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It is important to obtain effective operators by integrating out high
energy degrees of freedom in physics. We suggest a general method of
calculating accurate irrelevant operators in a scattering process without use
of equation of motions. By using this method, for example, we will represent
a complete set of dimension six operators in QCD, which are induced from
physics beyond the standard model, supersymmetry and universal extra
dimension. We will also show an example of effective anomalous 4-Fermi
interactions induced from a little Higgs model.
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1. Introduction

It is important to obtain effective operators by integrating out high en-
ergy degrees of freedom in physics. In a quantum field theory, we can obtain
effective Lagrangian by integrating out high energy momentum and heavy
particles. And their effects are introduced into irrelevant operators in a low
energy effective theory. Therefore, it is important to obtain effective irrel-
evant operators accurately for a search of new physics. As for high energy
physics, search for physics beyond the standard model (SM) is one of the
main subjects in Large Hadron Collider (LHC). For both theoretical and
numerical analyses to search new physics, we stress again that it is impor-
tant to obtain accurate irrelevant operators because they include the hints
of new physics.
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There have been some works of listing higher dimensional operators in
the field content of the SM (or also including right-handed neutrinos.) Al-
lowed irrelevant operators in an effective theory should be determined by
symmetries existed in the theory. Let us focus in this paper, mainly on di-
mension six operators. Possible dimension six operators within the SM field
content were listed in Ref. [1]. Meanwhile, this set was not irreducible, and
Refs. [2,3] have obtained a complete set systematically. However, Ref. [4,5,6]
insisted that 80 numbers of complete set can be diminishable to 59 by using
equation of motions (EOMs).

In this paper, we show a general method of calculating accurate irrele-
vant effective operators in a scattering process without use of EOMs. By
using this method, we will represent dimension six operators induced from
supersymmetry (SUSY) |7], universal extra dimension (UED) [8], and little
Higgs model (LH) [9]. We will show coefficients of dimension six operators
in QCD by integrating out sparticles (KK particles) in SUSY (UED). We
will also show coefficients of 4-Fermi operators originating from anomalous
interactions in LH. They are promising candidates of beyond the SM, and
our analyses will shed lights on the search of beyond the SM. Our method
can apply to other quantum field theories in any dimensions, so that we
believe this technique is very useful in a lot of researches in physics.

2. Method of obtaining effective operators

Let us show a general method of obtaining accurate irrelevant operators
which are useful for calculating a scattering processes in an effective the-
ory. The effects of beyond the SM must contain in higher order irrelevant
operators in general. Thus, when we integrate out new particles and high
momentum (physics) above an energy scale of A, the effective theory Leg
can be expanded as a power of A~ ! as

1 1
Leg=Lo+ L1+ —

TLit et (2.1)

where Ly is the SM Lagrangian, and £1 (L2) represents dimension five (six)
operators. As for dimension five operator, there is only one operator writ-
ten within the SM field contents, which induces Majorana neutrino masses.
Thus, let us mainly focus on a non-trivial next lowest operator, i.e., dimen-
sion six operators

L= ¢00, (2.2)

where ¢; is a coefficient, and ¢ is the index of all possible dimension six oper-
ators allowed by the SM gauge symmetry. How can we calculate dimension
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six operators in the effective Lagrangian by integrating out high energy de-
grees of freedom? One correct answer is to take a path integral of the full
theory as

7 = /D¢SMD¢}L€"S[¢SM’¢h] 7 (2.3)

where ¢gn and ¢y, represent the SM fields and heavy fields, respectively. By
integrating out ¢ as

gm%m:/p%ﬁ%MM (2.4)

we can obtain an effective action

Seft[Psm] = Ssm + Si[psm] + Sapsm] + -+ -, (2.5)

where S; = (1/A) [ £y and Sy = (1/42) [ Ly. Coefficients of dimension six
operators have been basically calculated in Sa[dsm], by which a S-matrix
element in this effective theory could be estimated.

Let us reveal more about the strategy to obtain irrelevant operators. We
now consider a Lagrangian such as

Lld1, dn) = LId1] + Fi[di)dni + 5Kij[¢1) dnidnj (2.6)

where ¢;(¢p,) represent light (heavy) scalar fields, and i denotes a index
of scalar fields. The effective Lagrangian can be obtained using Gaussian
integral of ¢y, as

eiSuo —exp | L Trlog K1)~ 5 / dhed'yFi[o1)(@)K;; [01) (@, y) Fyld) (v)
(2.7)

Note that Eq. (2.7) is exact when the Lagrangian is up to O(¢7). Although
the operators in Eq. (2.7) are non-local, they can be expanded by infinite
number of local operators. Noting mass of ¢;(¢p) as u(A), the non-local
operators can be expanded in powers of u/A. Then, K[¢;] in Eq. (2.7) is
divided into two parts as

K(g)] = K" + K'[¢/], (2.8)

where K" is the kinetic term of ¢, and K'[¢;] is ¢; dependent part of
K[¢;]. Expanding momentum of K![¢] by A, and regarding K'[¢;]/ K" ~
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O(u?/A?) < 1, Trlog K [¢;] and K[¢;]~! are given by
(_1 n+1

Trlog K[¢] = Trlog (Kh> Ty i EV" ((Kh) g [¢>l]>n . (2.9)

n

Ko™ = (K" + Kl[dn])flw (Kh)fl— (Kh>7lKl[¢l] (Kh)*u .
(2.10)

where (K")~! = (K")~!(z,y) is the propagator of ¢, except for imaginary
factor . Then, the action, Seg, can be written as

Surlorl = [ o |clonl+ 5 [ atu'ty - a) (£ (@)K fol)

i [ty ()7 @K @)W () o) K o) + -

-3 [ dvmie {97 @)

- [ R ) (K7 K el +- | Blal)] )

In this expression, we can obtain an effective theory with infinite number of
local operators.

We comment that the perturbative expansion in Egs. (2.9) and (2.10)
does not depend on F|¢;] in Eq. (2.7). We can also consider a theory wit
interactions of qb%,qb%, -+, where they can be treated perturbatively. For
example, if there is an interaction, qﬁi, with coupling G;j, the Lagrangian
is given by

L' b, on] = Lo, on) + %Gijk[¢l]¢h,i¢h,j¢h,k~ (2.12)

By integrating out ¢y, the effective action, Slz;[¢;], is given by
Strlon) = Sunlo) + [ d'zdin(a)Gunlon(z)

+//&¢wwm@maﬁmm@mmmw~-@m>

with dimensionful couplings A;;; and Bjjkimn. They are calculated as

1) -
A _ iS;,
'ij(x) 5G”k($) € eft

52 o
Bijkimn(, = 5%
himn(@Y) = S G @)

Gt (2.14)

Goro (2.15)
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Apparently, Ayji, is zero. Bijrimn 18 ((Oh,i0h,jOn k)2 (Ohi1PhmPhm)y)n, Where
(O)}, is defined by

(0)), = /D¢>h O e Elovonl (2.16)

In this stage, S.z[¢#;] is explicitly obtained. Before showing a concrete cal-
culation method, we consider a role of EOMs when we calculate irrelevant
operators.

We now stand in a position of showing our accurate method of calculating
irrelevant operators without use of EOMs. Let us show a concrete calculation
by using a toy model. We consider a Lagrangian

L= i@ — m)y + hp(id — M) + 3(8,0)” — 3 M>¢”
—9¢ (Vyn + Yptn) (2.17)

where 9y (¢,) denotes a light (heavy) Dirac fermion and ¢ is a heavy real
scalar with m < M. We will obtain an effective action of v; after integrating
out heavy fields, where irrelevant operators must include traces of heavy
particles and their interactions at high energy scale. Let us calculate the
effective action by integrate out 1y, ¢, and show dimension six operators by
expanding 1/M™. The effective action should be given by

eiSeft V1] — /D¢D¢hp¢hei5[wz,wh,¢} 7 (2.18)
and firstly, by integrating out H, it becomes
— [ DoDUDD expi{ Stk ) + ()~ AR )
XK (¥n — Kt A) - AKg A}
= (DetFo) expi{ Secltn, o] ~ ARG A} (2.19)

where

k1 ,
-1 _ —ip(x—y) — _;p@Wn) () _
K; /(27()4}/)_ e iDW (x —y),

A =g, A=giho. (2.20)
The second term in Eq. (2.19) is written by
ARG = -} [ dbad'yo(@)iR (e p)oly) = ~ 105K 0, (221)

0K (2,y) = —2ig™y(x)D (z — y)vu(y) . (2:22)
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Next step is an integration of ¢, which gives

eiSenlttl — (Det i) / ngexpi{sfree[m] — 59 (ffO* 5@ ¢}

— DetKO eisfrcc [wl]
Det% (ko + (5[(—)

Det Ky . 1 > (_1)n+1 S 1\
_ 0 ) exp { iSheeltht] — e ST (RIR) Y (223
(Deé%) xp{z el = 103 (R 9R) 1 229)

4
KN z,y) = dp =1 —ise—y) _ jp(@) (z—1v). (2.24)
o (2m)* p* — M?

Determinant of K and K are cancelled by normalization, so that we finally
obtain the effective action of ¢; as

. Xyl n
Sest[t1] = Streelthr] + ;Trz:l (171 <K0_16K> . (2.25)

Higher dimensional operators are included in the second term of Eq. (2.25),
thus dimension six operators are calculated from the second order of 1/M"
expansion. A space integration of O(1/M?) gives

_

4
,4/ Ay diky diks dihy

= —ig (2m)
(2m)* (2m)* (2m)* (2m)*

/d4xd4yd4zd4wf(0_1(x,y)df((y, 2)Ky (2, w)0K (w, z)

464 (k1 — ko + k3 — ky)

S U K 11 P —y 1
@m)ip2 — M2 Y e — MY (p 4 Ky — k)2 — M2
— 1
ko) ——— i (k 2.2
x 1y ( 2)¢+k4*Mwl( 1) (2.26)
and integration of all momenta p,k;, (i = 1,--- ,4) with k; < M induces
4-Fermi operators
N -
Our(z) = 1092 M2 [ — (D) (Pryun) + 2 (D) (¢z¢z)] - (2:27)

These are the dimension six operators in this model. Notice that accurate
coefficients are automatically obtained without care of symmetric factors.
Other higher order operators can be calculated similarly.
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3. Dimension six operators induced from new physics

By using the calculation method represented in the previous section,
we concretely calculate coefficients of dimension six operators induced from
some candidates of new physics, SUSY, UED, and LH. We obtain coef-
ficients of dimension six operators in QCD by integrating out SUSY and
UED particles. We also obtain coefficients of 4-Fermi operators originating
from anomalous interactions induced from LH.

3.1. SUSY

Let us calculate coefficients of dimension six operators in QCD when
beyond the SM is SUSY. In the SUSY with R-parity, SUSY particles propa-
gate only inside the loop diagrams. Lagrangian of the QCD sector in SUSY
SM is given by

L=Lov+ 1560 —my)g—an (0% +m2)dr — . (0*°+m2)
i abc=7 ~ c . ~ >\ ~ a . ~ Aa ~ a
+50s /GG Gl —igs ) <q£2 ?“%) Go—igsy <q§2 ‘5“%) GY

q q

a a)\b"’ a
+g2 E qL2 = qLG G + g2 E qR2 5 BwGLG™
—_\° —_\°
_\[gs E ngR2 qL+h.C. +\[gs E ngL2 QR+h.C. s (31)

where o represents a sum over all flavors. Effective action should be ob-
tained by integrating out q¢r,, ¢r, and g as

iSefl — / D§Dg1 Dir DirDir €™ . (3.2)

Segr includes all possible irrelevant operators. Calculating results are listed in
Appendix B.1, where coeflicients of dimension six operators, 4-Fermi Oyqqq,
quark—quark-gluon-gluon Oy aa, and quark—quark-gluon Oy are repre-
sented. They are operators up to O(g?), which are useful to estimate phe-
nomenology at LHC [10]. We overview explicit technique to calculate them
in the following discussions.

The first step is integrating out ¢r as

/ DirDire’® = expi |iTr(logK)+ B'K~'B| | (3.3)



412 N. HABA ET AL.

K = Ky+ 90K,
Ky = (0"0, +m3) , §K =igs [2G,0" + (0"G,)] — ¢2G,G*,
¢ A<
B = —V2g, <§a2 PRq) . Bl=—V2g, (qPL2 g“) : (3:4)

where Tr(log K) includes some loop diagrams which have external gluon lines
(e.g. Fig. 1). The second term, BFK~!'B, can be expanded by right-handed
squark propagator as

B'K™'B=B'(1+ K,'6K)'K;'B
=B'K;'B-B'K;'"0KK,'B+ B'K;'$KK;'6KK;'B + - --

(3.5)
£ S

\

R, - &%@%

Fig. 1. Diagrams of gluon external lines.

We take the expansion up to order of g% in Seg. Similarly, G, integration
can be performed, and after ¢g, ¢, integrations, an “effective action” in this
stage is given by

~ _ ~ .~ Jab
$0 =} [ dtadtyjta)t Ko+ K1) 301}, (36)
Ty
where K and K are
~ Jab ab <4 )
Ko | =0"6" — )iy —mg)i (3.7)

= 1% L abe e _ A G A
{KI} = igs [0 (@ — y) G, — dig? Z qj(y)i D(Q)(y—x)g qi(x)

x
Y 4=4qL,qRrR

74zgs/d4 > gl D<q (y — 2){2G 0" + ("G,.)}. D(Q)(zfx)% qi(x)

4=qvL,qr
74ig§/d4zd4w Z g,y >\ D(q)( — 2){2G 0" + (0"G,)}.DD (2 — w)
a=qvL,qr

x{2G,0" + (8"GH)}MD(‘?)(w — x)%aql(a:) + O(gf) , (3.8)
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and

4 .
d’k i —ik(a-y)

. 3.9
2m)* k2 —m? + e (3:9)

DD (g —y) = —iKy ' = / (

Here ¢, 7 denote spinor indexes. Next step is integrating out gluino, and the
final effective action is obtained as

Sur = [ oyt 0 o, )

+ / dtzdiyd*zd*wp(z,y, 2, w)%blsldkl(x, y)%bf([(z, )it + O(K3),

(3.10)
where a(z,y), 8(z,y,z,w) consist of gluino propagator as
a(z, )y = —36"DI(y —2);, (3.11)
Blay z il = g0 [CDO (@~ 2)] [P (w - y)cT]
—éaadab%(ﬁ) (w — ) DD (y - 2)y;. (3.12)

We can know these results by differentiating interacting parts of the effective
action as

d iSef . b
R — e = Za(x’ y)(.l. R (313)
b v
5KI($7Z/)% f(I:O
0 0 iS b d
_ _ e Seft = —a(z,y)ij oz, w)i
6K1(z,w)2‘f 5K1($ay)?]b ;=0 N
+iB(x,y, 2, w)ihe + iz, w, )i
(3.14)

In this stage, all Oyqqq and Ogec at 1-loop level are included in Eq. (3.10)
up to the second order of Kj.
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For example, the 4-Fermi operators all Oyqqq are obtained by picking up
O(g2) order terms from each Ky in BK7K;, which is given by

/ d4xd4yd4zd4wﬂ(x, Y, 2, w)?]bgfﬁl(x, y)f;’f(](z, w),cfll

> /d4xd4yd4zd4w [;5“5&[ [CTD@) (x — z)] [D(g) (w — y)CT}

ik

580D (w — ) DIy - zm]

A
X [—4@g§qj(y)2

The first term is given by

— 2ig? / dediyd s /d4k1 d'ky d'ks d'ks d'pr d'py d'ps d'py
i (2m)t 2m)" (2m)t (2m) (2m)" (2m)* (2m)* (2m)°

Abae Ade
[qj(/@) 5 2 ,-(kl)] [ (k)5 54 (’f3)]
o HUCT@h + mg)lin il(pa +mg)CT]yy i i
2 2 2 2 2 2,2 2
% eikzye—ikweikﬂe—iksze—ipl(x—z)eim(W—y)e—im(y_x)e_ip‘l(w_z), (3.16)

and by integrating out x,y, z, w, p2, p3, p4, this term becomes
_ 9 4/ d*ky d*ky diks diky
(2m)* (2m)* (2m)* (2m)*

5 (ky — ko + k3 — ky)

A\b )\“ A4N©
qj(kz) (kl)] CJl(k4)2 5 2(1@’3)]
x [A(OH*L)M(WT)U + BCa(CT)y] (3.17)
A— d4p1 P1u(p1tki—k2), 3.18
f )[(p1+k1*k2)2*m§][(p1+k1)2*m§} [(p17k1)27m§.,] ’ ( )
m2
B= [k d4”1 g . (3.19)

—m3) [(pr-Hha—k2)>—mi] [ (p1+k1)? —m{] [(p1—k1)2—m§r]
Here A, B are Feynman parameter integral, and they become

12

A— — 192 ——— fal

mg, mg) , B — mg,mg) , (3.20)

6
192 ——— fi(
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when k;, (i = 1,--- ,4) are much smaller than masses of squarks and gluino.
f1, fo are shown in Appendix B.1, and the spinor can be rearranged by
Fierz transformation of Egs. (A.1) and (A.2) in Appendix A. Necessary
Fierz transformations and color factors are shown in Appendix A.

We can summarize all 4-Fermi operators as separating color singlet (’)(gééq

or color octet O((Eéq, which is shown in Appendix B.1.1. When their chi-
ralities are (LL)(LL) or (RR)(RR) (L: left-handed, R: right-handed), the

4-Fermi operators are given by

12
Ol = To529 [ (1 +f2)] (@"q) (@7"d) , (3.21)
12 )\a )\a

On the other hand, when their chiralities are (LL)(RR) or (RR)(LL), the
4-Fermi operators are given by

12 2 o
Ofia = Tg9,39% |:(_f1 + fz)] (@"q) (77"d) . (3.23)
12 ¢ 2@
Oftea = 1097 10939 [ a1 fz} (q’y“Q q) (q”y“Q q’) : (3.24)

As for Oyqq, vertex originates from two parts, aK; and BK K], as

[ dsdtyalo ) Re ) / dhadty [~ 3Dy - 2);]

[ 4zgs/d4 SO 4,)2 DDy — 2){2G,0 + (9°G,)}-
q= QL_,QR
< D5 x);\aqi(x) , (3.25)

/d4xd4yd4zd4wﬂ( Yy 2y w)f‘jb,gflKI(:c Y)i PKr(z,w)

{p(é) (w — y)C’T]

2/d4xd4yd4zd4w édacébd [CTD@(:U — z)}

ik 1j

387D (w — 2), DO (y - zm]
. abe 54 c - 2 = )\b (@) A
< lig ot @ —y)@g] | ~4ig? Y. )5 PDy—0)3 al@)] -

9d=4qL,9R

(3.26)



416 N. HABA ET AL.

Equations (3.25) and (3.26) include not only dimension four operators but
also all higher dimensional operators such as dimension six operator. Higher
dimensional operators have been obtained by expanding the full operator by
k? < A%, where k* and A denote the momentum of the SM particles and
SUSY particles, respectively. Anyhow, we can obtain all Oy in the similar
calculations as 4-Fermi operators, which is shown Appendix B.1.2.

For Oyaa, they can be also obtained in the same manner. Ogca con-

tains in Eq.(3.10), and there are two contributions in the first order of K7 as

/ d*wd ya(e,y) 3 Ki(e,y)§
A -
> [dtadtyate.)iiag? [ ata )] DD - 2) [2G,G

x iD\D(z — x)% ai(z), (3.27)

/ d*zdyo(x,y) P K (2, )80
A s
> / d'zd'yd'zd'wa(e, y) (—492) G;(y) 5 DD (y—2)igs[2G"0,+ (0,6

a

X DD (2 — w)igs[2GH, + (3, G")] i DD (w — x)% 6(@). (3.28)

Similarly, there is one contribution in the second order of K7, which is
shown as

/ d*zdtyd* zd*wp(x, y, 2, w)%bgff(j(m, y)?}’f(](z, w) e

52 / d'zd'yd* zd wp(x,y, 2, w) i [z‘gsf“beafj<m>64<m —y)
A

X /d4z'4g§ql(z)2 D) (z = 2') {igs(2G* D, + (9,G")} s

« D@ (2 — w)% ge(w). (3.29)

There is one contribution in the third order in Eq. (3.10), yf(jfflf([, where
v is given by
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7($7 Yy, z,w,u, U)Zbgfl;]; = %{6ad5be5cfp(§) (w — IE)[Z‘

DOy — ) DO (0~ 2)y
1+ 6%6°4DW) (v — 1), DD (y — ) 1k D9 (0 — u)

—52¢5%5¥ [CTDW (2 — )]l DD (y — w) jm[ DD (v — w)C T,y

_gaegbesld [CTD@ (u— :c)}

mi

_gaesbdsfc [CTD@ (z — u)} [D(g) (y — w)CT} D) (v — 2)nk

im lj

—59F 5b5eeD) (v — 1), [D(g) (y — w)CT}
J

l [CTD@(,Z - u)} } (3.30)

km

and the third order is shown as

ef
ijklmn mn

/ d4ZC T d4v'y(x, Y,z w,u, U)adeef R[(.’B, y);,ljbkf(zv w)icllkf(u7 U)
4 4 abedef o AY @ A
Ofdx---d U’}/(ZB, Y, z,w,u, U)ijk;lmn (_495) QJ(y)§ iD (y - 3’:)5 Q’L(m)

X [igs FOA9GI ()64 (2 — w)] [z'gs FIREN () a6 (1 — v)] . (3.31)

Although v has eight terms in total, they are all the same in Eq. (3.31) since
each term of ~ corresponds to statistic factor in Feynman diagram. Notice
again that we do not care about a statistic factor in each operator since it
is automatically included in «, 3,7. We can obtain all Oyqe induced from
SUSY which is shown in Appendix B.1.3.

3.2. UED

Next, we estimate QCD dimension six operators induced from UED.
The UED has KK-parity so that KK particles can propagate only inside
loop processes. As the SUSY case, we can calculate dimension six operators
by integrating out KK particles.
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After dimensional reduction of the fifth dimensional compactified space
of S'/Z,, UED Lagrangian in the 4-dimensional space-time is given by

L=Lsy+ £q(n) + Lam + EG(:L) ,

Ly = @i (0+ 9.6 = m{”) ol + a5 (9 +igoG +mi ) aff”
g (76" PLa™ + G GS Pra™) = (L — R)| + -+,

2
EG(”) — Z |:_411 (8;J«Gz(/n)a _ 81/G54n)a) + %mgn)QG,(in)aG(n)au

n

_ %gsfabc (aﬂGg _8VGZ) G(n)qu(n)cu o %gsfabc (8#G1(jn)a _ 81/G/&n)a) G(n)qucu
_ %gsfabcauG(Vn)a _ (%G/(Ln)a)Gb“G(n)w _ %fabc‘fade {QGI(?)bG(VO)cG(n)dMG(n)e#
+ (GELO)bGz(/n)C + G}(Ln)bgl(j())0> (G(O)dug(n)eu + G(n)dug(o)eu) H e

Lo = Y [30,G8 0G0 — dm2ai Gl

n

Gén) =

+ gsfabc (mgGE/n)a+8yGé")a) G(n)b5ch _ %ggfabcfadeGé")bGiG(n)df)Geu} oo

where
mén):%—l—dmL, mg):%—l—dmR,
mg"):%—i—émg, mgn):%+5m5.

Here we take a ’t Hooft-Feynman gauge fixing, and min),mgl ),mg"),mén)

are SU(2) doublet KK quark mass, SU(2) singlet KK quark mass, KK gluon
mass, and KK scalar (fifth dimensional component of KK gluon) mass with
each radiative correction, respectively. At a tree level, these KK particles
are degenerate in a minimal UED, but there is a slight difference between
min) and mgl ) when we consider radiative corrections. So here we show
general effective operators by using these general parameters. The effective
operators of Seg in UED can be calculated by the similar technique of the
previous subsection, and the results are shown in Appendix B.2.
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Here we overview this calculation. By integrating out KK quarks, KK
scalars, and KK gluons, the effective action becomes

Ser = S + /d4xd4ya(w y)ab Ki(x, y)ZI;

—|—/d4xd4yd4zd4wﬁ(:z:,y,z,w)“b':d Kr (:U,y)zll’,KI(z,w)Cd +---, (3.32)

uvpo po

where S does not include KK gluons that is given by

S = —gg’/d4xd4yd4zD(s)(:U—y)
a (@) D) (g () A"
. [qL<x>2 Do = 9GPV - )3 al) + (L < )

2
d4xd4yd4zld4z2d4z3(54($ —v)
[g FrIGIM(21) 0., 6% (21 — 22) + g

X { q(z Zl—Zg)g\CQL(Z)‘i‘(LHR)}

X {D (x — z1) 5ab

x| 9o TIG (25)0.008" (25 — y) + ig?
Al G
X {QL(ZS)Q D) (25 — )5 aly) + (L R)}}
X [D(S)(Zz - 23)5Cd] - (3.33)

Here D), DW) and D) are propagators of KK quarks and KK scalars as

d*p i ’
D) _ / K ————y (3.34)
(2m)* p— min)
d* i :
R _ [ &P v —ipz—y)
D / o) = o e , (3.35)
d*p i .
sAbpls) — 5ab/ e~ p(z—Yy) (3.36)
4 n)2 ’ :
(2m)* p2 — mé )
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respectively. And «, 8, K are given by

d*p —1

ae,y) = 3P (x = )0 g = 30 g / et
g
(3.37)
M%%%wﬂﬁiz%ﬁ”“w—dp@@—wﬁ“y%wwg
+ D) (z — w)p(g) (y— Z)(;ad(gbcgwgyp} , (3.38)

Ki(z,y)p, = =29 [0" G (2) + G ()0 — g"" G* (2)0a0] 8" (x — )
b

. _ A oA
+2ig? {qL(w)v”* DXz —y)y"' S

. 5 0+ (L R

- G y )\b
st [ ey} PP - 9GP - i

2
—igg/d4zd4w

«[(2@r*3 PP =93 @) 2 - 0) (300775 PP - ) ww)

ae() + (L R)}

c a c b
(103 PP =07 wl@ ) D96 - 0) (1w PP w -G n)

2 (73 DY - 93 0) DU - 0) (w5 DV w -] a))
- (@73 2P =23 0 @) 2O - w) (10”3 DV ()
- (63 PP =23 @) DOz - ) (1) D0 - 01" )
(@3 DV =93 0@) 29 - 0) (23 PV - 013 )
(g PP =07 g ) P9 - o) (s DO - 23 we)
+(L < R), (3.39)

respectively. Here 0¥, 0, in the first line of Eq. (3.39) means derivatives of
KK gluons.

Dimension six operators induced from UED can be also obtained in the
same manner as in SUSY, which is discussed in Sec. 3.1. In the UED case,
the analysis is also made up to the order of O(g?). We show that Ogqqq
comes from the terms (K)°, (K;)!, and (K7)? in Eq. (3.32). Similarly, we
can obtain Oy from the terms (Kr)!, (K)?, and (K;)®. As for Oyaa,
it comes from the terms (K;)!, (K7)?, (K;)3, and (K)*. Explicit forms of
Ogqqq> Ogqc» and Oyqaa are shown in Appendix B.2.
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3.8. Little Higgs

In this subsection, we calculate dimension six operators with anomalous
coupling in LH model. The Lagrangian is given by

_ 2 _ _
Ling = —gst@Gt — getAt — \% cos 3 (bWPLt + h.c.)

g 5 2.9 Lo 2
— tZ | —= 0 = Pt 3.40
COSH”}Z( 3 Sin W+2C085L ; (3.40)
where 8 and m; are tan~! M v and Y122 respectively. The f denotes

A +X3 f ATHA3Y
the VEV of the Little Higgs. When we take A\; ~ Ay >~ 1, we can estimate
cosff~1— % Only 4-Fermi operators have non-standard effects originated
from W, Z-boson exchanges in the electroweak interaction. Then, below an
energy scale of Myy, we can obtain Oggqq as

2

oM — 9_ cos? ﬁkz2

2
+2 tan Oy cos? Bk:Q (" Prq) (4" Prt) . (3.41)

3 — M2
They are useful for estimating an evidence of the LH.

4. Summary

It is important to obtain effective operators by integrating out high en-
ergy degrees of freedom in physics. In a quantum field theory, we can obtain
effective Lagrangian by integrating out high energy momentum and heavy
particles. In this paper, we have shown a general method of calculating
accurate irrelevant effective operators in a scattering process without use of
EOMSs. By using this method, for example, we have represented coefficients
of dimension six operators induced from SUSY, UED, and LH. We have
shown coeflicients of dimension six operators in QCD by integrating out
sparticles (KK particles) in SUSY (UED). We have also shown coefficients
of 4-Fermi operators originating from anomalous interactions in LH. They
are promising candidates of beyond the SM, and our analyses will shed lights
on the search of beyond the SM.

Our method can also give an effective action by integrating out high
momentum degrees of freedom of massless particles. In this case, an effective
Lagrangian have, in general, non-local interactions. Anyhow, our method
can apply to other quantum field theories in any dimensions, so that we
believe this technique is very useful in a lot of researches in physics.
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Appendix A

Fierz transformation and color factor

Here let us summarize some formulas which are useful for calculations.
Fierz transformation of y-matrix in Eq. (3.17) shows

(CH“)M ('YVCT)U - _% ('Y#)ji (V) — % (7“75)ﬂ- (’m’y5)lk, (A.1)
(CT>”C (CT)lj = % (’Y“)ji (V) — % (VMVS)ji (’YM’YS)lk . (A.2)

We should notice that neither scalar nor pseudo-scalar components appear
by the Fierz transformation, since spinor components, (i, j, k, ), always have
the same chirality in each set of (i, ) and (k,1).

The color factor becomes

b 2\ AP 2\ 2 1 /)2 A\

z z z z =6 — = [ 2 z A.

(2 ) (2 >m<2 )l (2 >mk g0k = 3 (2 >lk<2 >jk (45)
m m

from Fierz transformation of spinors. Next formulas are useful for the second
term of Eq. (3.15), whose spinor and color factor are different from those of
the first term. The spinor is given by

(M) (e = =3 + 35 (i » (A4)
8l = (V)5 (e + 1Y) i (Y (A.5)

and the color factor becomes
Ab (A“) (A“) AP 2, +7<)\“> (A“)
= = = = = =005k + =z | = )
2jnzmzlm2mk9]62,k2jk

while A, B are the same as the first term.
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Appendix B

Ezxplicit coefficients of dimension siz operators

We define the following functions to write coefficients in terms of linear
combinations of them

a(a,b,m,n) =

v (a,b,e,m,n,lr) =

/1

0

1
B(a,b,c,m,n,l) = /dm

0

1

0/

n,l.,r
z"y'z
(x(c2—a?)+y(a?2—c2)+2(c2-b2)+02)"’

1 1 1
n,l,r
_ "Y'z
5(a,b,c,m,n,l,7“) = /dx/dy/dz(x (62_a2)+z(a2_b2)+b2)m :
0 Y

(B.1)

Appendiz B.1. SUSY

In SUSY SM, dimension six operators are written as follows,

12g4 d4]€1 d4k'2 d4l€3 d4k4
d*z0) = / 2m) 6% (—ky + ko — ks +k
/ O000(®) = 0075 | o)t (@m)t (2t (2myd ) O (TRt ke = ks k)
X Z Cij (q(k1)Y" Pig(k2)) (@' (k3)vuPid (ka)) (B.2)
i,j=L,R
12g4 d4k1 d4k2 d4]€3 d4]€4
4 (8) _ s 4540 _
/d 2Ogq0q(T) 09,2 / @)t @n) @) @) (2m)*0% (—k1 + ko — ks + k4)
x Y Dy (qTv"Pig) (7 Ty, P;d) (B.3)
i,j=L,R

3 4 4 4
4 _ 9s d kl d k2 d k3 d¢d, —
/d quqG(x) = 967‘(2 / (27‘1’)4 (27‘(’)4 (27‘(‘)4 (27‘() 1) ( k1+k2+k3)q(k2)

xT*Ef g G, (k3)PLrq(k1), (B.4)
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4 4 4 4 4
4 - gs d kl d k2 d kg d k‘4 454/
/d Zoqqgg(l’) = 1927‘(‘2 / (277)4 (27‘(‘)4 (271_)4 (27‘_)4 (271’) 1) ( k1+k2+k3+k4)

xq(n) [P0 + B T | Gt (ko) G (k) Pra(ka) (B.5)
where E', FI", H!" (i =L, R) are

Bl = {e1ik1 + eaiko} kY + {erikba + eaikr iY
+ {esi (K + k3) — eaikr ko } 7" — e5iie™™ 5y, k1akop, (B.6)
FMY = fliaie™™Pysvs + faiagd™ 7 + f3i09™"Y + fiing™ ", (B.7)
HY = h1iaie™™Pysys + hoing™ v + h3iag®™y" + haiag™ " . (B.8)

Appendix B.1.1. Coefficients in Ogqqq

The coefficients of 4-Fermi operator are given as

CRL™Y =3 [fl (mqwmq’) + 1 <qu’mq' )] ’ (B:9)
Cin Y =2 [fl (qu,m i ) + f2 (qu»mqgﬂ ) (B.10)
= [ rmg) B(mm)] . B
CRp>Y = -2 [f1 (quamq’ ) + f2 (mqumqg)] ) (B.12)
DSUSY _ 1y (mm,mqg) s (mmamqg) , (B.13)
DEUSY = _1p (qu,m}{) ~ T (qu,qu , (B.14)
Dip™Y = —{h (mqumqg) — 3/ (mdwmé{a) ) (B.15)
DR = ~3fa (mawmag ) = 501 (maomgg) . (BI6)

where f; and fy are given by

fi(mg, mg/) =74 (mq/, mg, mg, 1,1, 0) , (B.17)
fo(mg, mg) = mgﬁ (mq/,mq,mg, 2,1, 0) . (B.18)
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Appendix B.1.2. Coefficients in Ogqc
The coefficients of ¢-¢-G operator are given as
El' = E*(mg=mg) (B.19)
= {ei(mg, )k + e2(mg )k} ey + {e1(mg, k2 + ea(mg, ) K1}k
Hes(mg,) (kT + k3) — ea(mg, )k k27"
—es5 (qu)ieo‘ﬁ“”'ygyyklang , (B.20)
EfR = Ef(mgy), B.21)

—~

e1(mg)

107m —495m3m2 +477Tm2m? —89m8 6( 8 +3mim2 —54m2md +18mS )log( g/mg)

4
2 2
18 ( mg mq)

)

(B.22)
e2(mg)

7203m +351m m~ 189m mg +41m +6 (m +51m m~ 54m mg 4418m8 )log (m%/mé)

- )

4
2
18 <m§7mq)

(B.23)
e3 (mg) = ez (mg) (B.24)
es (mg)
~155m8 +423m?m2 —333m2m3 465m8+6 (m +27mAm2 —54m2mi + 18m$ )1og (mg/mg)
9 (mg—mfj)
(B.25)
9 (m? —m? —2m2m?21 2 /m?2
es (mg) = (m M Ogg <mg/m >) (B.26)
(rt )
Appendix B.1.3. Coefficients in Ogqcc
The coeflicients of ¢-¢-G-G operator are given as
P =f10i€*"Py5y5 + foag™ 7™ + f309™"7 + f1ag™ ", (B.27)
Y =h1aie™™ P y5y5 + haa g™V + hsag™ V" + haag®™ " | (B.28)
fia = [3S0a — 2(Po + Qo)a] (ma = mg, mp = mg,), (B.29)
f2a = [_3Ka + %RSa + %Sla + 2(P1 + Ql)a] (ma =Mmg, Mp = mtji) s
(B.30)

f3a = [%RQQ + %Sga + 2(P3 + Q3)a] (ma =Mmg,Mp = mqi) y (B.?)l)
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f4a - [%Rla + lS?)a + 2(P2 + QQ)OL] (ma =Mmg,mp = mtji) ) B.32
hia = [12(FPy 4+ Qo)a) (Me = mg, mp = mg,) , B.33
h2a

(B.32)

(B.33)

[2Ko — 2 R3a + 12(P1 + Q1)a] (ma = mg,my =mg,),  (B.34)

h3a = [ %R2a+12(P3+Q3) ] (ma = mg, mp = mg,), ( )
[—3Ria + 12(P2 + Q2)a] (ma = mg, my = mg,) (B.36)

where K (mg,my), P(mg,my), Q(mg, my), R(mg, my), S(ma, mp) are written
in terms of a linear combination of the momentums;

K, = a1kio + acks , (B.37)

Poo = (i11+i124113)k1a+ (i21 + i22 + 923) ko + (31 +132+1433) ke , (B.38)

Pla = (i11+1712—113) K10+ (121 +122 —i23) koo + (131 +132 —33) kaa ,  (B.39)
= (111 —t12+1013) K10+ (l21 —i22+i23) koo + (131 —i32+i33)ksa,  (B.40)
= (—i11+i12+013) k10 + (—i21 +i22+123) koo + (—i31 +i32+133) K4

(B.41)
Qoo = (J11—J12+J13) k10 + (J21 — Jo2 +J23) k2o + (J31 — Js2 +733) ks, (B.42)
QRia = Qoa (B.43)
Q20 = (—J11+J12+J13) k10 + (=21 +J22+j23) koo + v(—j31 + 32 +133) ke »

(
Q3a = (J11+J12—J13) K10+ (21 +122 — J23) k2o + (J31 +J32 = J33) Faa,  (
Rio = bi1k1a+b21koa +b31k40 (
Roo = bigk1a+baokon+b32k4q (
R3o = b13k1a+b23k2a +b33k40 (B.48
Soa = (=fr2+ f13)k1a+(=foo+ fo3) k2o + (—f32+ f33) Faa , (
Sta = (fiz+ f13)k1a+ (fo2+ f23) k2o + (f32+ f33) ki (
S20 = Sta s (
S30 = (h1—2f11— fi2— f13)k1a+ (ha =2 f21 — foo — f23) k2a
+ (hs — 2f31 — f32 — f33)kaa - (B.52)
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These coefficients, a1, as,- -+, are given in terms of Feynman parameter in-
tegral as

ai(mq, mp)= a1(maq, my) = az(mq, mp)

= —a(mg,mp, 1,2) + 2a (mg, mp, 1,1) — a (mg, mp, 1,0), (B.53)
i11(Ma, mp) = —2i21(Ma, Mp) = —2iz2(Ma, Mp) = 2i32 (M4, Mp)

= 2i33(mg, mp) = —2a(mg, myp, 1,3), (B.54)
i12(Ma, mp) = i13(Ma, Mp)

= —2a(mg, mp, 1,3) + 3a(mq, my, 1,2), (B.55)
i23(Ma, mp) = —iz1 (M4, Mp)

= a(mg, mp, 1,3) — 3a(mg, mp, 1,2), (B.56)
J11(ma, my) = jra(ma, mp)

= —2mZa(mg, my,2,3) + 3mZa(mg, mp,2,2) (B.57)
J13(Ma,mp) = 2j21(Ma; Mp) = 2j23(Ma; Mp) = —2731(Ma, Mp)

= —2j32(ma, mp) = 2m2a(mg, mp, 2,3) , (B.58)
J22(Ma,mp) = —jszz(ma, myp)

= mZa(ma,my,2,3) — 3m2a(ma, mp,2,2), (B.59)
bi1(ma, mp) = 2b12(Ma, mp) = big(Ma, mp) = —2b21 (Ma, mp)

= —2bag(Mq, mp) = —2bag (Mg, Mp)

= —2b31 (M4, mp) = 2b32(Ma, mp) = 2b33(Mmq, Mmyp)
= Sa(maa mp, 17 3) - ga(maa mp, 17 2) + 6a(ma7 mp, 17 1)

- a(ma7mba 170) )

—_~ o~
0
(=)
=]

f11(meg, mp)= —6a (Mg, myp, 1,3) + 6 (Mg, mp, 1,2) , B.61)
fr2(ma, my)= fi3(ma,mp) = faa(ma, my)

= 12a (mg, mp, 1,1) — 12 (mg, myp, 1,0) , (B.62)
faz(meg, mp)= 12 (mg, myp, 1,3) + 6 (Mg, mp, 1,2) — 6 (Mg, myp,1,1),  (B.63)
fa1(mq, mp)= —12a (Mg, mp, 1, 3) + 6 (Mg, mp, 1,2) + 6 (Mg, mp, 1,1), (B.64)

fa2(ma, mp)= f33(ma,my)

= 3a (mg, mp, 1,4) + 4da (mg, mp, 1,3) — a (mg, mp, 1,0), (B.65)
hy(ma,my) — m2a (mg, my, 2,4) — 2m2a (mq, mp, 2, 3)

+4m2a (mg, mp, 2,1) — m2a (mq, ms, 2,0) , (B.66)
ha(ma,my) = —12mZa(ma, my, 2, 3)

+ 6m2a(ma, my,2,2) + 6mia(mg,, my,2,1), (B.67)

and other coeflicients are zero.
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Appendixz B.2. UED
Let us list the dimension six operators of QCD in UED.

Appendix B.2.1. Coefficients in Ogqqq
When (gq)(q'q’) chirality is (LL)(LL) or (RR)(RR), 4-Fermi operator is

4 a a
9s _ _ _ A oA
Ogqq(*) = 1953 [fl(qv”’q)(Q’WJ’) + f2 <qv“2 q) (q’v“2 q’>] ,
(B.68)
and the coefficients fi, fo are
4 <m4+4m2m2 log (ﬂ) —m4>
g 9" "L m L
fiL = ——3 g , (B.69)
(mg—mi)
4 (m‘; + 4m2mg log (%) — mﬁ)
fir = - (B.70)

(g —m3)’ |

1
f2L=( 5 5

m2—m2) (ms—my)?(ms+my)?(mg—my)?(my + my)

2 2 2
m m m
% |18 2 2 41 el VI 41 9 2 4 4 1 5
[ mL<mg <m5 og 2 my, log m2 +mz (my+mf,) log 2
2
m
+ 2m§m§m% log (g)
ms

)(m3 —mi)(m

2
o) 7(-md e+ 2m2m? log (%) +mi)
g mL) + 2 2\3

2 (m5 - mL)

2
30 (—m;} + QmSm% log (%ﬁ) + mﬁ)

+ (B.71)

(m3 —m})” |
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1
m2

mg—m3) m5—mR) (ms+mr)?(mg—mg)?(mg+mg)?
m2 m?2 m2
18mR m5 log R) —m4R log —29 —i—m% (m§+m4R) log (5’)
g MR MR
m2
+ 2m5m m% log M
m}

) ) ) ) 7 <—mgl + 2m§’m log ( ) + mR)
(m3 — m2)(m — m})(m? —md) | + S
2 (m5 - mR)

for =

30( m + 2m leog( 2)+mR>

(m3 —m3)’

+

(B.72)

When (wu)(tt) chirality is (LL)(RR) or (RR)(LL), 4-Fermi operator is
4

Ogqqq(T) = 1992 5 [fs(q’y Q) (@) + fa (qv g q) (q"y“;aq’ﬂ ,
(B.73)

and the coefficients f3, f4 are

1
fs(mg,mgr) = 5 2
(m2 —m2) <m§ - m3,> (mg - mg,)
X [8 <2m3m3, (mg - 2m(21) log(mg) — 2m;1, (m?] —m;)" log(my)
+ mg(mf] — mg)(mg mz,)(mg — mg,)
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2 _2) (2 — m2 2 _ 2
(m2 —m32) (m5 - mq,> (mq — mq,>

2
§ ((mg —m2) <—m§ + 4miglog(my) + my, — 4my, log(mq,)>

mgfm/

q

(m% — m2,) (—mg + 4m log (mg) + mg — 4my log (my))

mg — mg
. (mg - m2,> (—m3 + 4mZ log(ms) + mj — 4mj log(my))
m2 — mg
9
2 (m2 — m2)2 <m2 — m?2 )2 (m2 - m2)
5 q 5 q q q

X [2m§m3, (m2 — 2m§) log(ms) — 2m3/ (mz — mg)2 log(mg)

+ m% (m% - m2) (m% - m2/) (m2 - m2,)

q q q q
+2m;l <m5 log <Z5> + 2m5m log (mq) +my log(mq)>]
_ 30

2 2)2 (,2 2\ ()2 2
(m2 —m32) (mg - mq,> (mq - mq,>
2
X [szmf; (mz = 2m2) log(mg) — 2m2/ (mg — mg) log(mgy)
2(, 2 2 2 2 2 2
+my (my —my) (mg —my) (mg —my)
+2m3<m log<m >+2mm log< >+m log(myq )]
my my
(B.75)

where mg, mg are my, or mg (mgq, # my ).

Appendix B.2.2. Coefficients in Og44c
g-g-G operator in UED takes the form as

3 ey diky dik
d —__9 LA @R2 0 VA (k) + ko + k
/ 704 (%) = =195 / (21)% (2m)A (27r)4( )0 (kA ko k)

x q(k1)C*Gp(ks)q(ks), (B.76)
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CH = c1ie® 25y, + c2"*77 + c3g"74* + cagPyH

(B.77)
c1 = c1ikiakag ( )
c2 = co1kiakig + caokiakog + cazkaakip + caakoakog (B.79)
c3 = catkiakig + c32k1akop + c33kaakip + c3akaakogs, ( )
¢y = cqrkrakipg + caskiakap + cazkoakas . ( )

The coefficients are given as

4 _ 2.2 mg\ _ 4
my 4mgmqlog<mq> my

C11 — 6 3 y (BSQ)
(m§ —m3)
5m2 — 27m3m3 + 27m3m3 + 12m (m —3m ) log ( ) — 5mg
Co1 = 6 2 2 1 5 (B83)
18 (mj — mg)
7m —27mm4+12(m —6mm +6mm)log( )—|—20m
Coo = 6 2 5 5 (B84)
18 (mg — mq)
12m$ log (%) — 11m$ + 18mgm?2 — 9m?2myg + 2mS
Co3 = 6 1 1 5 (B85)
18 (m2 - mg)
12m610g( ) +11m$ — 18mgm?2 + 9m2my — 2m
Coyq = 6 5 (B86)

18 (m3 —m2)’

| [(5mS = 2Tmim2 4+ 2Tm2md + 12 (m$ — 3mim2) log (%2 ) — 5m

m q
Cal = —
B (3 —m2)’

6 (ng — 9mgm? + 18mZm; + 12m$ log (Z—q) fllmg)

_ B.87)
7 : (
(mg —m3)
1(3 <7mg—36m§m3+45m§m3+12 (3m§m3—2m2) log(%)—mmS)
C32 = ~ 1
’ (mg —mg)
7m —27mm4+12(m —6mm +6mm)10g( )+20m
+ —— . (B.83)
(m§ —m3)
| [(12m10g (2 ) — 11mf + 18mim? — 9mZmd + 2m}
C33 = & 4
3 (=)
3 (2mg — 9mim? + 18m2m + 12m8 log (;—5) - 11mg)
_ : (B.89)

(m2—m2)"
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1 12m610g( )+11m 718mm +9mm f2m

1
Yl (m2 —m2)*

3( —5mg+ v2Tmam2 —2Tm3m; +12my (m2 —3m3) log (%) —|—5m2)

(m3—m2)*

18mgm,

, (B.90)

C41 =

(mg - mg)S (ms —myg)(ms +mg)(my —mg)3(my +my)3

X {4m§m3 (m2 — ) log(myg) 4 4m3m} log(ms) (m — mi)3
+ (mg —my) ((m5 —mg) (mg —myg) (m5 (mg +mg) — 3mg +mgmy)
f4m§ log(myg) (73m§m§m,21 + mgmz (m% + mg) + mg))]

ms) _ 5m6

q

5m — 27m§m3 + 27m3my — 12m; (m§ —3m#) log (

2 (mg — m?])4

+

5 (—5mg + 27m3m§ — 27m3m;L + 12 (mg — 3m3m ) log ( ) + 5m )

3 (m2—m2)"

+

6 4,2 2,4 6 4,2 m 6
mg—2Tmgme+2Tmgmg+12 (mg—Sm m ) log (—q) —5m,

9 q my

, B.91
3 (2 m2)" (B9

1 ( 108mgmy
Cq2 = — 3 5 5 - -
3 (m2 —m2)” (ms — my)” (m5 +mg)” (mg —mg)” (mg +my)

x| = 2m} (m2 —m2)"1og (my) + (m2 — m?)

x((m2 = m2) (m2 = m2) (2m2m2 — m? (m2 + m?))

+2mg (ms —mg) (ms +mg) log(my) (m3 (mj — 2m3) + my) )
+2m? log(ms) (m —m2)° (m4 + mZm? — 2m2m?) |

3 (—2m8 + 9mim? — 18m2m{ + 12m8 log (22 ) + 11m$)

(m2 —m2)"

+

—12m61og< )—i—llm — 18mgm? + 9mZmg — 2m

1
(m§ —mg)
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T — 2TmZm 412 (mf — 6mim? + 6m2m}) log (22 + 20m

T
(m§ —mj)
10 (12m6 log (mq) + 11m$ — 18mim?2 + 9m2my — 2m )
, o (B.92)

1
(mg —m)

+

18mgm,

€43 = — 3
(m2 —m3)" (ms5 — mg)3(ms +mg)?(mg — mg)(my +my)
X (4mg <m2 (m — m5) log(mq) +my (m§ - mg)glog(mg)
+ log(mg,)(mg m2) (mg — 3m5m3mq + m3m3 (mg + mg)))

+(mg — mg)(mg — mg)(mg —mg) (3m — mé (mjg +mg) = mgmy))

5m§ — 27mgm2 + 27m2m; — 12m; (m?2 — 3m2) log ("L“) —5m

+
2 (m% — mg)4

5 <f5m£67 + 27m3m2 - 27m§m3 +12 (mg — 3m3m ) log ( ) 4 5m )

+ 1
3 (m§ —mj)

6 m 6 4.2 2,4 6
~12mflog (22 ) — 11mf + 18mim? — 9mZms + 2m}

3(m2—m2)'

n 7 (B.93)

Appendix B.2.3. Coefficients in Og4cc
The ¢-¢-G-G operator is written as

4 4 4 4 4
4 - gs d kl d k2 d kg d k4 454/
/d :Z}qugg(ir) = 19271‘2 / (277')4 (27T)4 (271_)4 (271’)4 (271') 1) ( k’l + k’2 + k’g + k’4)

alkn) [0 + HESTOT | Go(ka) Gl (k) Prna(ka) (B.94)
where E', F'", H'" (i =L, R) are

Y = fiad €™ Pysys 4 foia0" 7 + 300"V + friag® ", (B.95)
= Miai€® " Pysy5 + hoia g™V + h3iag™ " + haing™ " . (B.96)

’L
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The coefficients of color singlet part, F/*, are given as

fia = {3[91(m97mq) + ga(mg, mg) + gr(mg, my)]
+hi(mg, mq) — ha(mg, mq) — hz(mg, my)
—31g1(ms, my) + ga(ms, mg) + g7(ms, mg) — ha(ms, my)
+ha(ms, mg) — hr(ms, my)]
+3li1(mg, mg) — 2j1(mg, mg, ms) + 2s1(mg, my)]
—{-%[—SS(mg,mq,mg,) + s12(mg, My, m5)]}k1a
+{3[92(mga mg) + gs5(mg, mg) + gs(mg, my)]
+ha(mg, mq) — hs(mg, mq) — hs(mg, mq)
—3[92(ms, mg) + g5(1ms, my) + gs(ms, my)
—ha(ms, mg) + hs(ms, mg) — hg(ms, mg)]
+i[i2(mg’ mq) + 2ja(mg, mg, ms) — 251(my, my)
+n1(mg, mg) + 2n11(mg, my)]
—%[—Sg(mg,mq,mg,) + s12(mg, My, m5)]}k‘3a
+{3[Q3(mg> mq) + ge(mg, mq) + go(mg, my)]
+h3(mg, mq) — he(mg, mqg) — hg(mg, mq)
—35l93(ms, mq) + g6(ms, mq) + go(ms, mq) — ha(ms, mg)
+h6(m5’ mQ) - h9(m5’ mq}]
+1lis(mg, mg) + 2j3(mg, mq, ms) — 2s1(mg, mg)

—%[—s;;(mg,mq,mg,) + slg(mg,mq,m5)]}k4a, (B.97)

foa = { — 3g1(mg, mq) + 3g4(mg, mq) + 2g7(mg, mq)
+h1(mg, mq) — ha(mg, mg) — h7(mg, mgq)
_%[gl(m& mQ) - 94(m57 mQ) =+ 97(m57 mQ)
—hi(ms, mq) + ha(ms, mq) — hz(ms, my)]
+%[i4(mg, mq) — 2j1(mg, mg, ms) — 2j1(ms, mq, mg)]
—3[e1 (mgv Mg, ms) — e1(ms, Mg, mg)]
+3[na(mg, mg) + 2n12(mg, mg) + 11 (Mg, ms) — 252(mg, my)]
+%[T1 (mgv Mg, ms) + Tlo(mgv Mg, ms)
—s8(mg, Mg, ms) + s12(Mg, Mg, m5)]}l<:1a
+{ — 3g2(mg, mq) + 3g5(Mmg, my) + 2gs(mg, my)
+ha(mg, mq) — hs(mg, mq) — hs(mg, mq)
—%[92(7715, mgq) — g5(ms, mq) + gg(ms, mg)
—ha(ms, mg) + hs(ms, mq) — hs(ms, mg)]



A Simple Method of Calculating Effective Operators 435

+lis(ms, my) — 2ja(my, mg, ms) — 2ja(ms, my, my)
+n3(mg, mq) + 2n13(mg, mq) + l2(mg, ms) — 2s3(mg, my)]
_%[_7“2(7”9’ Mg, ms) — 7ﬂll(mg’ Mg, ms)

—s8(mg, Mg, ms) + s12(mg, Mg, m5)]}k3a

+{ = 3g3(mg, mq) + 3g6(mg, mq) + 2g9(mg, mq)

+h3(mg, mq) — he(mg, mg) — hg(mg, mq)

—3lg3(ms,mq) — go(1ms, mg) + go(ms, my)

—hs(ms, mq) + he(ms, mg) — ho(ms, my)]

+1li6(ms, mq) — 2j3(mg, mq, ms) — 243 (ms, mq, my)
—3[ea(my, mq, m5) — €2(ms, mg, my)]

+ina(mg, mg) + 2n14(mg, mq) + I3 (mg, ms) — 2s4(mg, my)]
—3l=r3(mg, mg, ms) — r12(mg, Mg, m5) — s5(mg, Mg, Mm5)
+512(mg,mq,m5)]}k4a , (B.98)

faa = {%[91 (mg, mq) + 4ga(mg, mq) — 8g7(mg,myg)
+4(h1(mgv mg) + ha(mg, mq) + hz(mg, my))]
—3 Llg1(ms, mg) + ga(ms, mg) — gr(ms, mg)
—hi(ms, mg) — ha(ms, mq) + h7(ms, mg)]
i( 7(ms, mq) — 2j1(mg, mg, ms)) — 3e1(mg, mg, ms)
( 5(mg, mg) + 2n12(mg, mq)) + l[l4(mq,m5) — 2s2(mg, mg)]
—gl=ti(mg, mg,ms) — ra(mg, mg, ms) — r13(mg, mq, ms)
+89(mg, Mg, ms5) — s13(mg, mq, ms)] }kia
+{%[92(mga mq) +4gs5(mg, my) — 8gs(mg, my)
+4(ha(mg, mq) + hs(mg, mq) + hs(mg, mq))]
—3l92(ms,mq) + gs(ms, mq) — gs(ms, my)
—ha(ms, mg) — hs(ms, mq) + hs(ms, mg)]
—|—i[i8(m5, mq) + 2j2(mg, mq, ms) + ng(mg, mq) + 2n13(mg, mq)]
—I—%lg)(mq,mg)) — %[—Sg(mg, mq) — ta(mg, mg, ms) — r5(mg, mq, ms)
—r14(mg, mg, ms) + s10(mg, mg, ms) — s14(mg, my, m5)]}k3a
"‘{%[93(7”9: myq) + 4ge(mg, mg) — 8gg(mg, mg)
+4(hs(mg, mq) + he(mg, mq) + ho(mg, mq))]

—3(g3(ms,mg) + ge(ms, mg) — go(ms, mg)
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—h3(m5,mq) — hﬁ(ﬂlg,, mq) + hg(m5,mq))

—l—i[ig(m&mq) + 2j3(mg, mq, ms)] — 3ea(ms, my, my)

—I—i[n7(mg, mq) + 2n14(mg, mq)]

+1l6(mg, ms) — g[—sa(mg, mg, ms) — t3(mg, mg, ms5) — 16(Mg, Mg, M5)

_T15(mgv mqu m5) + Sll(mg7 mQ7 m5) - 815(m97 mqu m5)]}k4a ) (ng)

f4o¢ =

%[1291(mg7mq) — 12g4(mg, mq) + g7(mg, mq)

(=h1(mg,mq) + ha(mg, mq) + h7(mg,mg))]
(—g1(ms,mq) + ga(ms, mq) + gr(ms, m4)
(ms, mq) — ha(ms, mq) — h7(ms, mg))

=

+

+

210(m5, mq) - 231(m97mq7m5>] - 361(m57 Mg, mg)

4
_1
2
hy
+il
+%[n8(mg’ mq) + l7(mq, ms)]
+%[35(m9,mq) + s2(mg, my)] — [_t4(mgvmq= ms;)
—r7(mg, mq, ms) — r16(mg, Mg, Mms)

—sg(mg, mg, ms) + slg(mg,mq,m5)]}k31a
+{%[1292(mgvmq) — 12g5(mg, mq) + gs(mg, mq)
+4(—ha(mg, mq) + hs(mg, mq) + hs(mg, my))]
_%(_92(m57 mQ) =+ 95(m57 mQ)
+gs(ms, mq) + ha(ms, mq) — hs(ms, mq) — hs(ms, mg))
+31li11(ms, mg) + 2j2(mg, mg, ms) + ng(mg, my) + ls(mg, ms)]
+%[56(mg7mq) + 53(mg7mq)] - %[_t5(mgamqv ms) — 7"8(mgamqa ms)
—r17(mg, mg, ms) + sg(mg, mg, ms) — slg(mg,mq,mg,)]}k‘ga
+{%[1293(mgvmq) — 12g6(mg, mq) + go(mg, mq)

+4(—h3(mg, mq) + he(mg, mq) + ho(mg, my))]
—3(=g3(ms, my) + gs(ms, my) + go(ms, my)
+hz(ms, mg) — he(ms, mq) — hg(ms, mq))
+%[i12(m5, mq) + 2j3(mg, mg, ms)] — 3ea(ms, my, my)
+31[n10(mg, mq) + lo(mg, ms))]
+%[3 (mmmq) 54(mg’mq)] - %[_t6(mgamq) - 7"9(mgamqam5)

—r18(mg, mq, ms5) + ss(mg, mq, ms) — s12(mg, mq, ms)] }kaa . (B.100)
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The coefficients of color octet part, H!", are given as

hia = { = 2(91(mg, mq) + ga(mg, mq) + gr(mg, my))

_%(hl(mgvmq) — hy(mg, mq) — hz(mgy,my))
+%(91(m5, mq) + ga(ms, mq) + g7(ms, mg)
—hi(ms, mg) + ha(ms, mq) — h7(ms, mg))
+%[i1(m5,mq) — 2j1(mg, mg, ms)] — 1861(m5,mq,mg)}k1a
+{ — 2(g2(mg, mq) + g5(mg, mq) + gs(mg, mq))
—%(}D(mgv mq) — hs(mg, mq) — hg(mg, my))
+3(g2(ms, mq) + g5(ms, mq) + gs(ms, mq)
—ha(ms, mq) + hs(ms, mq) — hg(ms, mg))
+%[i2(m57 mq) + 2j2(mga mq,m5)]}k3a

+{ — 2(g3(mgy, mq) + g6(mg, mq) + go(mg,my))
—%(hi‘s(mg’mq) — he(mg, mq) — ho(my, my))

+3(g3(ms, mq) + g6(ms, mq) + go(ms, mg) — ha(ms, mq)
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+he(ms,mq) — ho(ms,mg)) + 3lis(ms, mq) — 2jj3(mg, mq, ms)]
—1862(m5,mq,m9)}k‘4a, (B.101)

—{2g1(mg, mq) — 2g4(myg, mq) — %97(mg7mq)
_%(hl(mgvmq) ha(mg, mq) — hz(mg, my))
+3(g1(ms,mq) — ga(ms, mq) + g7(ms, my)
—hi(ms, mg) + ha(ms, mg) — hr(ms, my))
+3lia(ms, mg) — 251 (mg, mq, ms) — 2j1(ms, mg, my)]
—18[e1(mg, mq, ms) — e1(ms, mq, mg)]

§[ll(mq, ms) — 2r1(mg, mq, ms) — 2r10(mg, myg, m5)]}k1a
_{292 mg, mg) — 2g5(mg, mg) — %98(m97mq)
_§(h2(mga mq) — hs(mg, mq) — hg(mg, mg))
+3(g2(ms,mq) — g5(ms, mg) + gg(ms, my)
—ha(ms, mq) + hs(ms, mg) — hg(ms, my))
+%[i5(m5,mq) - 2j2(mgv Mg, M5) — 2j2(m5,mq,m9)]
—3[ra(mg, mg, ms) + 711 (Mg, My, m5)]}k3a
—{293(mga mg) — 296(mg»mq) - 399(mg»mq)

_%(h2(mgvmq) — hs(mg, mg) — hg(mg, mq))
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%( 3(ms, mq) — g6 (ms, mq) + go(ms, mg)
h3(m57mQ) + hG(m5amq) h9(m5’mq))

[i6(ms5, mq) — 2j3(mg, Mg, ms5) — 2j3(ms5, Mg, my)]
8les(mg, mg, ms) — ez(ms, mg, my)]

43
+3
-1
+3[13(mg, ms) —2r3(myg, mg, ms) —2r12(mg, mq, ms)] aa ,(B.102)

— _%(gl(mg’mq) + 4g4(mg,mq) - 897(m97 mq)

+4(h1(mg, mq) + ha(mg, mq) + hz(mg, mq)))

+{391(ms,mg) + ga(msz, mq) — g7(ms,my)

—hl (m5, mq) — h4(m5, mq) + h7(m5, mq)

+%[i7(m57mq) - 2j1(mg’mq7m5)] - 1861(mg7mq7m5)
—|—%l4(mq,m5)—3(t1(m5,mq)—l—m(mg,mq,m5)+r13(mg,mq,m5))}k1a
_%(QZ(mgv myq) + 4g5(mg, mq) — 8gs(my, my) + 4(ha(my, my)
+hs(mg, mq) + hs(mg, mgq)))

+{%92(m57 mQ) + 95(m57 mQ) - 98(m57 mQ) - hQ(m57 mQ)

—hs(ms, mq) + hs(ms, mq))

+3lis(ms, mg) + 2j2(mg, mq, ms5)] + 315(mg, ms)

—3(ta(ms, mq) + r5(mg, mg, ms) + ria(mg, mg, m5))}k3a

_%(93(7”9: mq) + 4g6(mg, mq) — 8go(my, my) + 4(ha(my, my)
+he(mg, mq) + ho(mg, mq)))

+{393(ms,my) + gs(ms, my) — go(ms, my) — ha(ms, my)

_h6(m57 mQ) + h9(m5’ mq})

+3[ig(ms, mq) — 2j3(mg, mg, ms5)] — 18e3(mg, mq, ms) + 36 (mg, ms)

—3(t3(ms, mq) + r6(mg, mg, ms) 4 115(Mg, Mg, M5)) }kae,  (B.103)

{% (12g1(mg, mq) — 12g4(my, mq) + gr(mg, mg)
+4(—h1(mg, mg) + ha(mg, mq) + hz(mg,mq)))
%( (m5,mq) +g4(m5,mq) —l—g7(m5,mq)
+hi1(ms, mq) — ha(ms, mq) — hz(ms, myg))
%[ i10(ms, mg) — 2j1(mg, mq, ms)] — 18e1(my, mq, ms)
l Mg, Ms5) — 3(t4(m5,mq)—i—m(mg,mq,mg,)—i—rlﬁ(mg,Tqu,n”Lg,))}/~f.:1CY
{ (12g2(mg, mq) — 12g5(mg, mq) + gs(mg, my)
+4(—ha(mg, mq) + hs(mg, mq) + hs(mg, mq)))
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+%( 92(m57mQ) + 95(m57mQ) + 98(m57mQ)
+ha(ms, mg) — hs(ms, mg) — hs(ms, mq))
+3 i1 (ms, mg) — 2j2(mg, mg, ms)] + 5ls(mg, ms)
—3(ts(ms, mq) + 18(mg, Mg, ms) + ri7(mg, mg, ms)) }k3a
{% (12g3(mg, mq) — 12g6(mg, mq) + go(my, my)
+4(—h3(mg, mq) + he(mg, mq) + ho(mg, my)))
%( (m57mq)+96(m57mQ)+g9(m5va)+h3(m57mQ)
—he(ms,mq) — hg(ms, my))
%[ 2(ms, mq) — 2j3(mg, mg, ms)] — 18e3(mg, mq, ms) + 319(mQ7m5)
—3(te(ms, mq) + r9(mg, mg, ms) + r18(Mg, Mg, Ms5) }k4a ) (B.104)
These coefficients, g(mgq, mp), h(mg, mp),---, are written in terms of
Feynman integral as follows:
g1(ma,mp) = —a(mp, mg, 1,3) + 3a(mp, mg, 1,2) , (B.105)
92(ma, mp) = gs(ma, mp) = %QS(mavmb) = ga(ma, mp) = g7(Ma, myp))
= —a(mp, mg, 1,3), (B.106)
g5(ma, mp) = g6 (ma, mp) = go(Ma, M)
= —a(my, mg, 1,3) + 3a(my, mq, 1,2), (B.107)
hi(mg, mp) = ha(mg, my) = hg(ma, myp))
= —mia(my, ma,2,3) + 3mia(my, me,2,2), (B.108)
h3(ma, mp) = —2mia(my, ma,2,3), (B.109)
ha(ma, mp) = h7(ma, my)
= —mia(my, mg,2,3), (B.110)
hs(ma, my) = he(ma, mp) = hg(ma, mp)
= —mia(my, ma,2,3) + 3mia(my, mqe,2,2), (B.111)
il(ma, mb) = i4(ma, mb)
= 6a(mg, mp, 1,3) + f9a(mg, myp, 1,2), (B.112)
i2(Ma, mp) = i5(Ma, Mp)
= 6a(mg, mp, 1,3) — 24a(mgq, myp, 1,2) (B.113)
i3(ma, mb) = ig(ma, mb)
= 12a(mg, mp, 1,3) — 12a(mg, mp, 1,2) (B.114)

i7(mg, mp) = —12a(mg, mp, 1, 3) + 3a(mg, mp, 1,2), (B.115)
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) = 12a(mg, myp, 1, 3) + 6a(mgq, myp, 1,2)
) = —24a(mg, mp, 1,3),
) = —3ba(mg, myp, 1,3),
i11(ma, mp) = —26a(mg, my, 1,3) + 42a(mq, mp, 1,2) ,
' )
)
)

—6m2 3 (ma, me, my, 2,2,0),
33(Ma, my, me) = 6m B (ma, me, mp, 2,0,3)
— 3mip (ma, me, My, 2,1,3)
e1(ma, mp)= ea(Mq, Mp)
=a(a,b,1,2),
n1(ma, mp)= 6a (mg, mp, 1,1) — 6 (mg, mp, 1,2),

(B.123)

(B.124)
(B.125)

n2(Ma, mp)= ns(mq, mp) = na(ma, mp)= 3n7(maq, mp) = n1o(maq, mp)
= 12a (mg, mp, 1,3) — 24 (mg, mp, 1,2)+12c (mg, myp, 1,1) ,

ns(Mma, mp)= —24a (mg, my, 1,2) — 24a (mg, myp, 1,1)
+48c (mg, myp, 1,0)
ng(ma, mp)= —24a (mg, my, 1,3) + 84a (mg, my, 1, 2)
—27a(a,b,1,1),
n11(mq, my)= 6m2a (mq, my, 2,2) — 6mia (mg, my,2,1),
n1a(mq, my)= 6mia (mq, my, 2,3) — 12m2a (mq, my, 2,2)
+6m§o¢ (mg, mp,2,1),
n14(Mma, mp)= 6mia (mg, my, 2,1) — 12mia (mq, my, 2,1)
+6mia (mg, my,2,1),
t1(ma, mp, me)= ta(Mma, mp, me)
= —12mgmpy (Mg, mp, me, 2,1,0,0)
+6memyy (mg, mp, me, 2,0,0,0),
ts(mg, my, me)= 12mgmyy (mg, my, me, 2,1,0,0)
—12memyy (mg, mp, me, 2,0,0, 1)
+6mgmyy (meg, my, me, 2,0,0,0),

ta(mg, mp, me)= 12memyy (mg, my, me,2,1,0,0) ,

(B.126)
(B.127)

(B.128)
(B.129)

(B.130)

(B.131)

(B.132)

(B.133)
(B.134)
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ts(ma, my, me)= 12mgqmyy (me, mp, mq, 2,0, 1,0)
—12mgmpy (me, mp, mq, 2,0, 1,0)
+6mgmyy (me, mp, mg, 2,0,0,0),

te(mq, mp, me)= 12mgemyy (me, mpy, mq, 2, 1,0, 0)
—12mgmyy (me, my, mq,2,0,0,1)
+12memyy (me, my, mg, 2,0,0,0),

I (my, me) = lo(mp, me) = 3l3(mp, me) = Ly (my, me)
= da(me,myp, 1,3),
la(my, me) = l5(mp, me) = ls(mp, me)
= 4da(me, my, 1,3) — 6a(me, mp, 1,2) ,
le(mp, me) = 8a(me, my, 1,3) — 6a(me, myp, 1,2),
lo(my, me) = 8a(me, my, 1,3) — 12a(me, mp, 1,2) ,

71 (Ma, Mp, Me)= T4(Ma, My, M) = —277(Ma, My, M)

= —6mgmpd (Mg, mp, me,2,1,0,0),

ro (Mg, Mmp, me)= 6mempd (Mg, my, me, 2,0,1,0)
—6mgempd (mg, mp, me,2,0,0,1)
+6mempd (mg, my, me,2,0,0,0),

r3(mq, mp, me)== 6mgmpd (Mg, mpy, me,2,1,0,0)
—6mampd (Mg, mp, me,2,0,0,1)
+6mempd (mg, mp, me, 2,0,0,0),

75 (Mg, My, me)= 6mgmpd (mg, my, me, 2,0, 1,0)
—6mgempd (mg, mp, me,2,0,0,1),

76 (Ma, Mp, Me)= 6mgmpd (mg, my, me, 2,1,0,0)
—6mgempd (mg, mp, me,2,0,0,1)
+6mgmpd (mg, my, me, 2,0,0,0),

rg(mq, mp, me)= 12mqemyd (mq, my, me, 2,0, 1,0)
—12mgmpd (mg, my, me, 2,0,0,1)
—6maempd (Mg, mp, me,2,0,0,0),

79 (M, Mp, me)= 12mgmpd (mg, my, me, 2,1, 0,0)
—12mgmpd (mg, mp, me, 2,0,0, 1)
—12mgmypd (mg, my, me, 2,0,0,0),

r10(Ma, mp, me)= 6mgmpd (Mg, mp, me,2,1,0,0),
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r11(Mmg, mp, me)= 6mgmpd (mq, my, me,2,0,1,0)

—6mampd (Mg, mp, me,2,0,0,1)

+6mempd (mg, my, me,2,0,0,0), (B.149)
r12(Ma, Mp, Me)= 6mampy (Ma, My, me, 2,1,0,0)

—6mampy (Mg, mp, me, 2,0,0,1)

—6maempy (Mg, mp, me,2,0,0,0), (B.150)
r13 (Mg, mp, me)= —12memyy (Mg, my, me, 2,1,0,0)

+6mgempy (mg, mp, me,2,0,0,0), (B.151)
r14(Mma, mp, me)= 12mempy (Mg, mp, me, 2,0,1,0)

—12mgmpy (Mg, mp, me, 2,0,0,1)

+6mgmyy (mg, my, me, 2,0,0,0), (B.152)
r15(Mg, mp, me)= 12mgemyy (mq, my, me, 2, 1,0, 0)

—12mgmyy (Mg, my, me, 2,0,0,1)

+6mgempyy (mg, mp, me,2,0,0,0), (B.153)
r16(Ma, Mp, Me)= 6mempy (Mg, mp, me, 2,1,0,0)
—6maempy (Mg, mp, me,2,0,0,0), (B.154)
r17(Ma, Mp, me)= 6mempy (Mg, mp, me, 2,0,1,0)
—6maempy (Mg, mp, me,2,0,0,1), (B.155)
r18(Ma, Mp, Me)= 6mempy (Mg, mp, me, 2,1,0,0)
—6maempy (Mg, mp, me,2,0,0,1), (B.156)
s1(mp, me)= 6 (me, mp, 1,1) + 6 (me, my, 1,2) , (B.157)
s2(mp, me)= 18 (me, mp, 1,3) — 30 (M, my, 1, 2)
+60r (me, mp, 1,1) (B.158)
sz(mp, me)= —3a (me, mp, 1,4) + 2a (me, mp, 1, 3)
+6a (me, mp, 1,1) — bae (me, my, 1,0) , (B.159)
s4(mp, me)= 6 (M, mp, 1,3) + 18 (M, my, 1, 2)
—12a (me, mp, 1, 1), (B.160)

s5(my, me)= 18m2a (me, my, 2,3) — 36m2a (me, my, 2, 2)
+18mia (me, my, 2,1) + 18mar (me, my, 1, 3)
—36a (me, mp, 1,2) + 18a (me, myp, 1,1) , (B.161)
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s6(mp, me)=

s7(my, me)=

Sg(mtb mp, mc):

59(ma’ mey, mc):

s10(Ma, Mp, Me)=

—3mia (me, my, 2,4) + 2mia (me, my, 2,3)
—|—6m§a (me,mp,2,1) — 5m§oz (me, my, 2,0)
—3a (me, mp, 1,4) + 2a (me, myp, 1, 3)

+6a (me, mp, 1,1) — ba (me, my, 1,0)
—6mia (me, my, 2,2) + 12m2a (me, my, 2,1)
—6mia (me, my,2,0) — 6a (me, my, 1,2)
+12a (me, myp, 1, 1) — 6 (me, myp, 1,0)

6mqmp3 (mIn Me, Mg, 2,0, 0) )
_Bmambﬂ (mbu Mec, Mg, 2) O) 2
+3mampB (Mp, Me, Mg, 2,0,0),
_12mambﬁ (mbv mMe, Mg, 25 05 )
+12mgmp8 (mp, me, Mg, 2,1, 1)
)

+6mamb/6 (mb7 mMe, Mg, 27 07 0 )

)
)
2
+6mgmy3 (mp, me, Mg, 2,0,1)
1
—12mgmp8 (mp, me, Mg, 2,1,0

)

Sll(ma7 my, mc)_Gmambﬂ (mb7 Me, Mg, 27 07 2)

312(ma7 mb7 mC):
SIS(mm mp, mc):

314(ma7 mb7 mC):

515(ma7 my, mc):

+6mamb/6 (mb7 me, Mg, 27 07 1 )
_Gmambﬁ Mp, Ma, Mec, 27 07 1

(
+6mamp3 (mp, Mg, me,2,0,0) ,
_3mambﬂ (mba Mg, Me, 27 07 2

+3mamp (mp, mg, me, 2,0,0

)
)
)
)
)
—12mgmyp3 (mp, mq, me, 2,0, 2)
+6mgmp5 (mp, mg, me, 2,0, 1)
+12memp8 (mp, ma, me, 2,1, 1
—12mamp3 (mp, Mg, me,2,1,0
+6mampS (Mmp, Mg, me, 2,0,0),
—6mamp (mp, Mg, me, 2,0, 2)
)

+5mamb6 (mlh Mg, Me, 27 07 1 y

and other coefficients are zero.
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