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THE PHASE STRUCTURE OF STRONGLY
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With increasing temperature and density, strongly interacting matter
will undergo two transitions: deconfinement and chiral symmetry restora-
tion. While at low baryon density the two coincide, at high baryon density
chiral symmetry can remain broken in a deconfined state. This leads to a
phase diagram of three basic states: hadronic matter, a plasma of massive
colored quarks, and a quark-gluon plasma.
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The essential features of hadrons are color confinement and spontaneous
chiral symmetry breaking. The former binds colored quarks interacting
through colored gluons to color-neutral hadrons. The latter brings in pi-
ons as Goldstone bosons and gives the essentially massless quarks in the
QCD Lagrangian a dynamically generated effective mass. Both features will
come to an end in hadronic matter at sufficiently high temperatures and/or
baryon densities, though not a priori simultaneously. However, rather basic
arguments suggest that chiral symmetry restoration occurs either together
with or after color deconfinement [1].

It thus appears conceivable that QCD could lead to a three-state phase
structure as function of the temperature T and the baryochemical poten-
tial µ, as shown in Fig. 1. In such a scenario, color deconfinement would
result in a plasma of massive “dressed” quarks; the only role of gluons in
this state would be to dynamically generate the effective quark mass, main-
taining spontaneous chiral symmetry breaking. At still higher T and/or µ,
this gluonic dressing of the quarks would then “evaporate” or “melt”, lead-
ing to a plasma of deconfined massless quarks and gluons: the conventional
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QGP, with restored chiral symmetry. Evidently, this view of things ignores
the possibility of bosonic diquark binding and condensation leading to color
superconductivity; we shall return briefly to this aspect later on.

µ

T
massless quarks and gluons

hadrons

dressed quarks

Fig. 1. Three-state scenario of QCD matter.

The basic idea in our considerations will be that a medium of constituents
endowed with an intrinsic spatial scale L can only exist as long as its density
remains below 1/L3. In strong interaction physics, this had first led to the
prediction of an upper density limit for mesonic matter [2]. In the past
decades it has found a quantitative formal basis in percolation theory [3].
The natural starting point is thus the determination of the intrinsic scales
for the given medium.

Hadronic interactions lead to two intrinsic scales, one on the hadronic
and the other on the quark level. Both can be expressed in different ways,
and we shall elaborate on this. However, since we want to resort to geometric
arguments, size parameters are the most useful. One scale then is given by
the confinement radius Rh ' 1 fm, defining the range of the strong force
and thus also the size of hadrons. As long as the density n of the medium
remains below nhc ' 1/Vh, with Vh = 4π R3

h/3, it is expected to be of
hadronic nature. Inside a hadron, the valence quark constituents acquire a
dynamically generated effective mass Mq and size Rq. We shall show in the
next section that both theoretical and experimental studies indicate Mq '
0.3–0.4 GeV and Rq ' 0.3 fm. In the density region nhc < n < nqc ' 1/Vq,
with Vq = 4π R3

q/3, we then expect a plasma of deconfined massive quarks,
while for n > nqc, the medium will become the conventional quark-gluon
plasma, with pointlike massless quarks and gluons as constituents. If both
the parameters Rh and Rq were independent of temperature and baryon
density, the critical points in the phase diagram of Fig. 1 could thus be
easily defined in terms of corresponding percolation points.

However, it is well-known that the latter premise is not generally correct.
Lattice studies at or near µ= 0 have shown that here color deconfinement
and chiral symmetry restoration coincide [4]. Hence, in a medium of van-
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ishing baryon density, the mass of the constituent quark vanishes at the
deconfinement point Tc. This is in accord with the formation of the quark
dressing through a polarization cloud in the surrounding gluonic medium;
as the temperature approaches Tc, the screening radius defining cloud size
decreases rapidly, and at Tc, the cloud has “evaporated”, leaving pointlike
quarks and gluons. Thus, there remains only one scale, which defines the
simultaneous onset of color deconfinement and chiral symmetry restoration.
Since the physical reason for this is apparently the presence of a hot gluonic
environment, there is little reason to expect a similar behavior at low T
and large µ. The aim of our study is therefore to introduce in this region
an intermediate plasma of massive quarks, separating hadronic matter and
QGP by a state of quark deconfinement and broken chiral symmetry.

There are two different regimes for the quark infrastructure of hadrons,
depending how we probe. Relatively hard probes, such as deep inelastic
lepton–hadron scattering or hadron–hadron interactions at large momen-
tum transfer, lead to massless pointlike quarks and gluons. In this regime,
the parton model with hadronic quark and gluon distribution functions pro-
vides a suitable description. On the other hand, soft interactions, as seen
in minimum bias proton–proton or pion–proton interactions, suggest that
mesons/nucleons consist of two/three “constituent” quarks having a size of
about 0.3 fm and a mass of about 0.3–0.4 GeV. Here many features are
well accounted for by the additive quark model [5]. We can thus imagine
that inside a hadron, a quark polarizes the gluon medium in which it is
held through color confinement, and the resulting gluon cloud forms the
constituent quark mass Mq [6, 7].

This picture is today found to be quite compatible with heavy quark
correlation studies in finite temperature lattice QCD at vanishing baryon
density. By evaluating Polyakov loop correlations in a QCD medium of
two or three light quark flavors below deconfinement (T < Tc), one obtains
the free energy F (r, T ) as function of the quark separation distance r. In
the low temperature limit, F (r, T = 0) saturates beyond a separation of
r ' 1.5 fm, converging to the value F (∞, T = 0) ' 1.2 ± 0.1 GeV [8].
This result is quite universal; it is obtained by separating a heavy quark–
antiquark pair, where the separation requires the formation of a light qq̄
pair to assure color neutrality. It is obtained as well even if we separate a
heavy quark–quark pair, where the formation of a light antiquark–antiquark
pair is necessary [9]. Moreover, it is reached for any color channel (singlet
or octet for QQ̄, antitriplet or sextet for QQ). The large r behavior of all
cases coincides; any uncertainty in the numerical value of F (∞, T = 0) is
due to the necessity to extrapolate to T = 0 and to uncertainties in the
normalization.
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To create an isolated heavy-light quark system, we thus need a gluonic
energy input Fg, with

F (∞, T = 0) = 2Fg ' 1.2 GeV . (1)

What is the meaning of Fg? One possible and rather widely accepted inter-
pretation is that it is the “mass” or the energy content of the gluonic string
connecting quark and antiquark. With

Fg ' σ Rh ' 0.6−0.8 GeV (2)

and using
√
σ = 0.4 GeV and Rh = 0.8–1.0 fm, this does lead to the correct

value of Fg, at least in the case of mesons; baryons are not so easily dealt
with. We want to consider here instead a scenario in which Fg is the sum of
the gluonic dressing masses of two constituent quarks. Then both mesons
and baryons can be treated on equal footing, giving us

Mq =
Fg
2

+mq ' 0.3−0.4 GeV , (3)

where mq denotes the bare quark mass; the last term thus corresponds to
the light quark limit. We emphasize that the constituent quarks retain their
intrinsic quantum numbers; the gluon cloud thus is color-neutral and without
any spin.

Such an interpretation is, as already mentioned, supported by the addi-
tive quark model [5]. In a collision energy range of about

√
s ' 5–20 GeV,

in which hard processes do not yet play a significant role, the total cross
sections for proton–proton and pion–proton collisions are given as

σpp = 3× 3σqq ' 38 mb , σπp = 2× 3σqq ' 25 mb . (4)

The predicted ratio 3/2 between pion and proton projectiles is seen to be
in accord with the data; moreover, σpp = π R2

h leads to Rh ' 0.9 fm for the
hadronic radius. Using Eq. (4), we obtain

σqq ' 3.3 mb → Rq ' 0.33 fm (5)

for the corresponding constituent quark sizes in the case of light bare quarks;
we return to the more general case of mq � 0 shortly. A similar constituent
quark radius was also obtained through partonic arguments [7].

As mentioned, we consider the constituent quark to be made up of the
bare quark and the gluonic polarization cloud surrounding it. This means
that as we move a distance r away from the pointlike quark, we find an
effective quark mass M eff

q (r), depending on how much of the cloud we in-
clude at a given r. Screening in the non-Abelian gluon medium limits the
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size of the cloud, so that beyond r0 ' 0.3 fm, the cloud mass saturates,
with the constituent quark mass Mq as saturation limit. The resulting be-
havior [10] is illustrated in Fig. 2, with Rh ' 1 fm denoting the radius of
color confinement. The conceptual scenario just discussed is corroborated
by perturbative QCD studies [11], for more detail, see Ref. [12].

Mq

Mq
eff

(r)

r

r
00 R

h

Fig. 2. Effective quark mass M eff
q (r) as seen from a distance r [10].

The conceptual scenario just discussed is supported by perturbative QCD
estimates [11], providing an analytic form for the approach of the effective
quark mass to a value determined by the non-perturbative chiral condensate
〈ψ̄ψ〉; for more detail, see Ref. [12].

The effective constituent quark mass in vacuum is thus determined by
the size and energy density of the gluon cloud, or equivalently, by the chiral
condensate value in the non-perturbative region. How do these quantities
change with temperature in a hadronic medium at vanishing baryon density?

This can again be deduced from heavy quark correlation studies as func-
tion of the temperature of the medium. They show that the effective mass
of the gluon cloud of an isolated static color charge (obtained by separating
a static QQ̄ pair), starting from confinement values around 300 MeV, drops
sharply at T ' Tc [4]. This is accompanied by a corresponding drop of
the screening radius. We thus expect the effective quark mass to show the
temperature dependence illustrated in Fig. 3.

Complementary to this, the temperature dependence of the chiral con-
densate is determined directly in finite temperature lattice QCD. Its behav-
ior is also shown in Fig. 3; it is seen that at the deconfinement point, the
chiral condensate vanishes as well [4]. This is in accord with the idea that
at this point, the gluon cloud around the quark has essentially evaporated.

These considerations show that there are two distinct ways to reach chiral
symmetry restoration. On the one hand, even for an interquark distance 2Rh
well above 2Rq, a sufficiently hot medium will through gluon screening cause
the effective quark mass to vanish, as shown in Fig. 3. On the other hand,
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when a cold medium becomes so dense that the average interquark distance
is 2Rq or less, the quarks form a connected cluster containing pointlike bare
quarks.
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Fig. 3. Constituent quark mass Mq(T ) (a) and chiral condensate 〈ψ̄ψ(T )〉 (b) as
function of temperature T .

We note in passing that the two scales, Rh and Rq, have also been con-
sidered as the quark and gluon confinement scales, respectively. This implies
that color-neutral hadrons have size Rh, whereas color-neutral glueballs have
the much smaller intrinsic size Rq, and the spatial ground state glueball size
is indeed in most calculations found to be about Rq ' 0.3 fm.

We want to argue in the following section that at µ = 0, color deconfine-
ment sets in at relatively large interquark separation, but in a hot gluonic
environment. As a consequence, the gluon cloud giving rise to the effective
quark mass has evaporated, causing deconfinement and chiral symmetry
restoration to coincide. For the other extreme, for T ' 0, at the color de-
confinement point the interquark distance is also still well above Rq. But
now there is no hot gluonic medium to melt the gluon cloud, so that the
cold deconfined medium will be a plasma of massive quarks. Only when
its density is increased much more, to the percolation point of the massive
constituent quarks, will the medium effectively consist of massless pointlike
quarks.

Hadrons are color-singlet quark–antiquark or three-quark states having
a characteristic spatial extension of about one fermi. In a hadronic medium,
the quark constituents are restricted to the corresponding volume by color
confinement, making it impossible for a given quark to separate more than
about a fermi from its partner(s) in a color-singlet. When the density of a
gas of hadrons is increased sufficiently, by raising either the temperature or
the baryon density, a quark constituent in a given hadron will eventually find
quarks and antiquarks from other hadrons as close by as its original part-
ner(s). At this point, one can no longer define specific hadrons and hence the
concept of hadronic matter becomes meaningless; the hadron gas has become
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a plasma of deconfined colored quarks and antiquarks. As mentioned, such
a density limit to hadronic matter was first suggested by Pomeranchuk [2],
well before the advent of the quark model of hadrons.

In the chiral limit, both mesons and baryons have an intrinsic spatial size
of about 1 fm. Hence in both cases, the formation of percolating clusters
provides a natural limit to the hadronic form of strongly interacting matter
[13, 14, 15, 16]. We note that for spin dynamics, the resulting percolation
theory can be rigorously formulated [17, 18]; for QCD, however, there were
only some first approximative attempts [19], and a definitive theory is still
lacking. In particular, both the definition of clusters (using bond weights)
and the relevant thermal distribution law (with more than next neighbors)
are not yet specified. Our argumentation thus has to remain on a qualitative
level.

For mesons, increasing the density eventually leads to a medium in which
the distance between a quark constituent from one hadron and an anti-
quark from another is equal to or less than the typical hadronic size, so
that defining specific quark–antiquark pairs as hadrons ceases to make any
sense. The percolating medium becomes a plasma of deconfined quarks, an-
tiquarks and gluons. In the baryon-rich region, the increase of density of
hard-core nucleons leads to “jamming”, i.e., a restriction in the mobility of
the nucleons [20, 21]. But here as well we reach eventually the formation of
a percolating medium [22], in which the overall quark density is too high
to define individual nucleons. We thus consider the limit of confinement in
the T–µ diagram of strongly interacting matter to be universally defined by
percolation of the relevant hadron species in the given region [16]. It should
be emphasized that such a percolation limit is a well-defined geometric form
of critical behavior, specified by critical exponents and leading to univer-
sality classes, just as found for thermal critical behavior [3]. The essential
difference is that geometric singularities (formation of infinite clusters) do
not necessarily imply non-analytic behavior for the partition function.

At µ = 0, the percolation density for permeable hadrons (mesons and
low density baryons) of size V = 4πR3

h/3 is found to be [16]

nM '
1.2
Vh
' 0.6 fm−3 , (6)

with Rh ' 0.8 fm for the hadron radius. This is the density of the per-
colating cluster at the onset of percolation, or, equivalently, the density at
which the medium no longer allows a spanning vacuum. The corresponding
temperature can be obtained once the hadronic medium is specified. For
µ ' 0, this medium shows abundant resonance formation, and such interac-
tions can be taken into account [23,24] by replacing the interacting medium
of pions and nucleons by an ideal gas of all observed resonance states. For
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such an ideal gas one finds as deconfinement temperature [16]

Tdec ' 180 MeV , (7)

which agrees well with the value presently obtained in finite temperature
lattice QCD.

The resulting medium at this point is, however, strongly non-pertur-
bative. In fact, if we consider the onset of perturbative behavior to be
given by αs ' 1/2, the non-perturbative regime extends up to T ' 4 Tc.
This is again in accord with lattice results, showing that above 3–4 Tc the
interaction measure (ε− 3P )/T 4 reaches perturbative behavior [25].

Assuming mesons to be the dominant constituents for µ = 0, the density
(6) implies for the average separation between quarks and/or antiquarks at
the deconfinement point

dMq '
1

n
1/3
M

' 1.2 fm . (8)

At the other extreme, for T = 0, we have to consider the percolation of
nucleons with a hard core [16,22]. Assuming a hard core radius Rhc = Rh/2,
one obtains for the critical density

nB '
2
Vh
' 0.9 fm−3 , (9)

a value about 30% higher than that for permeable hadrons, as consequence
of the baryon repulsion. This value can be used to obtain the percolation
value of the baryochemical potential, using a van der Waals approach to
account for the repulsion in the determination of the density as function
of µ [16]. As result, one obtains

µdec ' 1.1 GeV (10)

as deconfinement point for µ. The separation between quarks at this point
becomes

dBq '
1

n
1/3
B

' 1.0 fm , (11)

slightly less than at T = 0, due to the higher density. We note that since
µ ≥ M , where M denotes the nucleon mass, this leaves as function of µ a
rather small window

M ≤ µ ≤ 1.2 M (12)

for the range of confined baryonic matter at T = 0. This window contains
essentially all strongly interacting matter in the real world, from nuclei to
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neutron stars. The corresponding density range runs from n0 ' 0.17 fm−3

as standard nuclear matter density to the deconfinement value (9) of about
5 n0.

We thus confirm through percolation arguments that color deconfinement
is expected to set in at hadron densities for which, in general, the quark
constituents are separated by about 1 fm. At this density, any partitioning
into hadrons becomes meaningless, and we have a medium of deconfined
quarks of mass Mq ' 0.4 GeV and size r0 ' 0.3 fm, separated by a distance
r ' 1 fm > r0. Hence in the density range corresponding to r0 ≤ r ≤ 1 fm,
the quarks can retain their effective constituent mass, so that the deconfined
medium now is a plasma of quarks of finite mass and spatial extent, with
continued chiral symmetry breaking. A sufficient further increase in density
will eventually lead to overlap and percolation of the constituent quarks.
We assume that beyond this percolation point, chiral symmetry is effectively
restored. Let us see what density the above obtained value of Rq leads to.

At T = 0, the density for a system of quarks of mass Mq is given by

nq(µq) =
2
π2

(
µ2
q −M2

q

)3/2
, (13)

with µq = µ/3 for the quark chemical potential. The percolation condition
for quarks of radius Rq (see Eq. (6))

nch
q =

1.2
(4π R3

q/3)
' 0.29

R3
q

(14)

then defines the onset of chiral symmetry restoration. With Rq ' 0.3 fm,
we obtain

nch
B ' 3.5 fm−3 ' 3.9ndec

B , (15)

indicating that the baryon density threshold for chiral symmetry restoration
is about four times higher than that for color deconfinement. The corre-
sponding value for the baryochemical potential is found to be µch

B ' 2.2 GeV,
to be compared to µdec

B ' 1.1 GeV. Using the µ counterpart of the two-loop
form, the strong coupling αs has now dropped to the value αs(µch

c ) ' 0.5.
The resulting phase structure is illustrated in Fig. 4.

Our considerations thus suggest the existence of a plasma of massive
deconfined quarks between the hadronic matter state and the quark-gluon
plasma. In this state, quarks are deconfined; gluons, however, are “bound”
into the constituent quark mass and thus remain in a sense confined. The
quark dressing is made up of gluons which form a color-neutral cloud, so
that the massive quarks retain their fundamental color state as well as their
other intrinsic quantum numbers. The effective degrees of freedom in the
resulting quark plasma thus are just those of massive quarks. Its lower
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Fig. 4. Phase structure of strongly interacting matter.

limit in baryon density is defined by the onset of vacuum formation, forcing
the quarks to bind into color neutral nucleons. The corresponding high
density limit is given by the percolation point of the (spatially extended)
quarks, beyond which there is a connected medium containing bare quarks
and gluons. Finally, increasing the temperature at fixed µ leads here, just
as in the hadronic phase, to an evaporation of the gluonic dressing of the
quarks and thus to a restoration of chiral symmetry.

The constituent quarks in the deconfined medium will, in general, be
interacting with each other. Of particular interest here is the presence of
a qq attraction, which at sufficiently low temperatures could lead to the
formation of bound colored bosonic qq states (“diquarks”). Baryons have, in
fact, often been considered in terms of two quarks bound in a color antitriplet
state, which then in turn binds with the remaining quark to form a color
singlet. For T ' 0, such diquarks could lead to Bose-condensation and hence
to a color superconductor [26].

To reach baryon densities beyond the percolation limit, the nucleons ev-
idently have to break up into constituents which are subject to less or no
hard-core repulsion, and a break-up into constituent quarks and bosonic di-
quarks as their excited states fills that requirement. Since at low T there
is little or no thermal agitation, both could survive for some range of tem-
perature and baryochemical potential. The resulting picture of the new
medium thus parallels somewhat that of hadronic matter at µ ' 0, where
resonance interactions lead to a gas of basic hadrons (pions and nucleons)
plus their resonance excitations. Here we have instead a gas of basic con-
stituent quarks, together with the diquark excitations formed through their
interaction. The difference is that the basic “particles” now are massive col-
ored fermions, which can exist only in the colored background field provided
by a sufficiently dense strongly interacting medium.
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In summary, we have shown that chiral symmetry restoration can occur
in two ways,

• by evaporation of the gluonic quark dressing in a hot environment, or

• by quark percolation in a cold environment, leading to cluster fusion
of the gluon clouds making up the effective quark mass.

At vanishing baryon density, the coincidence of color deconfinement and
chiral symmetry restoration arises through the first of these two mechanisms.
For low temperature and large baryochemical potential, an evaporation of
the gluon dressing does not appear likely, and hence the effective quark mass
will survive quark deconfinement. We thus obtain a three-phase structure
of matter in QCD, apart from a possible color superconductor. The phase
of massive quarks is limited in temperature by evaporation, i.e., also by the
first of the above alternatives, and in baryon density by the second, i.e., by
quark percolation.
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