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Subordinated processes play an important role in modeling anomalous
diffusion-type behavior. In such models the observed constant time periods
are described by the subordinator distribution. Therefore, on the basis of
the observed time series, it is possible to conclude on the main properties
of the subordinator. In this paper, we analyze the anomalous diffusion
models with three types of subordinator distribution: α-stable, tempered
stable and gamma. We present similarities and differences between the
analyzed processes and point at their main properties (like the behavior of
moments or the mean square displacement).
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1. Introduction

Brownian motion is a classical continuous-time model describing diffu-
sion of particles in a fluid. Besides physics, it has found many real-world
applications, like in ecology, medicine, finance and many other fields [1].

But in spite of many obvious advantages, the standard Brownian diffu-
sion cannot model the real time series with apparent constant time periods
(called also trapping events), which are often observed in datasets recorded
within various fields. Therefore, a rapid evolution of alternative models is
observable in many areas of interest. Especially anomalous diffusion mod-
els have found many practical applications. They were used in variety of
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physical systems, including charge carrier transport in amorphous semicon-
ductors [2,3,4], transport in micelles [5], intracellular transport [6] or motion
of mRNA molecules inside E. coli cells [7]. The constant time periods can be
also observed in processes corresponding to stock prices or interest rates, so
models based on the subordinated processes might be also useful in modeling
financial time series, [8, 9, 10].

One of the most important issues that arises in the analysis of the sub-
ordinated processes is the description of waiting-times that correspond to
the periods of constant values. Finding a proper subordinator distribution
allows to conclude on the properties of the whole process. The most pop-
ular subordinator distribution is the inverse α-stable, see for instance [11],
but recent developments in this area indicate that another non-negative in-
finitely divisible distribution can be also used to model the observed waiting-
times, [10,12,13]. The family of such distributions contains, apart from one-
sided Lévy stable, also Pareto, gamma, Mittag–Leffler or tempered stable.

In this paper, we analyze the subordinated Brownian motion with three
types of the inverse subordinator distribution, namely α-stable, tempered
stable and gamma. We show the differences between the distributions and
present the main properties of the analyzed subordinated processes, ex-
pressed mainly in the language of moments. Moreover, we investigate the
asymptotics of the mean square displacement and show that in the gamma
case it is linear for large t, while for small t it exhibits non-power law be-
havior.

2. Subordinated Brownian motion

We start with introducing a general definition of the considered processes.
The subordinated Brownian motion is defined as [13]

Y (t) = B(S(t)) , (1)

where {B(τ)}τ≥0 is the Brownian motion and {S(t)}t≥0 is an inverse sub-
ordinator of {U(τ)}τ≥0 [14, 15], i.e.

S(t) = inf{τ > 0 : U(τ) > t} (2)

for increasing Lévy process {U(τ)}τ≥0 with the Laplace transform given by

Ee−zU(t) = e−tΨ(z) . (3)

The function Ψ(z) is called the Lévy exponent and can be written in the
following form

Ψ(z) = θz +

∞∫
0

(1− e−zx)v(dx) .
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Here, θ ≥ 0 is the drift parameter. If for simplicity, following [13], we assume
θ = 0, then v(dx) is an appropriate Lévy measure. Moreover, B(τ) and S(t)
are assumed to be independent.

The probability density function (PDF) of the process {Y (t)}t≥0 is char-
acterized by the generalized Fokker–Planck equation [13,16]

∂w(x, t)
∂t

=
1
2
∂2

∂x2
Φw(x, t) , w(x, 0) = δ(x) , (4)

where δ(x) is the Dirac delta in point x and Φ — an integro-differential
operator defined as

Φf(t) =
d

dt

t∫
0

M(t− y)f(y)dy . (5)

The functionM(t) is called the memory kernel and is defined via its Laplace
transform, [13]

M̃(z) =

∞∫
0

e−ztM(t)dt =
1

Ψ(z)
.

3. Three cases of subordinator distribution

The classical anomalous diffusion type model given by the subordinated
Brownian motion (1) defines subordinator S(t) as an inverse α-stable pro-
cess, see for instance [15]. It implies that the lengths of the constant time
periods are α-stable distributed. However, in some applications also differ-
ent distributions describing the lengths of the constant time periods might
be useful. In this paper, besides α-stable, we consider two other cases of
subordinator distribution, namely tempered stable T (α, λ, c) and gamma
G(c, a).

We start with a brief review of the main properties of the considered
distributions.

3.1. α-stable distribution

Since there is no closed form for the probability density function of the
α-stable distribution, it is usually more conveniently defined by its Fourier
transform, given by

ψ(t) =
{

exp
{
−σα|t|α

[
1− iβsign(t) tan πα

2

]
+ iµt

}
if α 6= 1 ,

exp
{
−σ|t|

[
1 + iβsign(t) 2

π ln |t|
]
+ iµt

}
if α = 1 , (6)
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where α ∈ (0, 2] is the stability parameter, β ∈ [−1, 1] is the skewness
parameter, σ > 0 is the scale parameter and µ ∈ R is the location parameter.
Note that if α < 1 and β = 1 the stable distribution becomes totally (right)
skewed. Since the subordinator should be a non-decreasing process, in the
following we assume α < 1, β = 1 and µ = 0. Moreover, for simplicity we
assume σ = 1.

Recall, that the α-stable family has two important properties. First, a
sum of two independent α-stable random variables with the same α param-
eter is again α-stable distributed. Second, the tails of the stable distribution
are governed by the power law behavior.

3.2. Tempered stable distribution

The positive tempered stable random variable T with parameters α, λ
and c is defined through the Laplace transform

E
(
e−uT

)
= e−c((λ+u)α−λα) , λ > 0 , 0 < α < 1 , c > 0 . (7)

In the above definition λ is the tempering parameter, while α and c are the
stability and scale parameters, respectively. Observe that if λ = 0, then the
random variable T becomes simply α-stable with the scale parameter c1/α.
The probability density function pTα,λ,c of the tempered stable distribution
with parameters α, λ and c can be expressed in the following form

pT (α,λ,c)(x) = e−λx+cλ
α
pS(α,σ,1,0)(x) , (8)

where σ =
(
c ∗ cos πα2

)1/α and pS(α,σ,β,µ)(x) is the PDF of the α-stable dis-
tribution with the stability index α, scale parameter σ, skewness β and shift
µ, [17, 10, 12]. Because all moments of the tempered stable distribution are
finite, it becomes attractive in many practical applications, for instance in
finance [18,19], biology [20] and physics like anomalous diffusion, relaxation
phenomena [21,12], turbulence [22] or plasma physics [23], see also [24,25].

3.3. Gamma distribution

The PDF of the gamma distribution pG(c,a) is given by

pG(c,a)(x) = xc−1 e
−x/a

Γ (c)ac
, x ≥ 0 , (9)

where Γ (z) is the Gamma function defined as

Γ (z) =

∞∫
0

tz−1e−tdt . (10)
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It is interesting to note that for c = 1 the gamma distribution becomes
the exponential one. Moreover, gamma distribution is infinitely divisible.
For Xi ∼ G(ci, a) we have

∑n
i=1Xi ∼ G(

∑n
i=1 ci, a) provided that Xi are

independent.
In figure 1, we plot sample probability density functions as well as the

tails of the considered distributions. The α parameters in stable and tem-
pered stable distributions are equal to 0.6. The parameters of the gamma
distribution are chosen so its mean is equal to the mean of the tempered
stable distribution.
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Fig. 1. Probability density functions (PDF) of the three considered distributions:
S(α) — α-stable, T (α, λ, c) — tempered stable and G(c, a) — gamma. The α pa-
rameters in the stable and tempered stable distributions are equal to 0.6. The
parameters of the gamma distribution are chosen so its mean is equal to the mean
of the tempered stable distribution. Right panels display the right tails of the
corresponding probability density functions in the double-logarithmic scale.

4. Subordinated Brownian motion with different types
of subordinator distributions

In this section, we examine the subordinated Brownian motion defined
in (1) with three types of the inverse subordinator distribution, namely:
α-stable, tempered stable and gamma.
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4.1. α-stable case

The α-stable subordinator {Uα(τ)}τ≥0 is a non-decreasing Lévy process
with the Lévy measure v(dx) = x−(1+α)Ix>0dx and the following Laplace
transform

Ee−zU(t) = e−tz
α
, 0 < α < 1 . (11)

Therefore the function Ψ , that appears in (3), takes the form

Ψ(z) = zα . (12)

This implicates the form of the memory kernel, namely

M(t) =
tα−1

Γ (α)
. (13)

The first two moments of the subordinated Brownian motion defined in (1)
in the α-stable case are given by [8]

〈Y (t)〉 = 0 ,
〈
Y 2(t)

〉
=

1
Γ (α+ 1)

tα , (14)

while the covariance function takes the form

〈Y (t), Y (s)〉 =
min(s, t)α

Γ (α+ 1)
. (15)

4.2. Tempered stable case

The tempered stable subordinator {Uα,λ,c(τ)}τ≥0 is a Lévy process with
tempered stable increments (i.e. with the Lévy measure v(dx) = e−λx

x1+α Ix>0dx)
and the Laplace transform given by [21]

E
(
e−zU(t)

)
= e−tΨ(z) = e−t((λ+z)α−λα) , (16)

where λ > 0, 0 < α < 1. Let us point out that in the case of λ→ 0 the oper-
ator Φ is proportional to the fractional Riemann–Liouville derivative, there-
fore (1) tends to fractional Fokker–Planck equation (see Subsection 4.1) [21].
The basic properties and the simulation procedure of the process {Y (t)} de-
fined in (1) in the tempered stable case one can find in [13,12,10,14].

Observe that the memory kernel M(t) in the considered case can be
calculated on the basis of the following equation

∞∫
0

e−utM(t)dt =
1

Ψ(u)
=

1
(λ+ u)α − λα

. (17)
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As a consequence, the memory kernel M(t) takes the form

M(t) = e−λttα−1Eα,α((λt)α) , (18)

where

Eα,β(z) =
∞∑
k=0

zk

Γ (αk + β)

is a generalized Mittag–Leffler function, [26].
Since for 0 < α < 1 and β < 1 + α, the generalized Mittag–Leffler

function for z ∈ R and z 6= 0 can be expressed as (see Theorem 2.3 in [26])

Eα,β(z) =
1
α
z(1−β)/α exp

{
z1/α

}
+

∞∫
0

K(α, β, r, z)dr ,

where

K(α, β, r, z) =
1
πα

r(1−β)/αe−r
1/α r sin(π(1− β))− z sin(π(1 + β − α))

r2 − 2rz cos(πα) + z2
,

(19)
the memory kernel M(t) is given by the following formula

M(t) =
λ1−α

α
+ e−λttα−1

∞∫
0

K(α, α, r, (λt)α)dr . (20)

Therefore, we have

lim
t→∞

M(t) =
λ1−α

α
. (21)

The above limiting behavior is a simple consequence of the fact that for
large t the generalized Mittag–Leffler function can be written as [26]

Eα,α((λt)α) =
(λt)1−αeλt

α
−

p∑
k=0

(λt)−k

Γ (α(1− k))
+O

(
|λt|−1−p) . (22)

Knowing the form of the memory kernel we can calculate the basic statis-
tics of the process {Y (t)} such as moments and autocovariance function (see
Theorem 1 in [13]), namely

〈Y (t)〉 = 0 ,
〈
Y 2(t)

〉
=

t∫
0

M(u)du (23)
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and

〈Y (t), Y (s)〉 =

min(t,s)∫
0

M(u)du . (24)

However, in the case of the tempered stable distribution such derivations
require numerical approximations.

4.3. Gamma case

The gamma subordinator {Uc,a(τ)}τ≥0 is a Lévy process with indepen-
dent gamma distributed increments, i.e. with the Lévy measure v(dx) =
c e
−ax

x Ix>0dx) and the Laplace transform given by

E
(
e−zU(t)

)
=
(

1
1 + za

)ct
, a > 0 , c > 0 . (25)

Observe that in this case also the one-dimensional density p(t, x) of the
process Uc,a(τ) is given in a closed form, namely

p(t, x) = xct−1 e−x/a

Γ (ct)act
, x ≥ 0 . (26)

In this case the Lévy exponent Ψ(z) is given by

Ψ(z) = c log(1 + za) , (27)

what implicates that the memory kernel M(t) can be expressed as

M(t) = L−1

(
1

c log(1 + za)

)
, (28)

where L−1(f(t)) is the inverse Laplace transform of the f(t) function. In
order to find a formula for the memory kernel M(t), we use the following
relation (being a consequence of the Proposition 1 in [13])

〈
Y (t)2

〉
=

t∫
0

M(u)du . (29)

On the other hand, we have 〈
Y (t)2

〉
= 〈S(t)〉 , (30)
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where {S(t)} is the inverse subordinator. Moreover, using the relation be-
tween subordinator {U(τ)} and its inverse, and the fact that for each t the
random variable S(t) is positive, we obtain

〈S(t)〉 =

∞∫
0

P (S(t) > τ)dτ =

∞∫
0

P (U(τ) ≤ t)dτ . (31)

Therefore, in the case of the gamma distribution, we get

〈S(t)〉 =

∞∫
0

γ(cτ, t/a)
Γ (cτ)

dτ , (32)

where γ(s, x) is an incomplete gamma function defined as

γ(s, x) =

x∫
0

ts−1e−tdt . (33)

Finally, from (29) we have

M(t) =
1
c

∞∫
0

1
Γ (τ)

∂γ(τ, t/a)
∂t

dτ =
e−t/a

c

∞∫
0

tτ−1

aτΓ (τ)
dτ . (34)

Again, the basic statistics of the process Y (t) can be calculated. Observe
that from (30) and (32) we have

〈
Y (t)2

〉
=

∞∫
0

γ(cτ, t/a)
Γ (cτ)

dτ (35)

and

〈Y (t), Y (s)〉 =
〈
B2(min(s, t))

〉
= 〈S(min(s, t))〉

=

∞∫
0

γ(cτ,min(s, t)/a)
Γ (cτ)

dτ . (36)

The main characteristics of the subordinated process {Y (t)}t≥0 defined
in (1) for the three considered cases of subordinator distribution are sum-
marized in Table I.
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TABLE I

Characteristics of the subordinated process {Y (t)}t≥0 defined in (1) for the three cases of
the subordinator distribution.

Subordinator Stable Tempered stable Gamma
distribution S(α) T (α, λ, c) G(c, a)

Parameters α α, λ, c c, a

Ψ(z) zα c ((λ+ z)α − λα) c log(1 + az)

M(t) tα−1

Γ (α)
1
c
e−λttα−1Eα,α((λt)α) e−t/a

c

∞R
0

tτ−1

aτΓ (τ)
dτ

〈Y (t)2〉 tα

Γ (α+1)
1
c

tR
0

e−λuuα−1Eα,α((λu)α)du 1
c

∞R
0

γ(τ,t/a)
Γ (τ)

dτ

〈Y (t), Y (s)〉 min(t,s)α

Γ (α+1)
1
c

min(t,s)R
0

e−λuuα−1Eα,α((λu)α)du 1
c

∞R
0

γ(τ,min(s,t)/a)
Γ (τ)

dτ

5. Sample path properties of the subordinated Brownian motion
with different types of subordinator distribution

Sample trajectories of the process {Y (t)} defined in (1) are plotted in
figure 2. The chosen parameters correspond to the middle panels of figure 1.
Observe visible differences in the character of constant time periods.
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Fig. 2. Sample trajectories of the subordinated process {Y (t)} with the three con-
sidered subordinator distributions: S(α) — α-stable, T (α, λ, c) — tempered stable
and G(c, a) — gamma. The α parameters in the stable and tempered stable dis-
tributions are equal to 0.6. The parameters of the gamma distribution are chosen
so its mean is equal to the mean of the tempered stable distribution.
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Now, we focus on one of the most popular characteristics of the recorded
process trajectories in experimental analysis, namely the mean square dis-
placement. Recall that the ensemble averaged mean square displacement is
defined as 〈

Y 2(t)
〉

=

∞∫
−∞

x2P (x, t)dx , (37)

where P (x, t) is the probability of finding a particle in a infinitesimal interval
(x, x + dx) at time t. On the other hand, the time averaged mean square
displacement is given by

δ2(t, T ) =

T−t∫
0

(Y (s+ t)− Y (s))2ds

T − t
, (38)

where T is the length of the analyzed time series.
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Fig. 3. Mean square displacement calculated as the ensemble average over 1000
trajectories of the subordinated process {Y (t)} with the three considered subor-
dinator distributions: S(α) — α-stable, T (α, λ, c) — tempered stable and G(c, a)
— gamma. The α parameters in the stable and tempered stable distributions are
equal to 0.6. The parameters of the gamma distribution are chosen so its mean
is equal to the mean of the tempered stable distribution. The fitted power law
functions are plotted with the corresponding gray lines.
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For a standard Brownian motion the mean square displacement (MSD)
scales as t no matter if it is calculated as the ensemble or the time average.
However, the behavior of the ensemble average changes under subordination
scenario. In the α-stable case ensemble averaged MSD scales as tα [27], while
in the tempered stable case as tα for t → 0 and as t for t → ∞ [14, 21]. It
can be shown (for a detailed derivation see Appendix) that in the gamma
case the ensemble average scales as〈

Y 2(t)
〉
∼

{
− e−t/a

log(t/a) as t→ 0 ,
t/a as t→∞ .

(39)

Hence, for small t we observe non-power law behavior.
In figure 3 we plot the mean square displacement calculated as the en-

semble average over 1000 simulated trajectories in the three considered cases.
The chosen parameters are the same as on the corresponding panels of fig-
ure 1. Moreover, we fit a power law function to each of the obtained curves,
except for small t in the gamma case. In the α-stable case the power law is
fitted for the whole range of t, while in the tempered stable case separately
for small and large t and in the gamma case only for large t. Observe that
the obtained values are close to the theoretical power laws.
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Fig. 4. Mean square displacement calculated as the time average of the subordi-
nated process {Y (t)} with the three considered subordinator distributions: S(α) —
α-stable, T (α, λ, c) — tempered stable and G(c, a) — gamma. The α parameters
in the stable and tempered stable distributions are equal to 0.6. The parameters of
the gamma distribution are chosen so its mean is equal to the mean of the tempered
stable distribution.
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Finally, we calculate the time averaged mean square displacement. The
obtained values calculated as the time average from a simulated trajectory
of each of the three considered processes are plotted in figure 4. Observe
that in all cases the obtained MSD behaves as t.

6. Conclusions

In this paper, we have examined the anomalous diffusion models based
on the subordinated Brownian motion with three types of the inverse sub-
ordinators distribution: α-stable, tempered stable and gamma. The main
result is related to the properties of the analyzed processes. We have pointed
at the asymptotic behavior of the mean square displacement in three con-
sidered cases and showed that in the gamma case for small values of the
arguments we obtain completely different (non-power) behavior from this
observed in two other cases.

We are grateful to Marcin Magdziarz for stimulating discussions and
his valuable suggestions. The work of J.J. was partially financed by the
European Union within the European Social Fund.

Appendix

In order to show the asymptotic behavior of the ensemble mean square
displacement (MSD) in the gamma case, we use the Proposition 3 in [28],
namely if µ = 〈U(1)〉 is finite, then 〈S(t)〉 ∼ t/µ for large t, where {U(τ)}
and {S(t)} are the subordinator and its inverse defined in (2), respectively.
In the gamma case with parameters a and c, 〈U(1)〉 = ac therefore when
t→∞ we have 〈

Y 2(t)
〉

=
〈
B2(S(t))

〉
= 〈S(t)〉 ∼ t

ac
.

In order to show the asymptotic behavior of the MSD function for small t,
we use its explicit form

〈
Y 2(t)

〉
=

1
c

∞∫
0

γ(τ, t/a)
Γ (τ)

dτ . (40)

We can use the series expansion of the incomplete gamma function

γ(s, x) = Γ (s)x1/2se−x
∞∑
n=0

en(−1)x1/2nIn+s

(
2x1/2

)
, (41)
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where

en(z) =
n∑
k=0

zk

k!
. (42)

and Iv(z) is the modified Bessel function defined as follows

Iv(z) =
(

1
2
z

)v ∞∑
k=0

(
1
4z

2
)k

k!Γ (v + k + 1)
. (43)

The function Iv(z) can be for small z approximated by

Iv(z) ∼
(

1
2z
)v

Γ (v + 1)
. (44)

Therefore, when t→ 0, the function under the integral in (40) behaves like

γ(τ, t/a)
Γ (τ)

∼ (t/a)1/2τe−t/a
∞∑
n=0

en(−1)(t/a)1/2n
(t/a)1/2(n+τ)

Γ (τ + 1 + n)

= (t/a)τe−t/a
∞∑
n=0

en(−1)(t/a)n

Γ (τ + 1 + n)
, (45)

what gives
γ(τ, t/a)
Γ (τ)

∼ (t/a)τe−t/a

Γ (τ + 1)
. (46)

Thus, when t→ 0 we obtain

〈
Y 2(t)

〉
∼ e−t/a

c

∞∫
0

(t/a)τ

Γ (τ + 1)
dτ . (47)

Now, note that the 1
Γ (z) function can be approximated as

1
Γ (z)

∼
∞∑
k=1

akz
k (48)

for some ak that are independent of z and satisfy the following relation

an = na1an − a2an−1 +
n∑
k=2

(−1)kζ(k)an−k , (49)
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where ζ(z) is the Riemann zeta function [29]. As a consequence, we have

〈
Y 2(t)

〉
∼ e−t/a

c

∞∑
k=1

ak

∞∫
0

(t/a)τ (τ + 1)kdτ . (50)

In order to simplify the notation denote u = t/a. We have

〈
Y 2(au)

〉
∼ e−u

c

∞∑
k=1

ak

∞∫
1

uτ−1τkdτ =
e−u

cu

∞∑
k=1

ak

∞∫
1

uττkdτ . (51)

Finally, let us consider the asymptotic behavior of the function f(u, k) =∫∞
1 uττkdτ for u < 1. Integrating by parts gives the recursive relation

f(u, k) = − u

log u
− k

log u
f(u, k − 1) , f(u, 1) = − u

log u

(
1− 1

log u

)
.

(52)
Therefore, when u → 0 the f(u, k) ∼ − u

log u , what yields the asymptotic
behavior of the 〈Y 2(au)〉 for small u, namely

〈
Y 2(au)

〉
∼ − −e

−u

c log u

∞∑
k=1

ak = A
e−u

log u
, (53)

where A = const. Substituting u = t/a in (53) we obtain

〈
Y 2(t)

〉
∼ − −e

−t/a

c log(t/a)

∞∑
k=1

ak = A
e−t/a

log(t/a)
. (54)
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