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We investigate an arbitrary set of point charges in two dimensions,
which models a rigid molecule subject to a purely octupolar electric field
poling potential imposed by a system of symmetry-adapted cylindrical elec-
trodes. We formulate the conditions which guarantee that the minimum of
electrostatic potential energy of the molecule is homogeneous, that is in-
dependent of its localization inside the poling cell. These conditions state
that the molecule must be charge neutral, apolar and with an isotropic
charge quadrupole moment. This result constitutes a first step towards a
comprehensive classification scheme for the ground states (T = 0) of a set
of multipolar molecules poled by electric potentials of different multipolar
symmetries.
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1. Introduction

The progress in nonlinear optics over the last decades has involved de-
velopment of organic molecules and materials [1]. Guided by a molecular
engineering approach, the structure of materials has been tailored at differ-
ent scales to optimize desirable physical properties, such as nonlinear opti-
cal susceptibilities of different orders. This research was done mainly in the
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framework of irreducible tensor algebra [2,3], where symmetry considerations
play a fundamental role. In this respect, one of the most important features
concerns centrosymmetry breaking as a prerequisite, at the different scales at
stake, towards the occurrence of odd-rank tensor properties. Such condition
should be satisfied at the molecular level as well as for their assembly in a
material (from nano-size particle to bulk, depending on the targeted material
scale). In the context of nonlinear optics, this rule applies to second-order
nonlinear phenomena, e.g. second-harmonic generation and its application
to imaging and, more generally, to all three-wave mixing phenomena, such
as the electrooptic Pockels effect or non-degenerated sum- and difference-
mixing of two incoming beams. These phenomena are indeed controlled at
the upstream electromagnetic propagation scale as governed by nonlinear
Maxwell equations, via the quadratic susceptibility χ(2), a third-rank tensor
which vanishes for centrosymmetric systems. Over the last decades, dipolar
conjugated molecules [4] have served as a versatile template for NLO appli-
cations. In spite of the initial relevance of the dipolar paradigm, some of its
limitations have shifted the molecular engineering research frame into the
broader area of multipolar molecules [5,6]. Dipolar molecules being set apart,
the next candidates sustaining non-vanishing odd-rank tensor properties are
then the octupoles. Unfortunately, their non-centrosymmetric statistical ori-
entation cannot be promoted by means of traditional dipolar poling schemes
because of their vanishing dipole moment. Therefore, the design of effective
octupolar orienting schemes becomes an important task. Recently, one of us
has proposed a general symmetry based approach which generalizes onto a
multipolar frame the earlier more restricted dipolar scheme [3].

In our recent paper [7] the topic of electrostatic field poling of octupolar
molecules (octupoling) in two dimensions (2D) was addressed using the com-
plementary methods of statistical mechanics and Monte Carlo simulations.
The physical picture and simplifying assumptions were discussed, leading to
a lattice model of noninteracting octupoles in 2D at the nano-scale, in the
presence of an inhomogeneous electric poling field imparted by a system of
cylindrical electrodes. Building up on the Laplace equation solution for the
potential, we have formulated, using basic concepts of statistical mechanics,
a criterion for octupoling which includes important parameters: charge dis-
tribution and linear size of the octupolar molecule, poling voltage, radius of
the electrodes and temperature. It was found that a well-ordered octupo-
lar phase appeared at very low, sub-Kelvin temperatures. This highly de-
manding octupoling criterion was ascribed to symmetry-driven effects which
decreased the quality of the octupolar non-centrosymmetric order even in
the ground state (T = 0), as well as to thermal fluctuations at above-zero
temperatures and related numerical factors. Among these factors that re-
late to a potential softening of the poling requirements discussed in [7] two
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appear to be of primary interest. The first one is a more advanced design of
the distribution of charges in the model octupolar molecule. The octupolar
molecule, by definition, is represented by a set of charges q1, . . . , qn, such
that the first non-zero odd-order irreducible multipolar electric moment is
the octupole. The second one requires the design of more effective electric
field poling schemes which, in particular, promote a homogeneous, non-
centrosymmetric octupolar order in the ground state. This work is closely
related to an advanced topological classification of various ground states in
the presence of topological defects (vortices) already reported in Ref. [7].
The structure of the ground state depends on the presence of various multi-
polar electric moments of the molecule and of multipolar components of the
poling field.

The first step towards the classification of the ground state was made
in our recent paper [8], where a purely octupolar (J = 3 in the irreducible
tensor nomenclature [2]) poling potential was used (see the next section for
details). We have studied a specific case whereby the octupolar molecule
follows a so-called “Y” pattern octupolar design, with a set of three localized
charges q, set at the vortices of an equilateral triangle, while an opposite −3q
compensating charge is centered to ensure neutrality (Fig. 3 (a)). In this
case, the electrostatic potential energy of the molecule does not depend on
the position of its center, but only on the molecule’s orientation, leading to
a homogeneous non-centrosymmetric ground state. However, the potential
barriers preventing orientational disorder were low, leading to the thermally-
driven destruction of octupolar order above a temperature threshold as low
as 10−4 K. The emerging question is whether other designs of octupolar
molecules can somewhat relax the poling conditions.

This contribution is a first step in this direction, by way of addressing
a more general, but closely related topic. Its objective is to formulate the
requirements for the generic molecular charge distribution for which the
ground state of an ensemble of such non-interacting molecules embedded
in a purely octupolar potential is homogeneous throughout the area of the
poling cell.

2. Arbitrary system of point charges in a purely
octupolar potential

Consider an arbitrary set of point charges qi, i = 1, 2, . . . , n, placed at
positions ~ri, see Fig. 1, representing a model of a molecule in the poling cell.
The values of charges and the relative distances between them are fixed.
Consequently, we neglect the polarizability effects and vibrational motions
of the molecule, leaving them for future studies. The electric field is imparted
by a single cylindrical electrode infinite along its axis and with a circular
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cross-section of radius R, see Fig. 1, this being the continuous geometric
limit of a set of discrete and disconnected electrodes, as further recalled (see
also Ref. [3]). The perimeter of the cell is formed by the intersection of the
electrodes with the (x, y) plane. The system is effectively two-dimensional
because of its translational symmetry in z direction. More details can be
found in Refs. [7, 8].
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Fig. 1. Schematic view of the poling cell in (x, y) plane with a set of charges qi
located at points ~ri, representing a molecule in the poling cell. The set of charges
translated by a vector ~T (see the text) is also shown. Boundary conditions for the
potential are set on a circular electrode of radius R.

The electrostatic field inside the poling cell is uniquely determined by the
boundary conditions, which we chose as purely octupolar, i.e., with a single
J = 3 octupolar component in the multipolar (or Fourier) expansion

V (R, θ) = V0 sin 3θ . (1)

Inside the poling cell the potential satisfies the Laplace equation and reads [9]

V (r, θ) = V0

( r
R

)3
sin 3θ , (2)

where 0 ≤ r ≤ R and 0 ≤ θ < 2π are the polar coordinates inside the
poling cell, see Fig. 2. To avoid misunderstanding we point out that no
continuous potential boundary condition can be implemented by means of a
one-piece metallic electrode. It can nevertheless be approximated step-wise
by splitting the cylinder into a set of independent electrodes [3].
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Fig. 2. Contour plot of purely octupolar poling potential inside the poling cell
V (r, θ) = V0

(
r
R

)3 sin 3θ, Eq. (2).

In what follows, we study the effect of a pure translation of the molecule
(without rotations) on its electrostatic potential energy and then formulate
the conditions under which the energy is invariant with respect to arbitrary
translations. For convenience, we set V0 = 1 and chose R as the distance
unit. The electrostatic potential energy reads

E =
n∑
i=1

qiV (~ri) +
1
2

n∑
i=1

∑
j 6=i

qiqj
|~rj − ~ri|

. (3)

The second term is constant because the model molecule is rigid, so we will
skip it. For further studies it is more convenient to express potential V (r, θ)
in the Cartesian coordinates x, y. Since

sin 3θ = 3 cos2 θ sin θ − sin3 θ , (4)

sin θ =
y

r
, (5)

cos θ =
x

r
, (6)

Eq. (2) (with V0 = 1, R = 1) becomes

V (~r ) ≡ V (x, y) = 3x2y − y3 . (7)

One way to study the conditions of invariance of the potential energy E with
respect to translations is to express it as a function of the vector position
of the center of mass ~RCM of the molecule and of rotation angle ϕ of the
molecule as a whole, and next to solve the equation ∇~RCM

E(~RCM, ϕ) = 0,
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where ∇~RCM
denotes gradient with respect to ~RCM. This differential tech-

nique is somewhat cumbersome and we prefer to use instead discrete macro-
scopic translations. Namely, we calculate the change of energy, Eq. (3),
when the set of charges is translated by vector ~T = [A,B], see Fig. 1. Let
us first calculate the potential at the point ~r + ~T = [x, y] + [A,B]. Some
straightforward algebra yields

V (x+A, y+B) = 3(x+A)2(y +B)− (y +B)3

= 3x2y − y3 + 3A2B −B3

+3
(
(2AB)x+

(
A2−B2

)
y+A(2xy)+B

(
x2−y2

))
. (8)

The difference of energy ∆E between the energies of translated and the
original systems then reads

∆E=
∑
i

qiV
(
~ri + ~T

)
−
∑
i

qiV (~ri)

=3
(
2ABµx+

(
A2−B2

)
µy+AQxy+B(Qxx−Qyy)

)
+
(
3A2B−B3

)
Q , (9)

where the quantities

Q =
∑
i

qi ,

µα =
∑
i

qi(~ri)α , (α ∈ {x, y}) ,

Qαβ =
∑
i

qi(~ri)α(~ri)β , (α, β ∈ {x, y})

denote the total charge, the components of the dipole moment and the com-
ponents of the electric quadrupole moment, respectively. Then, Eq. (9)
straightforwardly yields the required conditions: the energy is invariant with
respect to translation (i.e. it is independent of A, B) provided that the fol-
lowing relations hold

Q = 0 , (10a)
~µ = 0 , (10b)

Qxy = 0 , (10c)
Qxx = Qyy . (10d)

The first two conditions state that the molecule must be charge neutral
together with a strictly cancelled dipolar moment; the last two — that the
tensor of quadrupole moment must be isotropic

Qαβ ∝ δαβ . (11)
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Let us introduce some molecular considerations to exemplify and illus-
trate criterion (10), while still remaining at a generic level. There exists a
large class of molecular charge distributions which satisfy this criterion, how-
ever not all of them are of interest for second-order nonlinear applications.
Firstly, the prerequisite for the centrosymmetry-breaking eliminates a large
class of them, leaving only three-fold symmetry (C3v and D3h point groups)
as the only symmetry option to simultaneously meet non-centrosymmetry
and the cancellation of vectorial properties such as the charge dipole moment
(Refs. [5,6]). Beyond the charge quadrupole moment, the isotropy condition
can then be seen to apply to any rank two tensor properties, such as for
example, the linear polarizability tensor α. Indeed, an isotropic polarizabil-
ity tensor is one of the additional benefits of octupolar molecules in that
octupolar ordering will not influence the lower order dielectric properties
which remain indeed isotropic, thus avoiding optical scattering losses due to
index inhomogeneities which is a well known drawback in the usual case of
“dipoling”.

Secondly, the requirement of energy invariance discussed above does not
necessarily bring about the homogeneity of the ground state — additional
requirement is that the energy is dependent on the angle of rotation of
the molecule as a whole. Those concepts are exemplified in Fig. 3, where
a few chosen molecular charge distributions which satisfy Eqs. (10), are
non-centrosymmetric and have an homogeneous ground state, are shown.
The design in cases (a) and (b) corresponds to the third J = 3 step of a
recursive point charge model for 2J multipoles [10] in the 2D case: a J-order
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Fig. 3. Exemplary molecular charge distributions which meet criterion (10), are
non-centrosymmetric and give rise to an homogeneous ground state in a purely
octupolar poling potential, see the text.
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multipole can be accounted for by a set of J charges of the same sign and
magnitude q at the apex of a regular polygon compensated by an opposite
−Jq charge at the center (case (a)) or, alternatively, by a set of 2J regularly
alternating charges at the apex of a regular polygon (case (b)). Molecular
charge distribution shown in case (a) corresponds to “Y” shape paradigm
and was studied in Refs. [7, 8]. Designs (c) and (d) illustrate the effect of
the “decoration” of the basic pattern (a). First of them retains the three-
fold symmetry of the molecule, while the second design, case (d), breaks
it down. In this case, the end-points of the molecular arms were decorated
with (compensated) charge distribution of the same shape but various linear
dimensions and, additionally, with arbitrary orientations.

3. Conclusions

We have studied the electrostatic potential energy of a model molecule,
represented by set of point charges, in a purely octupolar electrostatic po-
tential. We have fully characterized a generic charge distribution for which
the energy remains constant under the translations of the molecule as a
whole, without rotations, inside the poling cell. The corresponding condi-
tions, Eq. (10), state that the total molecular charge and dipole moment
should vanish while its electric quadrupolar moment should be isotropic.
Simple illustrative examples of the corresponding molecular charge design
were provided and discussed. The ground state under a purely octupolar
potential in the octupoling cell of a system of generic molecular patterns
as displayed in Fig. 3, is homogeneous and builds-up a fully ordered non-
centrosymmetric octupolar phase. Our result is of interest towards further
design of model molecules, especially in the case when inter-molecular elec-
trostatic interactions are taken into account and eventually further taken
advantage of so as to improve on the octupolar ordering. The flexibility,
which stems from Eq. (10), allows for a “decoration” of basic patterns and
can hopefully promote such structures where the electrostatic interactions
reinforce the homogeneity of the ground state, which results from the poling
potential alone.

From a methodological point of view, we have targeted herein specific
molecular and supramolecular properties, namely the homogeneity of the
octupolar order in connection with molecular features emphasizing the role
of lower order charge multipoles, up to the quadrupole for quadratic NLO
properties. It is, nevertheless, to be remembered that a group theoretical ap-
proach, namely the application of irreducible group representation on tensor
spaces, could “short-circuit”, to some extent, more specific approaches and
the related calculations, with the additional benefit of a greater generality
as to the physical properties at stake. Along such general lines while bearing
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in mind the topic of this study, it is obvious that for an arbitrary 2D system
at any scale (molecular or supramolecular) that is simply abiding to three-
fold symmetry, then any attached tensorial property of rank two (such as
the polarizability at the molecular scale or the linear dielectric response or
the index of refraction at an upscaled level) will be forced to isotropy. This
will happen by sole virtue of the overall threefold symmetry constraints to
which all tensor properties have to obey and which cuts off any anisotropic
contribution to rank two properties. This can be easily understood by re-
membering that any rank two property can be accounted for by an elliptical
indicatrix (the index ellipsoid in the case of the linear index of refraction).
Then applying a three-fold symmetry invariance constraint to an ellipse can-
not but reduce it to a circle, hence the isotropy. One could also define such
an indicatrix for the quadrupole moment and then apply the same general
rationale. This being stated, we believe that an approach such as developed
herein, nevertheless remains not only valid but needed in order to translate
general principles into more targeted molecular and intra-molecular consi-
derations, here the quadrupole isotropy, that further define useful molecular
engineering pathways and practical design rules.
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