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The relativistic theory of hydrodynamic fluctuations, or noise, is de-
rived and applied to high energy heavy ion collisions. These fluctuations
are inherent in any space-time varying system and are present in addition to
initial state fluctuations. We illustrate the effects with the boost-invariant
Bjorken solution to the hydrodynamic equations. Long range correlations
in rapidity are induced by propagation of sound modes. The magnitude of
these correlations is directly proportional to the viscosities. These fluctua-
tions should be enhanced near a phase transition or rapid crossover.
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1. Introduction

Cosmology has experienced tremendous advances in the past decade.
These advances have been driven by observations. Much of the information
comes from fluctuations in temperature of the cosmic microwave background
radiation (CMBR) as observed by the Wilkinson Microwave Anisotropy
Probe (WMAP) [1]. The results are usually expressed in terms of the power
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spectrum, l(l + 1)Cl/2π versus the multipole moment l, where

T (θ, φ) =
∑
lm

almYlm(θ, φ) ,

Cl =
〈
|alm|2

〉
, (1)

and where the averaging is done over points in the sky. In WMAP7 the
power spectrum extends up to values of l of the order of 1000. At the Rela-
tivistic Heavy Ion Collider (RHIC) and at the Large Hadron Collider (LHC)
jets clearly stand out against a background of low transverse momentum
particles in a lego plot. In Pb–Pb collisions at the LHC these jets can have
transverse momentum as high as 100 to 150 GeV/c compared to the back-
ground particles of several GeV/c [2]. Here we are not interested in the jets
but in the fluctuations in the background. What information can we extract
from these fluctuations?

The theory behind fluctuations in the CMBR is highly nontrivial [3]
even if the basic ideas are rather intuitive. One should expect a similar
nontriviality in the theory for high energy heavy ion collisions. There are at
least four important sources of fluctuations in such collisions:

(i) Initial state fluctuations: These arise because nuclei are composed
of nucleons which in turn are composed of quarks and gluons. The
fluctuations are both statistical and quantum in nature.

(ii) Hydrodynamic fluctuations: These arise due to finite particle number
fluctuations in a given coarse-grained fluid cell.

(iii) Fluctuations induced by jets: Jet production is a random process. They
deposit energy and momentum as they traverse the system.

(iv) Freeze-out fluctuations: These arise when converting a coarse-grained
fluid cell into individual particles which are subsequently described by
a Monte Carlo transport model.

The goal here is to develop a relativistic theory of hydrodynamic fluctua-
tions for application to high energy heavy collisions. After describing the
basic theory we will apply it to the boost-invariant solution of Bjorken for
high energy collisions. Although not realistic enough to compare directly
with data it will demonstrate that correlations develop whose magnitude
and shape are controlled, in a quantitative manner, by the shear and bulk
viscosities as well as by the equation of state.

Intuitively, hydrodynamic fluctuations or noise become important when
gradients of temperature, density, and particle composition become large.
In such situations, the coarse-grained fluid cells must be relatively small to
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adequately represent these gradients. The smaller the cell the more impor-
tant fluctuations will be. Certainly this is the case with high energy heavy
ion collisions. Analogous situations may be found throughout the physical,
chemical and biological literature; see [4] and citations within. For example,
Eggers [5] performed a theoretical study of the breakup of liquid nanojets
with the conclusion that “noise is the driving force behind pinching, speed-
ing up the breakup to make surface tension irrelevant”. Similar conclusions
were reached by Kang and Landman [6] who studied the breakup of liquid
nanobridges with a molecular dynamics approach, with a lubrication equa-
tion (smooth fluid dynamics), and with a stochastic lubrication equation.
Inclusion of noise in the lubrication equation provided results very similar
to the molecular dynamics simulations.

With these as motivations we proceed to the general study of relativistic
hydrodynamic fluctuations in the next section followed by an application to
the boost invariant hydrydynamics of Bjorken.

2. Relativistic hydrodynamic fluctuations

Now we turn to the topic of hydrodynamic fluctuations. The energy-
momentum tensor density for a perfect fluid is

Tµνideal = −Pgµν + wuµuν . (2)

Here w = P + ε = Ts + µn is the local enthalpy density, µ is the baryon
chemical potential, n is the baryon density, and uµ is the local flow velocity.
The metric is (+,−,−,−). Corrections to this expression are proportional
to first derivatives of the local quantities whose coefficients are the shear vis-
cosity η, bulk viscosity ζ, and thermal conductivity χ. Explicit expressions
may be found in textbooks [7,8] which are useful to summarize here. Dissi-
pative contributions are added to the energy-momentum tensor and baryon
current as follows

Tµν = Tµνideal + ∆Tµν ,
Jµ = nuµ + ∆Jµ . (3)

There are two common definitions of the flow velocity in relativistic dissi-
pative fluid dynamics which are important to distinguish. In the Landau–
Lifshitz approach uµ is the velocity of energy transport. In the Eckart ap-
proach uµ is the velocity of baryon number flow. In high energy heavy
ion collisions, at the upper range of RHIC energies and at the LHC, the net
baryon number is very small compared to the entropy density or to the num-
ber of baryons plus anti-baryons. Therefore, the Landau–Lifshitz approach
is the relevant one.
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In the Landau–Lifshitz approach the dissipative part of the energy-
momentum tensor satisfies uµ∆Tµν = 0. The most general form of the
energy-momentum tensor is

∆Tµν = η (∆µuν +∆νuµ) +
(

2
3η − ζ

)
Hµν∂ · u . (4)

Here
Hµν = uµuν − gµν (5)

is a projection tensor normal to uµ,

∆µ = ∂µ − uµ (u · ∂) (6)

is a derivative normal to uµ, and

Qα = ∂αT − T (u · ∂)uα (7)

is a heat flow vector whose nonrelativistic limit is Q = −∇T . The baryon
current is modified by

∆Jµ = χ

(
nT

w

)2

∆µ (βµ) , (8)

which satisfies uµ∆Jµ = 0. This insures that n is the baryon density in the
local rest frame. The entropy current in this approach is

sµ = suµ − βµ∆Jµ . (9)

In the local rest frame, entropy is generated according to the divergence

∂µs
µ =

η

2T
(
∂iu

j + ∂ju
i − 2

3δ
ij∇ · u

)2
+
ζ

T
(∇ · u)2 +

χ

T 2
(∇T + T u̇)2 . (10)

The term T u̇ is a relativistic correction to ∇T , being smaller by a factor of
1/c2 in physical units. All three dissipation coefficients must be non-negative
to insure that entropy can never decrease.

Next, we add small fluctuations to the energy-momentum tensor

Tµν = Tµνideal + ∆Tµν + Sµν (11)

and to the baryon current

Jµ = nuµ + ∆Jµ + Iµ . (12)
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The fluctuations must satisfy the conditions uµSµν = 0 and uµIµ = 0, which
are the same conditions satisfied by ∆Tµν and by ∆J . These fluctuations
have zero average value at every space-time point. The averaging is done
with an ensemble of heavy ion collisions, all prepared with exactly the same
initial conditions when the hydrodynamic description may be applied. How-
ever, the average of a product of fluctuations is not necessarily zero. We
follow section 88 on hydrodynamic fluctuations of [9] to derive these corre-
lators. After some analysis we find〈

Sµν(x1)Sαβ(x2)
〉

= 2T
[
η
(
HµαHνβ +HµβHνα

)
+
(
ζ − 2

3η
)
HµνHαβ

]
δ(x1 − x2) (13)

and

〈Iµ(x1)Iν(x2)〉 = 2χ
(
nT

w

)2

Hµνδ(x1 − x2) . (14)

The mixture 〈Sµν(x1)Iα(x2)〉 naturally enough is zero. These correlation
functions have their origin in the fluctuation-dissipation theorem. There are
two essential observations concerning them. First, they are proportional to
Dirac delta-functions. Different coarse-grained fluid cells are assumed to be
independent. Second, the magnitudes of the correlations are directly pro-
portional to the shear and bulk viscosities and to the thermal conductivity.
This is where the microscopic physics lies.

The procedure for implementing these stochastic sources are as follows.

• Solve the hydrodynamic equations for an arbitrary source function.
One can imagine doing this in principle although it may be difficult in
practice.

• Perform averaging using the above expressions for the sources to obtain
observable correlation functions.

• The stochastic fluctuations may or may not be perturbative, depending
on the physical conditions.

To develop an understanding of the implementation we consider a simple
model for heavy ion collisions in the next section.

3. Boost invariant model

It is insightful to work out a particular example; we shall do this for
the well-known boost-invariant Bjorken model. In the absence of fluctua-
tions the important results are that the temperature depends only on the
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proper time as T = T (τ), the entropy density decreases with proper time
as s(τ) = s0τ0/τ , where τ0 is the equilibration time, and the fluid velocity
is uµ = (cosh ξ, 0, 0, sinh ξ), where ξ is the space-time rapidity. Space-time
fluctuations may be expressed as

T = T (τ) + δT (ξ, τ) ,
uµ = (cosh(ξ + ω(ξ, τ)), 0, 0, sinh(ξ + ω(ξ, τ))) . (15)

The function ω is dimensionless, and it is convenient to also use the di-
mensionless variable ρ ≡ δs/s instead of δT (the latter are related by ther-
modynamic identities). For purposes of illustration, these fluctuations are
treated as perturbations. After lengthy calculation one finds the typical
linear response relations

X̃(k, τ) = −
τ∫

τ0

dτ ′

τ ′
G̃X

(
k; τ, τ ′

)
f̃
(
k, τ ′

)
, (16)

where X is either ρ or ω. This relation is given in terms of the variable k
which corresponds to the Fourier transform of the variable ξ. The function f
is the single scalar function representing the noise which can be expressed as

Sµν = w(τ)f(ξ, τ)Hµν . (17)

The correlation functions are

〈X(ξ, τf )Y (0, τf )〉 =
1
πA

τf∫
τ0

dτ

τ3

T (τ)
w2(τ)

[
4
3η(τ) + ζ(τ)

]

×
∞∫
−∞

dkeikξG̃XY (k; τf , τ) . (18)

Here G̃XY (k; τf , τ) = G̃X(k; τf , τ)G̃Y (−k; τf , τ), A is the effective trans-
verse area of the colliding nuclei, and τf is the freeze-out time at which the
transition from hydrodynamic flow to free-streaming of particles takes place.
The Green functions G̃X(k, τ, τ ′) are even functions of k and calculable.

Take, for example, the equation of state P = 1
3ε, and treat the underlying

expansion as essentially inviscid. Then

G̃ρ
(
k; τ, τ ′

)
=
(
τ ′

τ

)1/3 [2 + 3γ − 9γ2

6γ

( τ
τ ′

)γ
− 2− 3γ − 9γ2

6γ

( τ
τ ′

)−γ]
,

(19)
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where γ = 1
3

√
1− 3k2. Note that γ may be real or imaginary. Similar ex-

pressions can be written down for the other response functions. The Fourier
transformed functions are singular, with Dirac delta-functions and deriva-
tives of them at ξ = 0 and at the sound horizon ξ = 2vs ln(τ/τ ′). Figure 1
shows the regular part of G̃ρρ while Fig. 2 shows the singular part which is
smeared by a Gaussian of arbitrary with to display the singularities. The
origin of the singularities are the space-time delta-functions in the original
correlation functions; this represents white noise. It is possible to cure these
singularities by using finite range correlations, which is colored noise.
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Fig. 1. The regular (continuous) part of the correlator Gρρ(ξ; τf , τ) with v2
s = 1/3

and ln(τf/τ) = 4. Note the sound horizon at ξ = 2vs ln(τf/τ).
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Fig. 2. The singular part of the correlator Gρρ(ξ; τf , τ) with v2
s = 1/3 and

ln(τf/τ) = 4. The function is smeared by a Gaussian of variance σ2 = 0.1 in
order to show the nature of the singularities.
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Fluctuations in the local temperature and flow velocity fields give rise
to a nontrivial 2-particle correlation when the fluid elements freeze-out to
free-streaming hadrons. In momentum-space rapidity this correlation is〈
dN(η2)
dη

dN(η1)
dη

−
〈
dN

dη

〉2
〉〈

dN

dη

〉−1

=
15ds
π4Neff

1
Tfτf

(
T0

Tf

)2(η
s

)
0
K(∆η) ,

(20)
where Neff is the effective number of bosonic degrees of freedom at the ini-
tial time τ0 and temperature T0 and ds is the spin/isospin degeneracy of
the hadron species. The correlation is directly proportional to the ratio of
shear viscosity to entropy density, (η/s)0, assumed here to be temperature
independent. The function K(∆η) can be computed numerically for a given
hadron mass. It is shown for pions in Fig. 3 with the choice T0 = 600 MeV,
Tf = 150 MeV, τf = 10 fm, and Neff = 47.5. Folding the fluctuations with
the thermal distribution function smooths out the singularities. Incorpo-
ration of viscosity in the expansion dynamics and finite range correlations
fill-in the dip at ∆η = 1.5 but otherwise does not much affect the shape or
magnitude of K. It reminds one very much of the near-side ridge [10,11,12].
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Fig. 3. The correlation function K(∆η) in the dN/dη fluctuations.

4. Conclusion

In this work, we have derived the general theory of relativistic hydro-
dynamic fluctuations and showed how to apply them to high energy heavy
ion collisions. We illustrated the general procedure with the simple example
of boost-invariant hydrodynamics. This example suggests long-range cor-
relations in rapidity caused by hydrodynamic fluctuations in temperature
and flow velocity. Allowing for transverse expansion should also give rise to
correlations in azimuth [13]. The magnitude of the correlations are directly
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proportional to the viscosities, and the range and shape are sensitive to the
speed of sound of the medium. Many more details and references are to be
found in an upcoming publication.

To fully explore the implications of the ideas and formulas presented
here and for detailed comparison to data requires a full 3+1 dimensional
relativistic dissipative hydrodynamic code such as in [14]. It will also be
interesting to explore the implications for a critical point in the QCD phase
diagrams where fluctuations should be enhanced [15].

Our conclusion is that fluctuations are interesting and can provide impor-
tant information on transport coefficients. We are learning, we are enjoying,
and there is plenty of work ahead for both theorists and experimentalists.

Finally, I congratulate Johann Rafelski on his 60th birthday! I have
known Jan for more than 30 years, but we have collaborated on only one
project. With Berndt Müller we put together an annotated reprint collec-
tion entitled Quark-Gluon Plasma: Theoretical Foundations. We assembled
what we considered to be the pioneering papers in this field in 13 different
categories. The oldest paper reprinted was Fermi’s 1950 article. The newest
papers were from 1992–93 after which essentially all articles became easily
accessible and searchable on the preprint archive. The collection is over 800
pages, and was published by Elsevier in 2003. I highly recommend it for
newcomers for a primer on the history of our field. Thank you, Jan, for
having the original idea, and for including me in that project!
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