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QCD CRITICAL POINT:
SYNERGY OF LATTICE AND EXPERIMENTS∗
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The freeze-out curve, which describes a vast amount of precise experi-
mental data in heavy ion collisions, provides a relation between the colliding
energy and the thermodynamical parameters of the fireball. The variance,
skew and kurtosis of the event distribution of baryon number are studied at
several energies of interest through Padé resummations of our Lattice QCD
results. A smooth behaviour is predicted for three ratios of these quantities
at current RHIC and future LHC energies. Any deviations from these at
the RHIC energy scan would signal the presence of a nearby critical point.
Our lattice results on the critical point do show such a behaviour.
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1. Introduction

Critical points in a phase diagram in the temperature-density plane are
special for many reasons. Universality of critical indices and diverging cor-
relation length are some of them. For common substances, such as water
or carbon dioxide, the existence of critical point has been established ex-
perimentally, with its location known rather precisely. For many of these,
however, getting a theoretical, especially first principles based, computation
of their locations turned out to be still illusive. I wish to describe how things
are different for strongly interacting matter, which is naturally described by
Quantum Chromo Dynamics (QCD) and has an inherently higher energy
scale. Whether the QCD phase diagram has a critical point in its T–µB
plane, where µB is the baryonic chemical potential, is therefore a tougher
question to address experimentally. Thanks to the impressive developments
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on the experimental fronts, the Relativistic Heavy Ion Collider (RHIC) at
BNL, New York, and the upcoming facilities such as FAIR at GSI, Darm-
stadt and NICA at Dubna, Russia can potentially search for it, as these
proceedings reveal.

A variety of models have been successfully tested for hadronic interac-
tions. These were also the first set of tools used for getting a glimpse of the
QCD phase diagram. For instance, using an effective chiral Nambu–Jona-
Lasinio type model, a phase diagram was obtained, which suggests [1] a crit-
ical point to exist in a world with two light quarks and one heavier quark.
One would clearly like to have an ab initio theoretical evidence for it. This
turns out to be difficult as one usually has to deal with large coupling con-
stants in the world of (low energy) hadronic interactions. Non-perturbative
Lattice QCD, defined on a discrete space-time lattice, has proved itself to
be the most reliable technique for extracting such information from QCD.
The hadron spectrum has been computed and predictions of weak decay
constants of heavy mesons have been made. Application of this approach
to finite temperature QCD has yielded a slew of thermodynamics determi-
nations, such as the pressure as a function of temperature. It is, therefore,
natural to ask whether lattice QCD can help us in locating the QCD critical
point. The prospect of finding the critical point experimentally makes it
exciting both as a check of theoretical predictions and as a competition for
getting there first. Clearly, in view of the complexity of this task, one could
turn to lattice QCD again to see if it can provide any hints for the experi-
mental search program. In this paper, I summarise the results obtained in
these directions by our group in TIFR, Mumbai.

Due to the well-known fermion doubling problem, one has to make a com-
promise in choosing the quark type for any computation. Mostly staggered
quarks are used in the lattice simulations at finite temperature and density.
These have an exact chiral symmetry which provides an order parameter for
the entire T–µB plane but, unfortunately, the flavour and spin symmetry is
broken for them on lattice. A representation of precisely 2 (or 2 +1) quark
flavours may thus be problematic, more so on the coarse lattices one is con-
strained to employ. The existence of the critical point, on the other hand, is
expected to depend crucially on the number of flavours. Although computa-
tionally much more expensive, domain wall or overlap fermions are better in
this regard, as they do have the correct symmetries for any lattice spacing
at zero temperature and density. Introduction of chemical potential, µ, for
these, however, is not straightforward due to their non-locality. Bloch and
Wettig [2] proposed a way to do this. Unfortunately, it turns out [3] that
their prescription breaks chiral symmetry. Furthermore, the chiral anomaly
for it depends on µ unlike in continuum QCD [4]. While both these defi-
ciencies go away in the continuum limit, the practical problem of the lack of
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an order parameter on finite lattices remains. What is therefore desperately
needed is a formalism with continuum-like (flavour and spin) symmetries for
quarks at non-zero µ and T with a well-defined order parameter on lattice.

Finite density simulations needed for locating a critical point suffer from
another well known problem. This one is inherited from the continuum
theory itself: the fermion sign problem. It is a major stumbling block in ex-
tending the lattice techniques to the entire T–µB plane. Several approaches
have been proposed in the past decade to deal with it. Let me provide
a partial list: (1) two parameter re-weighting [5], (2) imaginary chemical
potential [6], (3) Taylor expansion [7], (4) canonical ensemble method [8],
and (5) complex Langevin approach [9]. We employ the Taylor expansion
approach, developed independently by the TIFR group [7] and the Bielefeld
group [7], to obtain the results discussed in the next section.

2. Lattice results

Our results were obtained by simulating full QCD with two flavours of
staggered fermions of mass m/Tc = 0.1 on Nt × N3

s lattices, with Nt = 4
and Ns = 8, 10, 12, 16, 24 [10] and a finer Nt = 6 with Ns = 12, 18,
24 [11]. Earlier work by the MILC Collaboration for the smaller Nt lattice
had determined mρ/Tc = 5.4 ± 0.2 and mπ/mρ = 0.31 ± 0.01, leading to
a Goldstone pion of 230MeV in our case. For the finer lattice, we determined
βc as well. We covered a temperature range of 0.89 ≤ T/Tc ≤ 1.92 by
suitably choosing the range of couplings on both lattices. Our measurements
were made typically on 50–200 independent configurations, separated by the
respective autocorrelation lengths.

From the canonical definitions of number densities ni and susceptibilities
χnu,nd

, the QCD pressure P can be seen to have the following expansion in µ

∆P
T 4
≡ P (µ, T )

T 4
− P (0, T )

T 4
=
∑
nu,nd

χnu,nd

1
nu!

(µu
T

)nu 1
nd!

(µd
T

)nd

, (2.1)

where the indices nu and nd denote the number of derivatives of the par-
tition function with respect to the corresponding chemical potentials. We
construct the series for baryonic susceptibility from this expansion and look
for its radius of convergence as the estimate of the nearest critical point.

Successive estimates for the radius of convergence were obtained by using

the ratio method [rn+1,n+3 =
√
n(n+ 1)χ(n+1)

B /χ
(n+3)
B T 2 ] and the nth root

method [rn =
(
n!χ(2)

B /χ
(n+2)
B Tn

)1/n
]. We used terms up to the 8th order in

µ for doing so. A key point to note is that all coefficients of the series must
be positive for the critical point to be at real µ, and thus physical. We thus
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first look for this condition to be satisfied and then look for agreement be-
tween the two definitions above as well as their n-independence to locate the
critical point. The detailed expressions for all the terms can be found in [10],
where the method to evaluate them is also explained. We use stochastic esti-
mators. For terms up to the 8th order one needs 20 inversions of (D+m) on
∼ 500 vectors for a single measurement on a given gauge configuration. This
makes the computation expensive. Nevertheless, extension to the 10th and
even 12th order may be possible, especially using new emerging ideas [4]
which may save up to 60% computer time in the measurements. Adding the
chemical potential simply as µN , as proposed in [4], one has the advantage
that most derivatives of the quark matrix with µ are zero except the first.
This reduces the number of terms in each nonlinear susceptibility (NLS)
appearing in the equation above a lot. One can show that it still leads to
essentially the same results [12].

Figure 1 shows our results for the ratios defined above onNt = 6 lattice at
two different temperatures, T/Tc = 0.99 and 0.94. All the susceptibilities are
positive but the ratios fluctuate for the former while they seem to be constant
for the latter. We [11] thus found the coordinates of the endpoint (E) — the
critical point — to be TE/Tc = 0.94± 0.01, and µE

B/T
E = 1.8± 0.1 for the

finer lattice. Our earlier coarser [10] lattice result was µE
B/T

E = 1.3±0.3 for
similar volumes, with an infinite volume result leading to µE

B/T
E = 1.1± 0.1.

In view of this, it may be safer to quote the critical point to be at µB/T ∼1–2.
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Fig. 1. Estimates of radii of convergence as a function of the order n and for our
two methods at T/Tc = 0.99 and the critical point TE/Tc = 0.94. The open (filled)
points display the results for the ratio (root) method. From Ref. [11].

As a cross check of the location of µE/TE, one can use the series with
the numerically determined coefficients directly to construct χB for non-
zero µ. As one sees in Fig. 2, it leads to smooth curves with no signs
of criticality, whereas employing the Padé approximants for the series to
estimate the radius of convergence does lead to a window consistent with
our above estimate.
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Fig. 2. The baryonic susceptibility as a function of the baryonic chemical potential
using simple polynomial with all computed orders (left) and Padé approximants
(right). From Ref. [11].

3. Searching experimentally

In order to make predictions for the heavy ion experiments, and design
any further search criteria for the critical point, one needs to know the
temperature T and the chemical potential µB as a function of the colliding
energy. Recently, we proposed [13] to use the freeze-out curve as a way to
exploit the information hidden in the nonlinear susceptibilities discussed in
the previous section by evaluating lattice QCD predictions along the curve.
Recall the well known observation that the huge amounts of precise data
on hadron abundances in a variety of relativistic heavy ion experiments
are well described [14] by statistical thermodynamical models. Indeed, this
description has been found to work over the entire range of experiments
made so far. It thus leads to a mapping of the T and µB parameters of the
model to the collision (center of mass) energy

√
s. Assuming these to reflect

the true thermodynamic variables of the system and plotting these results
in the T–µB plane, one has the freeze-out curve. We treat this curve, solely
based on precise experimental data on hadron yields, as a means to provide
the (T, µ) accessible in heavy-ion experiments as a function of the colliding
energy

√
s. We use then these relevant freeze-out parameters T and µB in

our lattice computations directly to make predictions as a function of the
colliding energy.

One expects the QCD critical point to have a critical region whose
size depends on the size of the fireball as well as the critical exponents.
The freeze-out curve may pass through it or may miss it. If the condi-
tions are thus right, it may pass close enough to the critical point such
that a study of fluctuations along it will detect its presence. We define
m1 = Tχ(3)(T, µB)/χ(2)(T, µB), m3 = Tχ(4)(T, µB)/χ(3)(T, µB), and m2 =
m1m3. Note that the variance, skew and kurtosis of the event distribution of
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baryon number measure the various χs above. Furthermore, the spatial vol-
ume cancels out in these ratios, making them also suitable for experiments
which can use their favourite proxy for it. Usually, number of participants
is preferred for that role in the analysis of heavy ion data.

Defining z = µB/T , and denoting by rij the estimate for radius of con-
vergence using χi, χj as before, one has

m1 =
2z
r224

[
1 +

(
2r224

r246

− 1
)
z2 +

(
3r224

r246r
2
68

− 3r224

r246

+ 1
)
z4 +O

(
z6
)]

.

Similar series expressions can be written [13] down for m2 and m3. We
resum these by the Padè method described above to construct them, since
they seem to capture the critical behaviour well in Fig. 2

m1 = zP 1
1

(
z2; a, b

)
, m3 =

1
z
P 1

1

(
z2; a′, b′) .

Figure 3 shows our [13] results for these ratios on our finer lattice; the
results for coarser lattice are similar and can be found in Ref. [13]. Also
shown in these figures are hadron resonance gas results which do not as-
sume a critical point. One observes a smooth and monotonic behaviour for
large

√
s which is well reproduced by the hadron resonance gas. Note that

even in this smooth region, any experimental comparison is exciting since
it is a direct non-perturbative test of QCD in hot and dense environment.
Earlier lattice predictions, such as the equation of state or the transition tem-
perature can be compared with experiments only indirectly. Remarkably, a
non-monotonic behaviour is visible in Fig. 3 at our estimated critical point
in all mi, suggesting that it would be accessible to the low energy scan of
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Fig. 3. Results for mi on the Nt = 6 lattice as a function of the colliding energy.
A power law fit to the high energy data and a hadron resonance gas fit is also
shown. From Ref. [13].
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RHIC at BNL. Indeed, even if one were to be cautious in trusting the nu-
merical precision of our results, it should be clear that such a non-monotonic
behaviour seen at any other nearby location would still signal the presence
of QCD critical point.

In order to confront these results on the baryon number fluctuations
with data, one needs to address the issue of neutral baryons — neutrons —
which are not easy to detect and are thus missed. It turns out that proton
number fluctuations suffice [15]. Since the diverging correlation length at
our critical point is linked to the σ mode which cannot mix with any isospin
modes, and the isospin susceptibility χI must be regular there. Assuming
protons, neutrons, pions to dominate, Ref [15] showed χB to be dominated
by proton number fluctuations only. The STAR Collaboration has recently
exploited this idea and constructed the ratios m1 and m2 from net proton
distributions [16].

Figure 4 shows their results for m1 against our lattice data. Remarkably,
one observes a good agreement with our lattice results. Hopefully, future
results from the RHIC energy scan will locate the critical point this way.
Similar agreement is also seen for m2.

0 100 200 300 400
Average Number of Participants 〈Npart〉

Fig. 4. Comparison of the STAR Collaboration results with our m1 results as a
function of number of participants. From Ref. [16].

4. Summary

The QCD phase diagram in the T–µB plane has begun to emerge using
first principles lattice approach. Our finer lattice results for Nt = 6 are first
to begin the crawling towards continuum limit, suggesting a critical point at
µB/T ∼ 1–2. Ratios of nonlinear susceptibilities appear to be smooth on the
freeze-out curve at large colliding energy. Critical point leads to structures in
thesemi, which may be accessible in future. STAR results on proton number
fluctuations appear to agree with our lattice QCD predictions, making this
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a unique direct non-perturbative test of hot and dense QCD in experimental
tests. So far no signs of a critical point have emerged in the CERN and RHIC
experimental results. An interesting question is whether the RHIC energy
scan delivers it for us or whether we will need to wait for FAIR at GSI to
be operational. At any rate, exciting future awaits these programs and all
of us interested in it.

REFERENCES

[1] K. Rajagopal, F. Wilczek, in: At the Frontier of Particle Physics. Handbook
of QCD, Vol. 3, M. Shifman, ed., World Scientific, 2001, p. 2061.

[2] J. Bloch, T. Wettig, Phys. Rev. Lett. 97, 012003 (2006); Phys. Rev. D76,
114511 (2007).

[3] D. Banerjee, R.V. Gavai, S. Sharma, Phys. Rev. D78, 014506 (2008); PoS
LATTICE, 177 (2008).

[4] R.V. Gavai, S. Sharma, Phys. Rev. D81, 034501 (2010).
[5] Z. Fodor, S. Katz, J. High Energy Phys. 0203, 014 (2002).
[6] Ph. de Forcrand, O. Philipsen, Nucl. Phys. B642, 290 (2002);

M.-P. Lombardo, M. D’Elia, Phys. Rev. D67, 014505 (2003).
[7] C. Allton et al., Phys. Rev. D68, 014507 (2003); R.V. Gavai, S. Gupta,

Phys. Rev. D68, 034506 (2003).
[8] K.-F. Liu, Int. J. Mod. Phys. B16, 2017 (2002); S. Kratochvila,

Ph. de Forcrand, PoS LAT2005, 167 (2006).
[9] G. Aarts, E. Seiler, I.O. Stamatescu, Phys. Rev. D81, 054508 (2010) and

references therein.
[10] R.V. Gavai, S. Gupta, Phys. Rev. D71, 114014 (2005).
[11] R.V. Gavai, S. Gupta, Phys. Rev. D78, 114503 (2008).
[12] R.V. Gavai, S. Sharma, Nucl. Phys. A862-863CF, 355 (2011) and

Bielefeld/TIFR preprints BI-TP 2011/42, TIFR/TH/11-47.
[13] R.V. Gavai, S. Gupta, Phys. Lett. B696, 459 (2011) [arXiv:1001.3796

[hep-lat]].
[14] A. Andronic, P. Braun-Munzinger, J. Stachel, Phys. Lett. B673, 142 (2009);

H. Oeschler, J. Cleymans, K. Redlich, S. Wheaton, arXiv:0910.2128v1
[hep-ph].

[15] Y. Hatta, M.A. Stephenov, Phys. Rev. Lett. 91, 102003 (2003).
[16] M.M. Agrawal et al., Phys. Rev. Lett. 105, 022302 (2010)

[arXiv:1004.4959v2 [nucl-ex]].

http://dx.doi.org/10.1103/PhysRevLett.97.012003
http://dx.doi.org/10.1103/PhysRevD.76.114511
http://dx.doi.org/10.1103/PhysRevD.76.114511
http://dx.doi.org/10.1103/PhysRevD.78.014506
http://dx.doi.org/10.1103/PhysRevD.81.034501
http://dx.doi.org/10.1088/1126-6708/2002/03/014
http://dx.doi.org/10.1016/S0550-3213(02)00626-0
http://dx.doi.org/10.1103/PhysRevD.67.014505
http://dx.doi.org/10.1103/PhysRevD.68.014507
http://dx.doi.org/10.1103/PhysRevD.68.034506
http://dx.doi.org/10.1103/PhysRevD.68.034506
http://dx.doi.org/10.1142/S0217979202011755
http://dx.doi.org/10.1103/PhysRevD.81.054508
http://dx.doi.org/10.1103/PhysRevD.71.114014
http://dx.doi.org/10.1103/PhysRevD.78.114503
http://dx.doi.org/10.1016/j.physletb.2011.01.006
http://dx.doi.org/10.1016/j.physletb.2009.02.014
http://dx.doi.org/10.1103/PhysRevLett.91.102003
http://dx.doi.org/10.1103/PhysRevLett.105.022302

	1 Introduction
	2 Lattice results
	3 Searching experimentally
	4 Summary

