ〉 ,
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computed as the functions of x on the surface t = 0, are equal to the classical
fields of a moving charge crossing this surface at x = 0 [29]

Ecl = N
ne

r2
1− v2(

1− v2 sin2 θ
)3/2 , Hcl = v ×Ecl .

The theory has enough structure to prove that it is the case, but as a check we
have verified the result by a direct calculation to the order λ4. We also note
that the action of the boost operator on the ground state |G〉 additionally
populates the (`,m) modes in the |G,λ〉 state. This allows for the addition
of the non spherically-symmetric component to the quantum Coulomb field,
which is indispensable for the reproduction of the above classical result.

Second, it turns out that |G〉 is a squeezed vacuum state |n〉 (see Ref. [30]
for the discussion of the squeezed states in the quantum optics context)

|G〉 = exp
(
D̂
)
|n〉 , D̂ =

1
2

∞∑
`=1

∑̀
m=−`

u`m

(
b̂†2`m − b̂

2
`m

)
. (16)

This is easily seen from the following identity exp(−D̂)B̂`m exp(D̂) = b̂`m .
Moreover, the overlap between the ground state and the charged vacuum
state is

〈n|G〉 =
∞∏
`=1

[
cosh

(
arctanh (β`)

2

)]−`− 1
2

≈ 0.997 .

The two spherically-symmetric states are, therefore, quite similar. Interest-
ingly, their overlap is independent of the fine structure constant α = e2.
Thus, it is of purely geometric nature. Furthermore, we can study the pop-
ulation of the (`,m) modes,

〈G|b̂†`mb̂`m|G〉 = sinh2

(
arctanh(β`)

2

)
=

γ`

4
√
`(`+ 1)

− 1
2
. (17)

It equals about 3× 10−3 for ` = 1, decays motonically with `, and for `� 1
it approaches 1/64`4: only low (`,m) modes are noticeably populated.

Third, while the expectation value of the field operators (4) and (5)
reproduces the classical result, their fluctuations in the ground state have
absolutely no classical counterpart. This is so because the long-range fields
are now described by a quantum field theory, and not just by the classical
functions. Indeed,〈

Ê (0, r, θ, ϕ) Ê
(
0, r, θ′, ϕ′

)〉
=
n2e2

r4

+
1
r4

∞∑
`=1

2`+ 1
G2
`

η` P`
(
cos θ cos θ′ + cos(ϕ− ϕ′) sin θ sin θ′

)
,
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where η` = 1 when the average is calculated in the n-charged vacuum state
|n〉 and

η` =
G2
`

√
`(`+ 1)
2

> 1

when it is calculated in the ground state |G〉. (P` stands for the Legendre
polynomial.) This shows explicitly that the charged states |n〉 and |G〉 (i)
differ by the pattern of the fluctuations of the electric field associated with
them; (ii) are spherically symmetric.

5. Discussion of the results

To start, this work proposes that there can be a fluctuating long-range
electromagnetic field around every charge. This field originates from the
quantum fluctuations of the Coulomb field. We propose that it should be
considered in addition to the fluctuating vacuum field studied in the stan-
dard QED framework. Since such a field has not been observed yet, the
confirmation of its presence will fundamentally update our understanding of
charged particles. It is thus critical to find out the experimentally accessible
consequences of this conjecture.

General experience with quantum systems interacting with the fluctuat-
ing electromagnetic fields is that (at the very least) their energy levels are
subjected to shifts [21]. We propose to employ the spectroscopic measure-
ments of the energy levels of the bound systems such as hydrogen, muonic
hydrogen, muonium, etc. in the hunt for the experimental evidence of the
quantum nature of the Coulomb field.

To quantify the expected level shifts, one can adopt the perturbative
formalism analogous to the one employed for the calculation of the Lamb
shift [19,20,21,31]. In this approach the quantum state of the Coulomb field
of a nucleus is modeled by our ground state |G〉 (16). The field operators
used for writing down the coupling between the orbiting charge and the
fluctuating Coulomb field are given by Eqs. (4) and (5). The excited states
of the QCF and their energies (both required in the perturbative expansion)
are provided by the eigenstates and eigenvalues of our electromagnetic energy
operator (13). Since the eigenvalues depend on εc, we propose to treat it
as the (only) free parameter and argue that its value can be experimentally
determined from the spectroscopic measurements. Naturally, the larger εc
the smaller the level shift due to the QCF should be.

The magnitude of the level shifts resulting from the presence of the QCF
is bounded by the discrepancies between the experimental measurements and
the QED calculations. For example, the frequency of the 1S–2S transition in
hydrogen is experimentally known with the fantastic accuracy of about 40Hz
corresponding to the relative accuracy of about 1 part in 1014 [17,18]. Even
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more amazingly, this result is expected to be significantly improved in the
foreseeable future [18]. The QED calculations match it with the relatively
thick error bar of several tens of kHz [22]. The most of this theoretical
uncertainty comes from the imprecise knowledge about the “distribution
of charge” in a proton. Thus, the QCF corrections to this transition are
bounded from above by a few tens of kHz.

The above-outlined possibility to consider additional level shifts in hydro-
gen-like atoms is especially appealing in the light of the current discrepancies
between the standard QED predictions and the spectacular recent measure-
ments of the Lamb shift in muonic hydrogen [11]. It is also quite natural
given the fact that precision spectroscopy has been serving for a long time
as the Rosetta Stone for deciphering the laws of quantum physics [18]. The
formalism proposed in this manuscript should lay the ground for the studies
of the spectroscopic consequences of the quantum Coulomb field. The work
along these lines is already ongoing [31].

This work is supported by U.S. Department of Energy through the
LANL/LDRD Program (B.D.) and by the project MA4851/1-1 of the
Deutsche Forschungsgemeinschaft (P.M.). We thank Dr. Malcolm Boshier
for drawing our attention to Ref. [11] and for useful discussions. We thank
Prof. Andrzej Staruszkiewicz and Dr. Andrzej Herdegen for insightful com-
ments about the theory of the quantum Coulomb field.

Appendix

We use spherical harmonics defined as

Y`m(θ, ϕ) = (−)(m+|m|)/2i`

√
2`+ 1

4π
(`− |m|)!
(`+ |m|)!

P
|m|
` (cos θ) exp(imϕ) , (A.1)

following the convention introduced by Staruszkiewicz in Ref. [3]. For the
convenience of the reader we list the first three ` sectors:

Y00 =
1√
4π

, Y10 = i

√
3
4π

cos θ,

Y1,±1 = ∓i
√

3
8π

sin θ e±iϕ , Y20 =

√
5

16π
(1− 3 cos2 θ) ,

Y2,±1 = ±
√

15
32π

sin(2θ)e±iϕ , Y2,±2 = −
√

15
32π

sin2 θe±2iϕ .



On the Quantum Coulomb Field 393

In particular, this implies that

Y ∗`m(θ, ϕ) = (−)m+`Y`,−m(θ, ϕ) ,

L̂±Y`m =
√
`(`+ 1)−m(m± 1)Y`,m±1 , (A.2)

where
L̂± = e±iϕ

(
± ∂

∂θ
+ ictgθ

∂

∂ϕ

)
.

In our manuscript, we use the redefined spherical harmonics Ỹ`m. Consider-
ing m > 0, one has

Ỹ ∗`m(θ, ϕ) = (−)m+`Ỹ`m(θ, ϕ) , Ỹ ∗`,−m(θ, ϕ) = −(−)m+`Ỹ`,−m(θ, ϕ) .
(A.3)

Noting that∑̀
m=−`

Ỹ`m(θ, ϕ)Ỹ ∗`m(θ′, ϕ′) =
∑̀
m=−`

Y`m(θ, ϕ)Y ∗`m(θ′, ϕ′) ,

we obtain∑̀
m=−`

Ỹ`m(θ, ϕ)Ỹ ∗`m(θ′, ϕ′) =
2`+ 1

4π
P`(cos θ cos θ′ + cos(ϕ− ϕ′) sin θ sin θ′) ,

(A.4)
where P` is the Legendre polynomial. Eqs. (A.2), (A.3) and (A.4) are use-
ful in the derivation of both the electromagnetic energy operator and the
expression for the two-point correlation function.

The boost operator M̂03, that we use in the paper, was calculated in
Ref. [27] (see also Ref. [28]). We list it below for reader’s convenience

M̂03 =
1√
6πe

Q̂
(
ĉ10 + ĉ†10

)
+

i

4πe2

∞∑
`=2

∑̀
m=−`

√
`2 − 1
4`2 − 1

√
`2 −m2

(
ĉ†`mĉ`−1,m − h.c.

)
, (A.5)

which in our notation corresponds to

M̂03 = i

√
2
3π
Q̂
(
b̂10 − b̂†10

)
+

i
∞∑
`=2

∑̀
m=−`

√
`2 − 1
4`2 − 1

√
`2 −m2

(
b̂†`mb̂`−1,m − h.c.

)
. (A.6)

We mention in passing that the derivation of the boost operators (A.5) and
(A.6) assumes that spherical harmonics are given by Eq. (A.1).
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