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In this paper, we integrate the (3+1)-dimensional Dirac equation for
massless fermions, minimally coupled at static electric and magnetic exter-
nal fields. For intense fields, the differential equation admits a closed-form
analytical solution, expressed by biconfluent Heun functions (BHE). The
obtained bi-spinors allow us to calculate the components of the four-current,
and to obtain a special relation for the quantized energy as well. By can-
celling out the electric field, the general relation of energy quantization
finally leads to a discrete spectrum, similar to that obtained by Novoselov
in graphene layers.
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1. Introduction

The revolutionary experimental results of the researchers K.S. Novoselov
and A.K. Geim regarding the relativistic quantum effects of the Dirac
fermions in graphene layers met a wide international interest, being true
challenges in the theoretical and experimental studies developed in quan-
tum mechanics [1, 2, 3].

The most recent experiments with graphene opened new ways in deep
research of this wonder-material with his special structure of electronic lay-
ers. Due to its uncommon electronic spectrum, having the zero width of the
forbidden band and electronic states very close to zero energy, the investi-
gation of this semiconductor led to a new theory in the condensed matter
physics. Some relativistic quantum phenomena can now be experimentally
tested, even if some of them are not observable in high energy physics.

It is to be noticed that the conduction is performed by the tops of the
cones, near the Dirac’s points K and K ′ [4], closed to the margins of the
Brillouin zone [5], due to the disappearance of the forbidden zone.
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An important peculiarity is the extending the fully occupied band struc-
ture between these points, which leads to a linear dispersion relation (E =
±~ |k| νF ) as a proof for the existence of the massless relativistic particles.
The experiments showed that the charge carriers are precisely the massless
Dirac fermions [6], so that the low-energy electronic states between the above
mentioned points can be described by the help of Dirac equation.

The effective “vacuum” medium offered by graphene helps to put into
evidence both the relativistic quantum tunneling described by the Klein
paradox, and some other relevant phenomena offered by quantum electro-
dynamics [7]. Consequently, the penetration of relativistic particles through
large potential barriers can be experimentally tested using this material [8].

Experimental realization of the quantum Hall effect in graphene at the
room temperature [9] is explained by the fact that the transmission dimin-
ishes with the increase of the potential barrier, while the discrete energetic
states of the positrons inside the barrier get aligned with the continuous en-
ergetic states of the electrons outside the barrier. The mixture of the wave
functions of electrons and positrons lead to a high tunneling probability, as
described by the Klein paradox [8].

It is important to mention that the wave functions corresponding to the
quantum states of different physical systems (e.g. the isotropic harmonic
oscillator, the three-dimensional oscillator, and the double anharmonic os-
cillator) lead to Heun polynomials, having a nice behavior at the singular
points [10]. The advantage of these functions is that they help to obtain
exact solutions in theoretical estimations of some macroscopic quantities.
The polynomial solutions of the Heun equation are specially important and
have been analyzed by different authors [11,12,13].

The aforementioned papers show the importance of the Heun equation
and its wide possibility of investigation.

This paper generalizes the results recently obtained by the author [14]
concerning the biconfluent Heun equation, as being satisfied by the spinor ξ
and ϕ components in an intense electric field [15]. The wave function, the
general relation of the quantized energy, and the dependence of the currents
and charge density on the external fields are also obtained.

2. The Dirac-type equation

Following the same idea as in paper [14], we start with the (3+1)-
dimensional Dirac equation written for the massless fermions, minimally
coupled in the electric and magnetic external fields

γiDiΨ = 0 , (1)
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where Di is the gauge covariant derivative,

Di = ∂i − iq Ai , (2)

with the four-potential Aii=1,4 corresponding to orthogonal electric and mag-
netic fields E0, B0, oriented along Ox and Oz axes

A2 = B0 x ; A4 = E0 x . (3)

We shall use the natural unit system ~ = c = 1 and make allowance for
the von Neumann matrices

γµ = −iβαµ ; γ4 = −iβ . (4)

Here we used the Dirac representation

β =
(
I 0
0 −I

)
; αµ =

(
0 σµ

σµ 0

)
,

where σµ are the Pauli matrices.
We look for a solution of the Dirac equation

γµ(∂µ − iqAµ)Ψ + γ4(∂4 − iqA4)Ψ = 0 (5)

of the form
Ψ(x, y, z, t) = ei(pyy+kz−wt)

(
ξ(x)
ϕ(x)

)
, (6)

where w is the energy of the chiral fermions.
For the spinors with two components ξ and ϕ, the Dirac equation yields

the system

σ1ξ′ + iσ2(py − qB0x)ξ + iσ3kξ = i(w + qE0x)ϕ ,

σ1ϕ′ + iσ2(py − qB0x)ϕ+ iσ3kϕ = i(w + qE0x)ξ , (7)

where “ ′” stands for the derivative with respect to x.
Using the usual procedure, we write ϕ(x) given by the first equation of

the system (7)

ϕ = − i

(w + qE0x)

[
σ1ξ′ + iσ2(py − qB0x)ξ + iσ3kξ

]
(8)

take its derivative, and introduce the result into the second equation (7).
Then we are left with

ξ′′ − qE0

w + qE0x
ξ′ − iq

w + qE0x

[
(wB0 + pyE0)σ1σ2 + E0kσ

1σ3
]
ξ

=
[
− (w + qE0x)2 + (py − qB0x)2 + k2

]
ξ . (9)
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3. Massless particles in static fields

Due to its complicated form, equation (9) has been approached by a
first-order perturbative method in paper [14]. If the electric and magnetic
fields are intense, this formalism is not applicable anymore and we proceed
to solve the equation (9) which, for k = 0, becomes

ξ′′ − qE0

w + qE0x
ξ′ − iq

~(w + qE0x)
[
(wB0 + pyE0)σ1σ2

]
ξ

=
[
−(w + qE0x)2

c2~2
+

1
~2

(py − qB0x)2
]
ξ , (10)

where we have reintroduced numerical values of the constants c and ~, in
order to estimate the eventual numerical values of the obtained quantities.
The spinor ξ writes as a one-column matrix

ξ =
(
ξ1(x)
ξ2(x)

)
.

Introducing the new variable

x∗ = x+
w

qE0
(11)

as well as the parameters

p = py + w
B0

E0
; b = qB0 ; d = qE0 , (12)

equation (10) leads to

d2ξ1,2
dx2
∗
− 1
x∗

dξ1,2
dx∗

+
εp

~x∗
ξ1,2 +

1
~2c2

[
d2x∗

2 − b2c2
(
x∗ −

p

b

)2
]
ξ1,2 = 0 (13)

with ε = ±1
We now perform the change of variable

ξ(x∗) = x∗
2 exp

[
a1x∗

2 + b1x∗
]
y(x∗) , (14)

where

a1 = ±
√
b2c2 − d2

2~c
; b1 = − bp

2a1~2
= ∓ bpc

~
√
b2c2 − d2

, (15)
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and the condition bc > d has been assumed. Equation (13) then becomes

d2y

dx∗2
+

4a1x∗
2 − bp

a1~2x∗ + 3

x∗

dy

dx

+
{[

p2

~2

(
b2

4~2a2
1

− 1
)

+ 8a1

]
x∗ +

p

~

[
ε− 3

2
b

a1~

]}
y

x∗
= 0 , (16)

or, with the new change of variable x∗ = λz,

d2y

dz2
+

4a1λ
2z2 − bp

a1~2λz + 3

z

dy

dz

+
{[

p2

~2

(
b2

4~2a2
1

− 1
)

+ 8a1

]
λ2z +

pλ

~

(
ε− 3

2
b

a1~

)}
y

z
= 0 . (17)

This equation can be written as

d2y

dz2
+
−2z2 − βz + α+ 1

z

dy

dz
+
[
(γ − α− 2)z − δ + β + βα

2

]
y

z
= 0 (18)

with standard initial conditions [15]

y(0) = 1 ; y′(0) =
δ + βα+ β

2α+ 2
.

The solution of equation (17) is, therefore, the function HeunB (α, β, γ, δ, z)
[16], where

a1 = ± 1
2~c

√
b2c2 − d2 = − 1

2λ2
; b1 =

bpλ2

~2
; α = 2 ;

β = −2bpλ3

~2
; γ =

p2λ2

~2

(
b2λ4

~2
− 1
)

=
p2d2λ6

~4c2
; δ = ∓2pλ

~
.(19)

The behavior of the wave function, and, consequently, of the spinor ξ
is dictated by the exponential function ea1x∗2+b1x∗ . If the coefficient a1 is
positive, the solution goes to infinity. This fact determines us to take a1 < 0.

The solutions of the equation (13), in their final form, therefore are

ξ1 =
(x∗
λ

)2
exp
[
−x∗

2

2λ2
+
bpλ2

~2
x∗

]
HeunB

(
2,−2bpλ3

~2
,
p2d2λ6

~4c2
,−2pλ

~
;
x∗
λ

)
,

(20)

ξ2 =
(x∗
λ

)2
exp
[
−x∗

2

2λ2
+
bpλ2

~2
x∗

]
HeunB

(
2,−2bpλ3

~2
,
p2d2λ6

~4c2
,
2pλ
~

;
x∗
λ

)
.

(21)
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The components of the other spinor satisfy an equation of the same type
which, in our case, is identical with (13), that is

d2ϕ1,2

dx∗2
− 1
x∗

dϕ1,2

dx∗
+

εp

~x∗
ϕ1,2 +

1
~2c2

[
d2x∗

2−b2c2
(
x∗−

p

b

)2
]
ϕ1,2 =0 .

The solutions of the two equations are connected by the following functional
algebraic equations of mixed type

ϕ1(x∗) = − ic/d
x∗

[
~
dξ2
dx∗
− b
(
x∗ −

p

b

)
ξ2

]
,

ϕ2(x∗) = − ic/d
x∗

[
~
dξ1
dx∗

+ b
(
x∗ −

p

b

)
ξ1

]
. (22)

4. The conserved current density components

The results obtained so far allow us to calculate the components of the
four-current, by means of the general relations

jnµ = qΨ+αµΨ ,

ρne = qΨ+Ψ = q
[
|ϕ1|2 + |ϕ2|2 + ξ21 + ξ22

]
,

where n = 0, 1, 2, . . . Since ξ1 and ξ2 are real, while ϕ1 and ϕ2 are purely
imaginary, the only non-zero component is jy, that is

jy = qΨ+α2Ψ = 2iq(ϕ2ξ1 − ϕ1ξ2)

=
2cq
dx∗

[
~
(
ξ1
dξ1
dx∗
− ξ2

dξ2
dx∗

)
+ b

(
x∗ −

p

b

) (
ξ21 + ξ22

)]
. (23)

We now impose the condition that the parameters α and γ are related by

γ = 2(n+ 1) + α ; n = 0, 1, 2, . . . (24)

which leads to
p2d2λ6

~4c2
= 2(n+ 2) ,

or, if we use (12) and (19),

w = −E0

B0
py + c

√
2(n+ 2)~qB0

[
1−

(
E0

cB0

)2
]3/4

, (25)
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which is the final expression for the quantized energy. As one observes, if the
electric field vanishes, the last formula yields the energetic discrete spectrum
obtained by Novoselov in graphene layer [6]

wE=0 = νF
√

2(n+ 2)~qB0 .

Recently, in addition to the above mentioned integer and the fractional
quantum Hall effect, Novoselov has observed relativistic effects [6] in
graphene samples whose crystalline structure has two atoms per unit cell.
In this case, there exists a linear energy-momentum relation for electrons
w = p vF , which in the presence of a magnetic field becomes

w = ±
√

2qB0~v2
F

(
ν + 1

2 ±
1
2

)
; ν = 0, 1, 2, . . .

being connected to chirality by the term ±1/2.

5. Conclusion

Using the (3+1)-dimensional Dirac equation, we have described the be-
havior of massless fermions disposed in a system of mutually orthogonal
electric and magnetic fields. In the presence of an intense electric field, and
of a magnetic field orthogonal to the sample plane, the differential equation
admits a closed-form analytical solution, the components of the spinors ξ
and ϕ satisfying the biconfluent Heun differential equation [16]. The wave
function, the dependence of the currents and charge density on the exter-
nal fields, as well as the general quantized expression for energy are also
obtained. If the electric field vanishes, our result becomes similar to that
obtained by Novoselov in graphene layers.

There exists a number of experimental and theoretical investigations on
this subject [17,18,19], but we feel that our theoretical results are more gen-
eral. We also mention, as a new result, the expression for spinor components
in closed analytical form, in terms of the functions HeunB, rediscovered and
widely applied in physics and chemistry.
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