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We review the basic assumptions, proofs and phenomenological appli-
cations of non-extensive thermodynamics and statistical models to high-
energy elementary and heavy-ion collisions. We also speculate about phys-
ical processes in terms of classical field theory which may mimic a thermal
source of the experimentally observed spectra.
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1. Introduction

When dealing with thermal models and their predictions, it is frequently
asked where is the thermal bath and the time long enough to reach equipar-
tition. Despite the phenomenological success of such models a deeper under-
standing of the physical mechanisms behind this success is much unknown.

In this paper we review, on the one hand, possible generalizations of the
classical basis of thermodynamics towards incorporating more phenomena
than those described by exponential energy distributions and, on the other
hand, we also point out theoretical possibilities along which an apparently
thermal behaving spectrum of particles may arise without a physical thermal
bath being ever present in any single event of the studied ensemble.
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September 18–24, 2011.
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2. Generalized thermal equilibrium

The classical concept of thermal equilibrium deals with the long term
result of equilibration processes between large systems containing many dy-
namical degrees of freedom. In this limit, the assumption of dynamical and
statistical independence of large parts of even larger physical systems is a
commonplace, and the main consequences, as the equipartition, the entropy
maximum in equilibrium and the transitivity of the concept of the abso-
lute temperature among several bodies in pairwise thermal equilibrium, are
widely known. In this section, we present a possible generalization of these
conceptual fundamentals.

We connect the additivity of the thermodynamical extensives, in par-
ticular that of entropy and energy, with the zeroth theorem declaring the
universality of the absolute temperature and indicate a certain way to loosen
the requirement of additivity. For the details of the derivation see [1]. We
derive a general formula for the thermodynamical temperature in entropy
maximum states and demonstrate that the frequently cited entropy formulas
by Renyi [2, 3] and Tsallis [4, 5] lead to equivalent results in equilibrium. In
fact, the Renyi entropy is special as being the formal logarithm to the Tsallis
entropy, and as such, an additive quantity.

In classical thermodynamics the maximum entropy principle [6, 7], the
additivity of the main extensives, like entropy and energy, and the zeroth
law defining the absolute temperature are interrelated. Any third can be
derived by assuming two others. For example, assuming the addition as
the relevant composition law, S12 = S1 + S2 and E12 = E2 + E2 by the
unification of two systems, and maximizing(

S[pi]− S(E)
)
− α

(∑
i

pi − 1
)
− β

(∑
i

piEi − E
)

= max. (1)

one concludes that the Lagrange multiplier β can also be derived from the
equation of state, S(E), as being

β =
1
T

= S′(E) , S′1(E1) = S′2(E2) . (2)

Assuming, on the other hand, more general composition laws than the addi-
tion, the composite quantities, S12 and E12 may have non-trivial derivatives
with respect to their arguments. Then the generalization of Eq. (2) holds

∂S12

∂S1

∂E12

∂E2
S′1(E1) =

∂S12

∂S2

∂E12

∂E1
S′2(E2) . (3)

This equation leads to a general requirement with respect to the composi-
tion functions. Their factors, depending only on one or the other system’s
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variable, are factorisable into a quantity for the system 1 equal to the same
quantity for the system 2 type formula. Remaining factors depending on
both systems’ variables then have to satisfy equal ratios

H12(S1, S2)
H21(S1, S2)

=
C12(E1, E2)
C21(E1, E2)

. (4)

This ratio is a constant if it is valid for any arbitrary functional connec-
tions, S1(E1) and S2(E2), i.e., for any equations of state for the systems in
equilibrium. It has twofold consequences: (i) the absolute temperature is
generalized to a form

1
T

=
∂L̂(S)
∂L(E)

, (5)

where L̂(S) and L(E) are monotonic functions of the entropy and energy
and (ii) the composition formulas are equivalent with the relations

L̂12(S12) = L̂1(S1) + L̂2(S2) ,
L12(E12) = L1(E1) + L2(E2) . (6)

Due to the property of “mapping a general composition law to the addition”
these functions are named formal logarithms.

The composition formula satisfied by the Tsallis entropy, for example,

S12 = S1 + S2 + (q − 1)S1S2 , (7)

leads to
L̂(S) =

1
q − 1

ln (1 + (q − 1)S) . (8)

In fact, applying this transformation to the Tsallis entropy formula the Renyi
entropy emerges [1, 8].

3. Canonical and microcanonical spectra

One is familiar with the exponentially decreasing Boltzmann–Gibbs en-
ergy distribution as the general canonical formula. As we have demonstrated
in the previous section, the definition of the thermodynamical temperature
can be generalized, so can be the canonical distribution. Now we consider
the additive, but parameter dependent Renyi entropy to be maximized with
the canonical constraint on the average energy per particle. This constraint
leads to a perfectly power-law tailed canonical energy distribution, as fol-
lows.
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The formula for the Renyi entropy,

SR =
1

1− q
ln
∑
i

pqi , (9)

contains the parameter q. It is an additive measure of entropy for any
fixed q; it gives the sum of the corresponding entropy contributions if the
joint probabilities factorize. For q = 1 it resembles the Boltzmann–Gibbs–
Shannon entropy formula

SR

∣∣
q=1

= SBGS = −
∑
i

pi ln pi . (10)

The entropy maximum with Renyi’s formula at fixed normalization and av-
erage energy contains two Lagrange multipliers, α and β

1
1− q

ln
∑
i

pqi − α
∑
i

pi − β
∑
i

piEi = max. (11)

Varying this expression with respect to the pi probabilities delivers

1
1− q

qpq−1
i∑
j p

q
j

= α+ βEi . (12)

This equation can easily be resolved for the canonical equilibrium distribu-
tion

pi = e−SR

(
1 + (1− q)β

q
(Ei − E)

) 1
q−1

. (13)

This is a cut power-law offering a thermal interpretation to the Pareto–
Tsallis–Levy fits in high energy experiments.

According to the discussion presented in the previous section, however,
not only the average energy, but also the average of a special function of the
energy, its formal logarithm, L(E), may make a sense to be fixed. In this
case, the quantities Ei and E are to be replaced by their respective formal
logarithms, L(Ei) and L(E) in Eq. (13). Fig. 1 presents the schematic form
of Boltzmann–Gibbs (lowest curve), the q-entropic (uppermost curve) and
the q-entropic approach with the formal logarithm of the individual energies
(middle curve).

Considering a statistical model for jet fragmentation in e+e− collisions,
an effective dimensionality D can be considered between 1 and 3 due to
some transverse diversity of momenta inside the jets. Applying the above
formula to x = Ei/(

√
s/2) energy fraction, the formal logarithm of a non-

additive energy composition law with a = −2/
√
s gives rise to the − ln(1−x)
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Fig. 1. (Color online) Canonical distributions in classical and generalized thermo-
dynamics (schematic curves).

argument. Supplemented with phase space and multiplicity factors, powers
of x and (1 − x) may also occur. Also in a microcanonical approach [9, 10,
11, 12] an equilibrium statistical distribution can be derived; it differs from
the canonical one only near to the edge of the one-particle energy, close
to
√
s/2. We have fitted the corresponding microcanonical formula [12] to

various experimental data on pion and kaon yields from high-energy e+e−
collisions

1
σ

dσ

dx
=

AxD−1(1− x)D(N0−1)−1(
1− q − 1

T/(
√
s/2)

ln(1− x)
)1/(q−1)

. (14)

The results are plotted in Fig. 2, while Fig. 3 displays the fitted parameters
T and q.

Fig. 2. Fragmentation functions of π0s and K0s measured at various collision en-
ergies (data, from top to bottom, are published in Refs. [13,14,15,16,17,18,19,20,
21,22,22,22]) and fitted with microcanonical Tsallis–Pareto distributions (Eq. (14)
with D = 3 and N0 = 1 + 1/D).
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Fig. 3. Fitted values of the T and q parameters in Eq. (14) with D = 3 and
N0 = 1 + 1/D to measured fragmentation functions shown in Fig. 2.

4. Superstatistics

The power-law tailed canonical energy distribution is an exponential dis-
tribution in terms of the corresponding formal logarithm of the energy, oc-
curring in the zeroth law

e−βL(E) = e−
1

aT
ln(1+aE) = (1 + aE)−1/aT . (15)

Such an expression can also be viewed as an integral of momentaneous Gibbs
factors over an Euler–Gamma distribution of β values with expectation value
of 1/T

peq
i =

1
Z

(
1 + β̂Ei/c

)−c
=

1
Z

∞∫
0

dx
cc

Γ (c)
xc−1e−cx e−xβ̂Ei . (16)

Here β̂ = β/(1 + (q − 1)α), Z = (1 + (q − 1)α)c and c = 1/a = 1/(q − 1)
connects to the Renyi or Tsallis entropy formula.

In general, a distribution of the thermodynamical intensives is consid-
ered by superstatitics [8,23]. Not only the above connection between the tra-
ditional Boltzmann–Gibbs exponential and the power-law tailed canonical
Tsallis–Pareto energy distribution maximizing the Renyi entropy is known,
but an even more familiar case, the negative binomial multiplicity distribu-
tion in high energy hadron production [24]. The negative binomial, contain-
ing the ratio of two negative integer factorials is finite,(

−k − 1
n

)
= (−1)n

(
k + n
n

)
. (17)
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It defines a Bernoulli distribution,

Pn,k =
(
k + n
n

)
fn(1 + f)−k−1−n , (18)

which by using the identity
∞∫
0

xN e−ax dx =
N !
aN+1

(19)

can be also written as an integral

Pn,k =
fn

k!n!

∞∫
0

xk+n e−(1+f)x dx . (20)

This form is, in fact, a convolution of a Poisson distribution in the mul-
tiplicity n with the mean value xf (instead of f) with an Euler–Gamma
distribution in x

Pn,k =

∞∫
0

(xf)n

n!
e−xf

xk

k!
e−x dx . (21)

Note that the Euler–Gamma distribution in the scale factor x with param-
eter k is at the same time a Poisson distribution in the integer k with the
mean value x. If the statistical power-law tail is due to event by event
multiplicity fluctuations, then the relation

q =
k

k + 1
(22)

should hold. This relation may be experimentally checked in the future.

5. Apparently “thermal” spectra

Even if thermal and hydrodynamical models assuming local equilibrium
with a locally thermalized environment have enormous success in describing
experimental spectra stemming from heavy ion reactions and also some suc-
cess for data from the more elementary proton–proton collisions, the physical
mechanism behind this success remains obscure. Here we indicate that, the-
oretically, even without ever assuming a temperature in the familiar sense,
apparently thermal spectra may emerge for single-particle observables. For
the sake of simplicity we deal with the semiclassical photon bremsstrahlung.
For details see [25].



818 T.S. Biró et al.

The invariant gamma spectrum can be obtained by assuming that each
photon contributes with the energy ~ω to the classical intensity, calculated
by squaring the Fourier-transform amplitude,

dN

kTdkTdηdψ
=

1
~k2

T cosh2 η

∣∣∣ ~A ∣∣∣2 (23)

with the vector potential Fourier-amplitude using K2 = e2/4πc,

~A = K~e

∫
eiφ

du

dξ
dξ (24)

while using the photon four-momentum k = kT(cosh η, sinh η, cosψ, sinψ)
and the charge four-velocity U = (cosh ξ, sinh ξ, 0, 0) on a straight line. The
quantity u is the orthogonally projected velocity component together with a
Doppler factor, u = sinh ξ/ cosh(ξ−η). The phase is taken at retarded times,
integrating the dφ/dτ = ωγ(1−v cos θ) relation, with the Lorentz factor γ =
1/
√

1− v2/c2 and cos θ = tanh η due to the η = ln cot(θ/2) photon angle-
rapidity relation. This leads to φ = (ωc/g) sinh(ξ− η) = `kT sinh(ξ− η), by
introducing ` = c2/g with g = cdξ/dτ constant proper acceleration. Finally,
the amplitude can be expressed by an integral over the charge rapidity

~A = K~e

∫
ei`kT sinh(ξ−η) cosh η

cosh2(ξ − η)
dξ . (25)

For an infinite time path this integral can be calculated analytically with
the result

dN

kTdkTdηdψ
=

4α
π
`2K2

1 (`kT) , (26)

with the Bessel-K function and the electromagnetic coupling α = e2/4π~c.
This formula for low values of `kT is conformal being proportional to 1/k2

T,
but for high `kT it develops an exponential tail, exp(−2`kT). The corre-
sponding slope temperature is π times the Unruh temperature, T = 1/2` =
πTU. The rapidity distribution is flat in this case.

Biographical notes on J.R.

Finally, since this paper was given as a talk by Tamás Biró in the ses-
sion celebrating Jan Rafelski’s 60-th birthday, let T.S.B. finishes with a few
personal remarks.

Jan (Johann) Rafelski, shortly J.R., has certainly left his personal and
unique imprints on our international heavy-ion community in the past dec-
ades. Born in 1950, here in Kraków (Cracow), studied, taught and conducted
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research in Frankfurt in close collaboration with Walter Greiner and his at
that time fellow colleague Berndt Müller, visited CERN, worked there with
professor Rolf Hagedorn, became professor at the University of Cape Town
and later at the University of Arizona, in Tucson, USA.

He dealt with important and exciting physics research problems, among
others with strong fields, mild fusion, quark-gluon plasma (QGP) and lately
with extreme light (after the extreme difficult). Like his favorite models,
his personality occurs with numerous facets, once thermally excited, then
statistically balanced, then spiced with chemistry, or a bit fugacitive, another
time inducing certain resonances . . .

In the beginning of my carrier I had an indirect affair with J.R., not that
I had wanted such. As a very beginner, one of my tasks was to calculate
certain quark level processes producing strangeness, set by my PhD advisor,
Jozsef Zimanyi. I did the job — for the only Feynman graph I had got
as a problem. Contemporarily J.R. had the idea to detect QGP due to its
enhanced strangeness. The strange quark pair production rate from light
quark annihilation, we obtained, seemed to be too low for that. Our result,
communicated to Walter Greiner by Zimanyi in Frankfurt, caused this way
some extra days for J.R. with heavy labour. But — as everyone knows
today — there are other, gluon fusion processes producing strange quark
pairs, which were calculated rapidly and supported the proposal of enhanced
strangeness as a QGP signal at the end.

After such a sinister start we gradually became into direct personal con-
tact over the years. Jan visited Budapest, the Strangeness ’96 conference,
and later also Quark Matter in 2005. He even invited me once to Arizona.
We keep meeting on conferences, lately more than earlier, mainly due to the
involvement of both of us in the series of meetings on Strangeness in Quark
Matter, as this conference. So let the final word of this talk be my thank
for the opportunity to contribute to the celebration in my own way, and to
wish Jan peace, wisdom and containment for the future and happy birthday
with this bottle of special Tokaj wine.
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