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We discuss the properties of neutron stars and their modifications due
to the occurrence of hyperons and quarks in the core of the star. More
specifically, we consider the general problem of exotic particles inside com-
pact stars in light of the observed two-solar mass pulsar. In addition, we
investigate neutron star cooling and a possible explanation of the recently
measured cooling curve of the neutron star in the supernova remnant Cas A.
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1. Introduction

The study of strong interaction physics under extreme conditions is at
the center of many experimental and theoretical efforts in nuclear physics.
Ultrarelativistic heavy-ion collisions allow for the investigation of the phase
structure of QCD at high temperatures. Here one assumes that the con-
ditions in the fireball of the collision zone generate chirally restored and
deconfined matter, whose properties can be deduced by analyzing observ-
ables like particle multiplicities and the collective flow. At the other end
of the QCD phase diagram, the investigation of neutron stars is the main
tool to understand extremely dense and cold matter. As the theoretical
approach of using lattice gauge simulations is not applicable in the high
density/chemical potential regime one has to rely on model descriptions of
the dense hadronic and possibly quark matter. In the following we study
such a model that includes hadronic flavor SU(3) particles, as well as quarks,
in an extension of this approach.
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2. Some remarks on observations and the status of theory

A number of interesting observations in 2010 introduced new challenges
to the theoretical understanding of compact stars. Here, the accurate deter-
mination of the mass of pulsar PSR J1614-2230 of M = 1.97+0.04 M, [1] is
the most prominent one. Meanwhile, this value has been established as new
benchmark for compact star modeling. Another important measurement is
the first observation of the real-time cooling behavior of a neutron star in
the supernova remnant Cassiopeia A, where a rather steep drop of the sur-
face temperature in the last 10 years has been recorded [2]. This result has
significant impact on cooling studies of compact stars.

For theory, especially the high value of the star mass implies the exclusion
of a number of models. In general, but not necessarily, the more exotic the
structure of the star the lower its mass becomes, given the simple picture that
opening up new degrees of freedom in dense matter will lead to a softening
of the equation of state and consequently to smaller masses. Thus, whereas
a number of purely nucleonic equation of states yield large stellar masses,
many calculations that include hyperons show maximum star masses far
below the observed value (see e.g. [3,4]). Variation of the basic couplings
of the hyperons can change this, as will be discussed further below and as it
was also recently analyzed in [5].

The situation is related but not quite the same in the case of hybrid
stars that include a quark core. In simple approaches that model the quark
phase in terms of a bag model the mass of hybrid stars tends to be reduced
significantly compared to the purely baryonic case (see, for instance Fig. 2
of Ref. [6]). Depending on the value of the bag pressure the stars might
become immediately unstable when quarks appear in the star with result
that no stable hybrid star exists. However, a more involved description of
the quark phase potentially changes this picture as was already pointed out
by Alford et al. in |7]. In this paper, the authors show that perturbative QCD
corrections can lead to an equation of state of the quark phase that is very
similar to the hadronic one (in the relevant range of densities). Therefore
with such an approach, stars with masses similar to purely nucleonic ones can
be obtained. This study was also extended to a wider range of parameters
in [8]. Instead of using a bag model description of quark matter one can
describe the quark phase in a constituent quark picture like a Schwinger—
Dyson approach or NJL models. Bonanno et al. |9] have shown that within
such an approach one can obtain a two-solar mass star including hyperonic
matter and a quark core. One requisite for this and other calculations of
this type is a rather strong vector interaction term in the quark phase. It
is worth noting, however, that quark models with such a term have serious
problems in reproducing the lattice data of the behavior of the pressure at
small chemical potentials as it was discussed in [10].
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3. Our specific model

In our approach we intend to combine hadronic and quark degrees of
freedom in a unified way instead of dealing with two separate models for
each phase. This has the advantage that one can describe not only first-
order phase transitions between hadrons and quarks but also second-order
and cross-over transitions. As we know from lattice QCD results that at low
chemical potential the transition is a cross-over, an approach like the one
formulated here is required in order to study hadronic and quark regimes
over the whole range of temperatures and densities.

Our studies are based on a hadronic flavor-SU(3) model that includes
the lowest SU(3) multiplets for baryons and mesons. A detailed discussion
of this ansatz can be found in [11,12|. The baryon—meson interaction term
is given by

Liy = — Z Vi[v0(giww + Gio® + GipT3p) + Myl , (1)

%

summing over the baryons ¢. The term includes the interaction with the
non-strange and strange vector mesons w, p and ¢. The effective baryon
masses m; are defined by the expression

m; = gioco + gicC + gisd + 0m; (2)

including couplings to the non-strange scalar isoscalar o, isovector § and
strange fields ¢ plus a small explicit mass term. Spontaneous chiral sym-
metry breaking is generated by the meson self-interactions, yielding non-
vanishing vacuum expectation values of the scalar fields, and in consequence,
vacuum masses for the baryons. The SU(3)-invariant self-interaction reads
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An explicit chiral symmetry breaking term generates masses for the pseu-
doscalar mesons. The values for the parameters can be found in [13].
Solving the Tolman—Oppenheimer—Volkoff equations for static spherical
stars [14, 15] and including leptons for ensuring charge-neutral matter, one
obtains masses and radii of stars as shown in Fig. 1. The results of three cal-
culations are shown, for which different sets of degrees of freedom were taken
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Fig. 1. Left: Star masses as functions of radii including nucleons, hyperons, and
the baryonic spin 3/2 decuplet [13]. Right: Mass-radius diagram of the quark—
hadron model compared to the purely baryonic case. The inset shows the effect of
introducing a Gibbs mixed phase.

into account. Neglecting hyperons in the nucleonic case one obtains a maxi-
mum star mass of 2.12 solar masses. If one includes hyperons the maximum
mass drops slightly to 2.06 M. Further extending the possible baryonic de-
grees of freedom by including the spin 3/2 decuplet (mainly the A) leads to
a mass of 1.93 M, which is still in agreement with observations. Especially
in the latter case the amount of strangeness in the star is very small as the A
baryons essentially replace the A and X'~ in the core of the star [13]. In con-
trast to the earlier discussion the hyperons do not have a significant impact
on star masses. This is largely due to the meson interactions which keep the
strange scalar field, compared to the non-strange field, rather big at high
densities. In consequence the hyperons stay heavy and are not very strongly
populated [13]. In a schematic calculation one can observe the dependence
of the amount of strangeness f; in the star and the maximum stellar mass.
Fig. 2 shows the result of a calculation using the same model but artificially
reducing the vector coupling constant of the hyperons at densities beyond
nuclear matter densities (thus without changing the reasonably well-known
optical potential depths in normal nuclear matter). For instance, reducing
this value by 50 percent increases the strangeness fraction in the core of the
star from 0.1 to 1, that is, on the average one strange quark per baryon.
At the same time the maximum mass is significantly reduced by half a so-
lar mass. It might be interesting to collect similar results for the relative
reduction of the star mass as a function of strangeness content for a range
of models to see whether this behavior is qualitatively and quantitatively
similar over a wider range of theoretical approaches.
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Fig. 2. Left: Maximum star mass and strangeness content f; of the star as functions
of the vector repulsion of the hyperons. Right: Dependence of the baryonic star
mass on the central energy density.

We include quark degrees of freedom in the model description in a similar
way as it is done in the so-called PNJL approach [16,17]|. The quark fields
couple to the scalar and vector condensates. As an effective field describing
the deconfinement phase transition we introduce the field @, in analogy to
the Polyakov loop field in the PNJL models. This field couples to the hadron
and quark masses such that quarks attain a high mass in the confined phase
at low values of @ and correspondingly hadrons obtain a large mass for large
values of the @, removing the baryons as degrees of freedom (see Ref. [18]).
The potential U(®) of the field is chosen in a way to reproduce lattice data
for energy density and pressure at zero chemical potential for a wide range
of temperatures. It reads

U = (aoT* + a1p* + aoT?p?) @° + a3Ty log (1 — 60% + 80° — 39%) . (4)

The values of the parameters are quoted in [18|. In addition to the usual
structure of the potential we add the chemical-potential dependent terms
proportional to a1, as in order to reproduce a critical end point of a first-order
phase transition line at larger values of the chemical potential as suggested
by lattice calculations [19]. The resulting star masses and radii are shown
in the right panel of Fig. 1.

The onset of the quark phase essentially leads to an unstable system,
which reduces the maximum mass of attainable neutron stars in this model.
However, the reduction of mass is a moderate drop of 10 percent with respect
to the value without quarks, which is still in agreement with observation.
If one assumes global charge neutrality one obtains a Gibbs mixed phase of
quarks and baryons in the inner 2km core of the star. This small change
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of the maximum mass in spite of the onset of a new exotic phase can be
understood, looking at the right panel of Fig. 2. Here, the mass of the bary-
onic star is plotted as a function of central density. The maximum mass is
reached at roughly 6 pg. Including quarks in this model, the quarks are pop-
ulated at densities beyond p = 4pg. As an extreme assumption, this limits
the stable star solutions to this maximum value of density. However, the
graph shows that the density dependence of the mass on the central density
is pretty much flat over a wide range of densities. Therefore, a reduction of
the maximum central density of even 40 percent by the occurrence of some
exotic component like quarks or a kaon condensate has little impact on the
maximum star mass.

4. Rotating stars

Rotating stars can sustain a substantially larger gravitational mass than
in the static case. Results for our model are shown in Fig. 3. Lines for the
static solutions and for stars spinning at their Kepler frequencies are shown
as functions of the central energy density. One can observe roughly a 20
percent increase in the maximum mass. However, if one considers the time
evolution of a star without mass accretion or ejection, like in the case of an
isolated neutron star or for a neutron star in a binary system after the accre-
tion phase, the baryon number (or the corresponding so-called baryon mass)
stays constant during the slowing-down evolution of the star. The results
for various fixed baryonic masses are shown as nearly horizontal lines in the
same figure, which shows that the gravitational mass stays nearly constant.
On the other hand, the central energy density changes substantially during
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Fig.3. Left: Star masses as functions of central energy density. Results for the
static solutions and for stars rotating at their Kepler frequency are shown. The
nearly horizontal lines show the gravitational mass spinning-down stars with a
constant baryon number. Right: Cooling curves of neutron stars depending on the
ratio 3 of characteristic time scales (see the text).
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the evolution by potentially more than 50 percent, drastically altering the
particle populations inside of the star. In general, this can lead to large
changes in the star’s cooling behavior. Looking at the f < 1 curve (f is
defined below) of Fig. 3 (right panel) one can observe the standard behavior
of the cooling curve of a massive star. The core of the star cools mainly
by neutrino emission via the direct Urca processes like n — p + e~ + V.
This channel only operates at higher densities, as it requires a density ra-
tio of protons to neutrons of about 1/9, so that energy and momentum are
conserved in the process. The cooling wave from the core propagates to the
surface, which is reached after about 100 years leading to a sudden drop
of the temperature. However, in case the star is rotating, the results de-
pend on the ratio 8 of the spin-down time to the core-crust coupling time
of 100 years |21]. If the star rotates sufficiently fast, the central density of
the star might be too low for the direct Urca process to take place, there-
fore suppressing the fast cooling channel. During the spin-down of the star
this threshold will be reached at a later time, when the direct Urca process
leads to a delayed strong drop in temperature as shown in the 8 > 1 curve.
As mentioned before, for the first time the cooling evolution of a star has
been observed, showing a strong drop in temperatures, albeit at a time of
more than 300 years after the supernova explosion. If this steep decline were
caused by the direct Urca process one would have expected it much earlier
and the temperatures of the star would have dropped to much lower, unob-
servable, values, than the ones seen. However, in case the star rotates, this
situation can be easily explained as the delayed fast cooling process, which
was discussed above. The corresponding fit curves to the data for different
star masses are shown in figure 4. For a more detailed explanation of the pa-
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Fig. 4. Temperature data as measured for the Cas A neutron star. The lines show
fits to the data assuming two different star masses. The shaded area between the
curves can be covered by parameter adjustments.



756 S. SCHRAMM ET AL.

rameters entering this analysis see [21]. Alternative explanations of the drop
of temperature, which have to assume that no direct Urca process is present
in the star, relate this drop to the onset of neutron superfluidity [22,23].
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