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1. Introduction

Nuclear rotational motion is a remarkable example of correlated single
particles in a deformed field generating a collective mode. For odd-mass rota-
tional nuclei the coupling of single-particle and collective rotational degrees
of freedom leads to a rich variety of band structures [1,2]. The study of high
spin states in deformed odd-N nuclei is interesting because of the coupling
of odd neutron to the deformed core and the role of large j orbits giving rise
to many bands extending to high spins. For finer description of the states
in deformed nuclei, such as band-crossing, rotation-alignment and signature
effects in the spectra and electromagnetic transitions etc., one needs a many-
body description of the system using two-body interaction among nucleons.

(451)
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Nuclei in the mass region A ∼ 135 are transitional in nature with moderate
deformation and soft with respect to the triaxially parameter (γ). There are
large number of positive-parity orbitals originating from the g7/2, d5/2, d3/2,
and s1/2 spherical shell-model states which can be seen in Nilsson diagrams.
This determines the low-energy structure, whereas for the negative-parity
states there is only the h11/2 orbital. Many of these nuclei show interesting
spectroscopic properties both at low and high spins [3, 4, 5, 6].

In the odd-mass even-Z nuclei (N = 77), collective structures based
on the h11/2 and g7/2 neutron configurations have been systematically ob-
served and characterized as having a triaxial prolate shape [7, 8]. Recently,
152−158Nd [4, 9] and 137Ce [10] nuclei have been studied up to high spin
states. Both these nuclei have shown bands based on multiquasiparticle
configuration and shape coexistence phenomenon. In earlier works, some
low-spin states in Sm, Gd and Dy were observed in Coulomb excitation [11].
Very recently, interesting experimental studies were done for 161Er nucleus,
where the high-spin states have been investigated [12]. This work motivates
us to analyse the detail high-spin structure of this nucleus.

Here, we have studied the multiquasiparticle bands at high spins of
161,163Er using Deformed Hartree–Fock (DHF) and Angular Momentum Pro-
jection technique to study the spectra, electromagnetic matrix elements and
K-isomers. Spins and parities of the levels have been assigned from Hartree–
Fock orbit. The calculated results have been compared with available ex-
perimental data.

This paper is organized as follows: A brief theoretical formalism and
numerical calculations are presented in Sec. 2. The results and discussions
are given in Sec. 3. In this section the details of the energy spectra are given
and compared with the available experimental data. The electromagnetic
properties of various bands are also discussed. Finally we conclude our work
in Sec. 4.

2. Theoretical framework

2.1. Deformed Hartree–Fock (DHF)

A deformed single-particle state is a superposition of states of various j.
Assuming axial symmetric deformation the deformed single-particle wave
function can be expressed as [13]

|αm〉 =
∑
j

Cαmj |jm〉 . (1)

The mixing amplitudes Cs are the variational parameters in Hartree–Fock
theory leading to energy minimization. Because of axial symmetry, K (pro-
jection of j on symmetry axis) is a good quantum number. In the uncoupled



Spectroscopic Study of 161,163Er in Deformed Hartree–Fock Theory 453

representation, the Hartree–Fock equations are [14,15,16,17]

(εj − eαm)Cαmj +
∑

j2j3j4m2

V (j3m3j2m2; jmj4m4) ρj4m2j2m2C
αm3
j1

= 0 . (2)

Here εj is the single particle energy, eαm is the Lagrange multiplier, and V is
the two-body interaction among nucleons. The density matrix is defined as

ρj4m2j2m2 =
∑

α(occupied)

Cαm2
j2

Cαm2
j4

. (3)

Substituting m3 = m and m4 = m2 for axially symmetry case, equations
(1) and (2) are solved self-consistently. The Slater determinants for protons
and neutrons are the deformed intrinsic state |φK〉.

2.2. Angular Momentum Projection

A deformed shape such as the one described by |ΦK〉 is localized in angle
and, by the uncertainty principle, is not a state of good angular momen-
tum (J). Thus |ΦK〉 does not have a unique J quantum number and is a
superposition of various J states [14, 17,18]

|ΦK〉 =
∑
I

CIK |ΨIK〉 . (4)

One needs to project out states of good angular momenta from the intrinsic
state ΦK with the Angular Momentum Projection operator

P IMK =
2I + 1
8π2

∫
dΩDI

MK
∗
(Ω)R(Ω) . (5)

Here R(Ω) is the rotation operator e−iαJze−iβJye−iγJz and Ω represents the
Euler’s angles α, β and γ. The Euler’s angles α and γ are integrated out
because of axial symmetry, but the remaining one θ has to be integrated
numerically. It is important to restore rotational symmetry by such pro-
jection operator. As pointed out by Peierls and Yoccoz in their original
paper [18], the wave function obtained by using such projection operator
gives the correct number of degrees of freedom of a many particle system,
since the extra three Euler angles are integrated out to give a state of good
angular momentum. The Hamiltonian and multiple matrix elements are
given as follows〈

Ψ IK2

∣∣∣H ∣∣∣Ψ IK1

〉
=

2I + 1
2

1(
N I
K1K1

N I
K2K2

)1/2

×
∫
dθ sin θdIK2K1

(θ)
〈
φK2

∣∣∣He−iθJy

∣∣∣φK1

〉
, (6)
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N I
K1K2

=
2I + 1

2

∫
dθ sin θdIK2K1

(θ)
〈
φK2

∣∣∣e−iθJy

∣∣∣φK1

〉
, (7)〈

Ψ I1K1

∣∣∣∣∣∣T λ∣∣∣∣∣∣Ψ I2K2

〉
=

(2I2 + 1)(2I1 + 1)1/2

2
(
N I1
K1K1

N I2
K2K2

)1/2

∑
ν

CI2 λ I1K1−ν ν K1

×
π∫

0

dθ sin θdI2K1−νK2
(θ)

〈
ΦK1

∣∣∣T λν e−iθJy

∣∣∣ΦK2

〉
, (8)

where the N I
KK′ stands for wave function overlap (for details refer to

[14, 15, 16, 17, 19, 20, 21]). The matrix element of the nuclear Hamiltonian
contains single-particle and two-body residual interaction terms between two
states of angular momentum J projected from intrinsic states φK2 and φK1 .
The tensor operator TL denotes of an electromagnetic operators E2, M1,
etc. The integrations are done in a Gauss–Legendre quadrature with 64
points and the kernels of various quantities are solved from equations (6)–
(8).

2.3. Band mixing

In general, two states |ΨJMK1
〉 and |ΨJMK2

〉 projected from two intrinsic
configurations are not orthogonal to each other even if |ΦK1〉 and |ΦK2〉 are
orthogonal. Thus, whenever necessary, we orthonormalize them and then
diagonalize to do band-mixing using the following equation∑

K′

(
HJ
KK′ − EJNJ

KK′
)
CJK′ = 0 . (9)

Here CJK′ is the orthonormalized amplitude which can be identified as the
band mixing amplitude.

2.4. The deformed single particle configuration

The experimental observations call for theoretical study of the spectra
and electromagnetic transitions from a microscopic point of view, so that
the various features of these bands are understood on the basis of their
microscopic structures. In order to obtain reliable wave function of the var-
ious bands, we should have the corresponding multiparticle states built on
deformed single particles. One should also have states of good angular mo-
mentum for the various states that can be identified with the states obtained
in experiment. To obtain the deformed single-particle states we have to in-
clude the residual two-body interaction among nucleons in the theoretical



Spectroscopic Study of 161,163Er in Deformed Hartree–Fock Theory 455

model. This is best done in a Hartree–Fock self-consistent procedure. In
the microscopic model used by us, the deformed orbits are generated by de-
formed Hartree–Fock (HF) calculation. Each deformed HF orbit is in general
a superposition of various j states. An intrinsic state is a Slater determinant
of such deformed orbits, obtained by self-consistent deformed Hartree–Fock
procedure [15, 17] (actually a product of two such Slater determinants for
protons and neutrons with Np protons and Nn neutrons in appropriate or-
bits). From the self-consistent solution of the deformed HF equations, the
deformed orbits are obtained. From these deformed orbits the HF intrinsic
states and particle-hole intrinsic states are constructed. Axial symmetry is
retained in our deformed HF calculation (bands have good quantum num-
ber K). The deformed HF orbits are calculated with a spherical core of
132Sn. The model space spans 2s1/2 = 6.224, 1d3/2 = 5.305, 1d5/2 = 3.758,
0g7/2 = 0.0, 0h9/2 = 11.541, 0h11/2 = 4.711 MeV orbits for protons and
2p1/2 = 4.462, 2p3/2 = 2.974, 1f5/2 = 3.432, 1f7/2 = 0.0, 0h9/2 = 0.3,
0i13/2 = 1.487 MeV orbits for neutrons. We use a surface δ interaction
among the active nucleons in these orbits with nucleon–nucleon interaction
strength Vpp = Vnp = Vnn = 0.3 MeV. The interaction has the form

V (r12) = −2F (R0u0)−4δ(r1 −R0)δ(r2 −R0)δ(cos(ω12)− 1)

= −V0

∑
lm

Y ∗
lm(ω1)Ylm(ω2) . (10)
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Fig. 1. Prolate deformed HF orbits of 160,162Er. The orbits are denoted by |2m|π.
Occupied orbits are denoted by x.
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The resulting HF orbits of protons and neutrons corresponding to the
lowest prolate solution of 160,162Er are shown in Fig. 1. From this figure,
the single particle orbits of the next odd nucleus near the Fermi surface are
identified and different band mixing between various orbitals are performed.
The calculated results are presented in Figs. 2–5.
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Fig. 4. B(E2) values of various bands of 161,163Er.
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3. Results and discussion

Before going to the high spin state, we calculate the ground state binding
energy (BE), root mean square charge radius (rch), and quadrupole defor-
mation parameter β2 for 161,163Er. We employed the most successful rela-
tivistic mean field (with NL3 parameter set) [22] and non-relativistic Skyrme
Hartree–Fock (with SkI4 force) [23] formalisms to get an idea of the ground
state structures of these two neutron-deficit nuclei. The calculated results
are displayed in Table I. The experimental data are also given in the table for
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comparison, wherever available. The RMF(NL3) results are calculated with
and without taking pairing into account. A simple BCS pairing scheme is
adopted. The line with an asterisk (*) is without taking pairing into account.
From the table, it is clear that a couple of MeV added to the total binding
energy both to the prolate and oblate solution when we included the pair-
ing effects. On the other hand, the radius and the quadrupole deformation
changes marginally.

TABLE I

Ground state binding energy (BE), root mean square charge radius rch and
quadrupole deformation parameter β2 of 161,163Er with relativistic mean field
(NL3 set) [22] and non-relativistic Skyrme Hartree–Fock (SkI4 force parame-
ter) [23] formalisms. The experimental binding energy is taken from Ref. [24].
Energy is in MeV and rch is in fm. The line with an asterisk (*) is the result
obtained without taking BCS-pairing. All other data in the table are done with
BCS pairing approach.

Nucleus BE [MeV] rch (fm) β2 BEexpt.

NL3
161Er* 1312.0 5.204 0.289 1311.482
161Er 1314.0 5.214 0.293

(0.243-HF)
(0.27-[25])

161Er* 1305.6 5.187 −0.217
161Er 1308.7 5.198 −0.226

SkI4
161Er* 1307.7 5.168 0.278
161Er 1309.4 5.184 0.306
161Er* 1302.8 5.208 −0.304
161Er 1304.4 5.205 −0.295

NL3
163Er* 1327.4 5.219 0.292 1327.591
163Er 1329.7 5.239 0.316

(0.255-HF)
(0.28-[25])

163Er* 1321.0 5.206 −0.229
163Er 1323.7 5.218 −0.238

SkI4
163Er* 1323.9 5.205 0.310
163Er 1325.3 5.216 0.325
163Er* 1318.0 5.232 −0.300
163Er 1320.0 5.199 −0.244
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After knowing the ground state properties of the nuclei 161,163Er, we pro-
ceed for the high spin effects of these nuclei. It is evident that the deformed
nuclei have collective rotational bands with energies varying as J(J+1) and
these bands are known as regular rotational bands. Although perfect rotors
and rotational spectra are rare, many of these bands show approximate rota-
tional behaviour with the energies changing in a regular fashion with angular
momentum. In general, low K bands show deviations from this regular rota-
tional behaviour, particularly if the deformed orbits near the Fermi surface
are of large j origin. In this case a band is split into two different signatures
with energy staggering between the two signature branches. Here, we have
used the above deformed Hartree–Fock and Angular Momentum Projection
formalism to calculate the band structures (energies, B(E2), and B(M1)
values of rotational bands) for the isotopes of Er. The energy spectra asso-
ciated with each intrinsic state is obtained by angular momentum projection
in the given model space and with surface delta residual interaction, using
the formalism discussed in Sec. 2.

From the Hartree–Fock single-particle energy levels, it is clear that the
active orbits near the Fermi surface are 3/2+, 5/2+, 7/2+ etc. There is
maximum possibility of mixing of these bands with the ground one 1/2+.
Thus we perform band mixing of these states and the results of the energy
spectra are shown in Figs. 2 and 3. The K = 1/2+, 3/2+, 5/2+, and
7/2+ bands and their mixing for both favoured and unfavoured bands along
with the experimental data for the ground band is given. Our band mixing
results match pretty well with the data. It is to be noted that, contradict
to expectation, the band mixing result of K = 1/2+ and 3/2+ band does
not produce reasonable experimental data. That is the favoured band is a
little away from the data at lower J while the unfavoured one shows a large
discrepancy at higher J value. This gives enough indication to consider only
the mixing ofK = 1/2+ with 5/2+ and 7/2+ respectively. The lower panel of
the figure is for the band mixing Jπ = 1/2+ and 7/2+ with the experimental
data are also shown for comparison. In this case also the calculated results
agree well with the experimental values. Similarly, the calculated bands for
K = 3/2+, 5/2+ and K = 3/2+, 7/2+ for 163Er are presented in the upper
and lower panel of Fig. 3. The band mixing of Jπ = 3/2+ with 5/2+ and
Jπ = 3/2+ with 7/2+ are shown including the experimental data wherever
available. The experimental data agree well with the favoured band of the
band mixing results.

Apart from the energy spectra we have calculated the reduced transition
matrix elements B(E2) and B(M1) using Eqs. (11) and (12) for these two
nuclei 161,163Er. The quantity B(E2) for a transition from an initial state
αJ1 to final state βJ2 is given by
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B(E2;αJ1 → βJ2) =
1

2J1 + 1

∣∣∣∣ ∑
i=p,n

〈
ΨβJ2

K2

∣∣∣∣∣∣Qi2∣∣∣∣∣∣ΨαJ1
K1

〉 ∣∣∣∣2 . (11)

Here the summation is for quadrupole moment operators of protons and
neutrons. The effective charges of 1.7e and 0.7e are used for protons and
neutrons, respectively, for our calculations. The calculated results are de-
picted in Fig. 4. The favoured B(E2) value decreases with J and at about
J ∼ 14 attains a constant quantity. On the other hand, this B(E2) transi-
tion matrix element increases up-to certain value and attains the saturation
at the same J ∼ 14 for both 161,163Er.

The reduced magnetic dipole transition moment between initial and final
state is given by

B(M1;αJ1 → βJ2) =
1

2J1+1
3
4π

∣∣∣∣ ∑
i=p,n

〈
ΨβJ2

K2

∣∣∣∣∣∣gi``i + gissi

∣∣∣∣∣∣ΨαJ1
K1

〉 ∣∣∣∣2 , (12)

where g` and gs are orbital and spin g-factor respectively. The g-factor
of g` = 1.0µN and gs = 5.586 × 0.5µN for protons and g` = 0µN and
gs = −3.826 × 0.5µN for neutrons are used for B(M1) calculations. The
B(M1) values are gradually increasing with J for both the 161,163Er are
shown in Fig. 5. The results show an increasing in zig-zag path with J for
both the considered nuclei. This zig-zag nature is due to the large signature
effect of these K = 1/2+ (161Er) and K = 3/2+ (163Er). The signature
decreases with higher K and it is minimum for K = 7/2+.

4. Summary and conclusion

In summary, we studied the high spin states of the neutron-deficit
161,163Er odd mass nuclei. These nuclei have interesting quadrupole defor-
mation properties and band structures. We have presented results of these
nuclei using the microscopic model of Hartree–Fock and angular momentum
projection technique. Our results correlate well with known experimental
findings about the spectra of these nuclei. Using our Projected HF model
with band mixing, we predict many bands up-to high spin values. The spec-
tra of both 161,163Er as well as electromagnetic properties like B(E2) and
B(M1) are obtained.

We have shown the behaviour of B(E2) for ground state and K-isomer
bands for the nuclei studied in this paper. The B(E2) value of the ground
state band of both the considered Er isotopes were found to be smoothly
varied with increasing J . The B(E2; J + 1 → J) for g.s. band had the
same trend for both the isotopes studied here. For other bands in the case
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of J + 2 → J transition the values were increasing with J and after a
certain spin it was nearly constant. These results can be useful in future
experimental studies of these nuclei. As a whole, our microscopic model can
be very useful to study the band structure and electromagnetic properties
in this mass region.

This work is supported in part by the UGC-DAE-CSR, Kolkata Cen-
ter, India (Project No. UGC-DAE CRS/KC/CRS/2009/NP06/1354) and
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