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We suggest an approach to describe the physical properties of disor-
dered dielectric and/or magnetic systems. These systems are characterized
by randomly positioned and oriented spins (dipoles) in a host crystal lat-
tice. The ensemble of these spins or dipoles create the random magnetic
or electric fields in a host lattice. Their distribution function, defined as
an average (over spatial and orientational fluctuations) of Dirac delta con-
tributions of each spin (dipole), enables us to obtain the self-consistent
equations for order parameters like average magnetization (polarization)
〈S〉, and/or general quantities like 〈Sn〉. We calculate explicitly the above
distribution functions for different types of interactions and show that, in
general, they are not Gaussian. Our theory delivers pretty good descrip-
tion of experiments in disordered ferroelectrics, multiferroics, magnets and
diluted magnetic semiconductors.
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1. Introduction

Many physical systems can be well described in terms of the properties
of a certain fictitious particle under the action of random fields, originat-
ing from its environment [1, 2, 3]. One example of such complex systems
is the disordered solids having localized dipole (disordered ferroelectrics)
and/or spin (disordered magnets, diluted magnetic semiconductors) mo-
ments embedded in otherwise ordered host crystal lattice, see e.g. [4, 5].
∗ Presented at the XXIV Marian Smoluchowski Symposium on Statistical Physics,
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The problem of cooperative behavior of above impurities is not fully un-
derstood and attracts much attention of the scientists. The main problem
here is the randomness in the impurity subsystem. The impurity effects,
which may be of static (like smearing of phase transition into the phase
with long-range order like ferroelectric or ferromagnetic) or dynamic (like
long-time relaxation of the order parameter) nature are inherent in disor-
dered ferroelectrics [4], magnets [6], ceramic superconductors (see [7] and
references therein) and other complex systems [3]. For example, in highly
polarizable dielectrics such as KTaO3 with dipole impurities (off-center ions
Li+, Nb5+ or Na+) the ferroelectric phase transition occurs at low temper-
atures if impurity concentration n exceeds some critical value ncr (see [8]
and references therein). At n < ncr these substances are in the dipole glass
phase (“dipole analog” of spin glass). The mixed ferro-glass phase exists
in the intermediate range of concentrations [9]. Such a rich phase diagram
suggests many anomalous (as compared to ordered ferroelectrics) proper-
ties, the most intriguing one is the unusual long-time relaxation of the order
parameter [10].

The disordered dielectrics is a typical example of the systems, where im-
purities interact via known potential J(~r). In this case the existing methods
of spin glass theory (like Sherrington–Kirkpatrick or Edwards–Anderson ap-
proaches based on the so-called replica formalism [11]) cannot be applied
directly since the explicit form of interaction between impurity dipoles is
important for the description of their observable behavior (see [8] and refer-
ences therein). Although replica formalism (see, e.g. [11]) operates directly
with a free energy of a disordered system as a self-averaging quantity, it can-
not incorporate the predefined interaction potential J(~r). Our random field
approach is able to incorporate J(~r) (see, e.g. [8,12,13]) and it can get the
free energy (see, e.g. [14, 15, 16]) via self-consistent equations for the order
parameters. Latter equations, in turn, depend explicitly on the distribution
function of random fields, for which a nonlinear integral equation is obtained
within the framework of suggested random field approach.

In this paper, we present the random local field method from the point
of view of its probabilistic sense. We will derive explicitly the distribution
functions of random fields and relaxation times for different disordered solids
and show the correspondence between different interaction (between disorder
constituents like impurity spins or dipoles) potentials and the character of
the distribution function.

The presented formalism can be generalized for any kind of disordered
systems with predefined interactions between impurities. Another (than
disordered dielectrics) example of such systems may be the semimagnetic
semiconductors, where localized spins interact with each other indirectly via
RKKY interaction (see e.g. [17] and references therein).
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2. General formalism

There are many sources of randomness in the disordered solids. The
substitutional disorder, vacancies, off-center ions (dipoles), impurity spins
and other imperfections are the sources of random electric, magnetic and
elastic fields in the system. All random field sources can be regarded as
the impurities in some (ideal) host lattice, called reference phase. For this
reason hereafter we call them “impurities”.

Consider a system of impurities chaotically distributed over the sites of
the host crystal lattice with concentration n = N/V (N is a number of
impurities, V is a crystal volume). For the case of dipole impurities in a
dielectric host the Hamiltonian has the form

He =
∑
ijαβ

Kαβ(rij)lαi l
β
j +

∑
iα

[Eα(ri) + Eα] liα , (1)

where li is the unit vector pointing along the direction of impurity dipole
di at the point ri (di = dli), E is an external electric field in energy units,
E(ri) is a random internal field (in energy units) of nondipole impurities
(i.e. of point defects etc.), α, β = x, y, z and rij = rj − ri. Summation
in (1) is performed over the host lattice sites occupied by impurities. In di-
electrics, the interaction potential Kαβ(r) signifies the interaction of dipoles
through transversal optical phonons of a host lattice and has following gen-
eral form [18]

Kαβ(r) = −1
2
d2

ε0r3
[f1(r/rc)δαβ + (3mαmβ − δαβ)f2(r/rc)] , m =

r

r
, (2)

where ε0 and rc is a host lattice static dielectric permittivity and correlation
radius (two impurities at a distance less or equal rc are correlated). The
physical reason for appearance of rc and functions f1,2(r/rc) is an indirect
interaction of impurity dipoles via the host lattice soft phonon mode (see,
e.g. [18]). If the latter interaction is absent, we have rc → 0, f1(r/rc)→ 0,
f2(r/rc) → 1 so that (2) gives the ordinary dipole–dipole interaction. The
functions f1,2 ∼ exp(−r/rc); their detailed form is unimportant for present
consideration.

For the case of magnetic impurities with localized spins, the interaction
term in the Hamiltonian (1) becomes isotropic due to its exchange nature

Hm =
∑
ij

J(rij)SiSj +
∑
i

H0Si . (3)

Here Si is a spin operator (it also can be large classical spin) at the point ri
andH0 is the external magnetic field. The Hamiltonian (3) describes disor-
dered magnetic systems and so-called diluted magnetic semiconductors [14],
in particular.
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For latter substances the interaction between the impurity spins oc-
curs via conduction electrons and has the Ruderman–Kittel–Kasuya–Yosida
(RKKY) form [19]

J(r) = J0F (2kFr) , F (y) =
y cos y − sin y

y4
, (4)

where interaction constant J0 is expressed via conduction electron effective
mass and electron-ion exchange constant, kF is Fermi wave vector. We note
here that the reciprocal Fermi wave vector 1/kF plays a role of correlation
radius in this case, i.e. two spins on the distance less then 1/kF are correlated.
In other words, in dilited magnetic semiconductors, those spins are correlated
which have wave vectors k > kF.

The Hamiltonians (1) and (3) incorporate two types of randomness. The
first is random spatial position of the impurity spin or dipole in a host lattice,
constituting the so-called spatial disorder. The second is random orienta-
tion of dipole (or projection of spin) in its site due to thermal fluctuations.
The averaging over two above types of disorder just gives the actual shape
of distribution function of random electric or magnetic fields. Proceeding
formally, we rewrite the Hamiltonians (1) and (3) in the following equivalent
form

He =
∑
iα

Eiαliα , Hm =
∑
i

H iSi ,

Eiα =
∑
jβ

Kαβ(rij)l
β
j + Eα(ri) + Eα ,

Hiα =
∑
j

J(rij)Sj +H0 (5)

and introduce the distribution function of random (electric or magnetic)
field E defined as the average value of Dirac-delta contributions Ei to the
effective field E

f(E) =

〈
δ

(
E −

∑
i

Ei

)〉
, (6)

where bar denotes the averaging over random spatial positions of impurities
(spatial averaging) and angular brackets denote the thermal averaging over
possible dipole (or spin) orientations. Without loss of generality hereafter we
use “dielectric” notations for random fields keeping in mind that for magnetic
case it is easy to restore the proper notations. Our next step is to perform
the spatial and thermal averagings in Eq. (6).
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The spatial averaging procedure in (6) can be done with the help of
δ-function integral representation

f(E) =
1

(2π)3

∞∫
−∞

∞∫
−∞

∞∫
−∞

exp

(
i
∑
α

Eαρα

)〈
exp

[
−i
∑
iα

ραEiα

]〉
d3ρ .

(7)
To perform the averaging we assume that the impurities do not form clus-
ters [20], i.e. we consider single impurity in the (fluctuating) field of the
rest of them but not pair in the field of pairs, triple in the field of triples
etc. In other words, the probability for single impurity dipole (spin) to
be in some position (i.e. in the infinitesimal volume V1) in a host lattice
is uniform with probability density equal to 1/V1. It can be shown that
this assumption gives pretty good description of the disordered dielectric
and magnetic systems everywhere except a narrow region near the phase
transition temperatures.

The realization of above scenario yields

〈
exp

[
−i
∑
iα

ραEiα

]〉
≈

 1
V

∫
V

〈
exp

[
−i
∑
iα

ραEiα

]〉
dV

N

=

1+
1
V

∫
V

〈
exp

[
−i
∑
iα

ραEiα

]
−1

〉
dV

N . (8)

Introducing then the impurity concentration n = N/V (N is the number
of impurities, V is system volume) and passing to thermodynamic limit
N →∞, V →∞, n = const, we obtain finally

〈
exp

−i∑
i,α

ραEiα

〉=exp

n ∫
V

〈
exp

[
−i
∑
α

ραEα(r)

]
−1

〉
d3r

 . (9)

To perform further averagings in Eq. (9), we should expand the expo-
nential in power series and average term by term the corresponding config-
urations. This procedure leads to following self-consistent integral equation
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for distribution function f(E)

f(E) =
∫
ρ

exp

iρ(E − E)− n
∫
V

Ψ(r)d3r

 d3ρ

(2π)3
,

Ψ(r) =
∫
E

〈
1− exp

−i∑
α,β

Kαβ(r)ραlβ

〉
E

f(E)d3E , (10)

where 〈..〉E means the averaging with single particle Hamiltonian H1 =∑
α lαEα.
Expression (10) is the integral equation for distribution function f(E).

In general case, this equation can be solved only numerically. However, in
many cases (e.g. those considered below) it is possible to avoid a solution
of the integral equation, since in these cases it is exactly reducible to the
set of transcendental equations for order parameters, i.e. for macroscopic
quantities like 〈ln〉 (or 〈Sn〉), n ≥ 1 of the system. In such cases it is
possible to perform the thermal averagings explicitly.

We note here, that since nondipole impurities have no internal degrees
of freedom (like several possible orientations of an impurity dipole or spin in
a host lattice), they are not subject to thermal averaging in (9). Moreover,
it can be shown (see, e.g. [13]) that distribution function of many random
field sources is a convolution of distribution functions of individual sources.

Thermal averaging in (9) depends on particular number of impurity
dipole orientations (or impurity spin projections) in a host lattice. As an
example, we consider the case of impurity dipole with six possible orienta-
tions. This corresponds to the particular case of Li+ in KTaO3 lattice. Let
us first calculate auxiliary thermal averages 〈lα〉E , 〈l2α〉E , α = x, y, z. We
have

〈lx,y,z〉E = − sinhβEx,y,z
coshβEx + coshβEy + coshβEz

,

〈
l2x,y,z

〉
E

=
coshβEx,y,z

coshβEx + coshβEy + coshβEz
, (11)

β = (kBT )−1. Here, we used the fact that lα = ±1 for α = ±x,±y,±z
(6 directions of [100] type). From equation (9), we have now
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〈
exp

−i∑
α,β

Kαβραlβ

− 1

〉
E

=
Tr exp

[
−i
∑

α,β Kαβραlβ − β
∑

α lαEα

]
Tr exp [−β

∑
α lαEα]

− 1

=
cosh(βEx − iQx) + cosh(βEy − iQy) + cosh(βEz − iQz)

coshβEx + coshβEy + coshβEz
− 1 , (12)

where

Qx = Kxxρx +Kxyρy +Kxzρz ,
Qy = Kxyρx +Kyyρy +Kyzρz ,
Qz = Kxzρx +Kyzρy +Kzzρz ,
Kαβ ≡ Kαβ(r) , (13)

and Kαβ ≡ Kβα (see (2)). Converting the hyperbolic functions of the imag-
inary argument into trigonometric functions with respect to the auxiliary
averages (11), we have finally

〈
exp

−i∑
α,β

Kαβραlβ

− 1

〉
=
〈
l2x
〉

(cosQx − 1) +
〈
l2y
〉

(cosQy − 1)

+
〈
l2z
〉

(cosQz − 1) + i [〈lx〉 sinQx + 〈ly〉 sinQy + 〈lz〉 sinQz] . (14)

Here for brevity, we suppress index E in the thermal averages, i.e. put
〈...〉E ≡ 〈...〉. The next step is to obtain the self-consistent equations for
the components of the average dipole moment of the system Lα ≡ 〈lα〉 and
its average square Mα ≡ 〈l2α〉. The first quantity is, indeed, an effective
dipole representing the system as a whole (i.e. ferroelectric long-range order
parameter or spontaneous polarization). Above equation (10) shows that to
achieve self-consistency, we have to replace in Eq. (14) the single-particle
averages 〈lα〉 and

〈
l2α
〉
by Lα and Mα, respectively. In this case, the distri-
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bution function has the form

f (6) (E,L,M) =
1

(2π)3

∞∫
−∞

∞∫
−∞

∞∫
−∞

exp

(
i
∑
α

Eαρα

)

× exp
[
F

(6)
1 (ρ) + iF

(6)
2 (ρ)

]
d3ρ ,

F
(6)
1 (ρ) = n

∫
V

{Mx (cosQx − 1) +My (cosQy − 1)

+Mz (cosQz − 1)} d3r ,

F
(6)
2 (ρ) = n

∫
V

{Lx sinQx + Ly sinQy + Lz sinQz} d3r, (15)

where

Lx,y,z =

∞∫
−∞

∞∫
−∞

∞∫
−∞

〈lx,y,z〉 f (6) (E,L,M) dExdEydEz ,

Mx,y,z =

∞∫
−∞

∞∫
−∞

∞∫
−∞

〈
l2x,y,z

〉
f (6) (E,L,M) dExdEydEz . (16)

Here superscript denotes the number of dipole orientations. The expres-
sions (16) are equivalent to a set of six quite cumbersome equations, deter-
mining the concentrational and temperature dependencies of both L andM .

The real part F (6)
1 (ρ) of the logarithm of the characteristic function de-

fines the width of the distribution function, i.e. the dispersion of the random
fields. The imaginary part F (6)

2 (ρ) determines the mean value of the random
field, i.e. the first moment of the distribution function; it incorporates the
components of the long-range order parameter. This means that function
F

(6)
2 (ρ) is “responsible” for possible long-range order in the system, while
F

(6)
1 (ρ) tends to destroy it. It can be shown that F2(ρ) 6= 0 for impurity

dipoles only. This means that long-range order in the system (which occurs
when mean value of the random field exceeds its dispersion) is due to the
dipoles. Nondipole impurities can only destroy the long-range order, giving
rise to the dipole glass state. The situation is qualitatively similar for spin
systems.

The application of the above formalism for eight possible orientations
(of [111] type) of the impurity dipole (this corresponds to Nb5+ in KTaO3)
yields very cumbersome set of equations for f (8)(E,L), which we do not
adduce here.
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The simplest case is the situation when impurity dipole has two per-
missible orientations in a host lattice. This corresponds also to disordered
magnetic system (e.g. diluted magnetic semiconductor) with spin S = 1/2,
see [14, 15]. The self-consistent equation for order parameter L ≡ Lz reads
(see, e.g. [21])

f (2)(E,L) ≡ f(E,L) =
1

2π

∞∫
−∞

exp(iρE) exp [F1 (ρ)− iF2 (ρ)] dρ ,

F1(ρ) ≡ F
(2)
1 (ρ) = n

∫
V

{cos (Kzzρ)− 1} d3r ,

F2(ρ) ≡ F
(2)
2 (ρ) = nL

∫
V

sin (Kzzρ) d3r ≡ ρE0(ρ)L ,

L =

∞∫
−∞

tanh(βE)f(E,L)dE . (17)

Note, that the suggested procedure of calculation of the random field
distribution function can be also applied for classical spin. In this case, the
auxiliary single particle thermal averages can be expressed through Langevin
function and its derivatives. The self-consistent procedure in this case can be
done only implicitly and we do not even know what kind of order parameters
(and how many) appear as a result of this procedure.

The form of Fi(ρ) and thus f(E) depends strongly on the form of Kαβ(r)
or J(r). Consequently, the general form of f(E) will not be Gaussian,
this limit is realized at high impurities concentration only, corresponding to
ρ→ 0. For instance, f(E) is a Lorentzian when rc → 0 in (2), i.e. for the
case of the pure dipole–dipole interaction.

2.1. Asymptotics of distribution functions

As high impurity concentration corresponds to ρ → 0, we can expand
the corresponding characteristic function in power series and obtain corre-
sponding distribution functions explicitly. The easiest way of doing so is to
consider the case (17), corresponding to spin 1/2 in magnetic systems.

We observe that the lowest order in ρ is first order so that up to this
order in (17) F (2)

1 (ρ) ≡ 0 and

F
(2)
2 (ρ) = LρE0 , E0 = n

∫
V

Kzz(r)d3r .
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Substitution of this equation back into f(E,L) gives for it the delta-function

fMF(E,L) = δ(E − E0L) ,

corresponding to well-known mean field approximation for Ising model. Sub-
stitution of this delta-function into the equation for order parameter L also
gives well-known mean filed equation for Ising model

L = tanh
(
LE0

kBT

)
, (18)

which at L→ 0 generates the equation for mean field transition temperature
kBTcMF = E0 = n

∫
V Kzz(r)d3r.

Next approximation in ρ generates the finite width of distribution func-
tion

F
(2)
1 (ρ) = −∆E

ρ2

2
, ∆E = n

∫
V

K2
zz(r)d3r

so that f(E,L) in this approximation is Gaussian

fG(E,L) =
1√

2π∆E
exp

[
−(E − E0L)2

2∆E

]
. (19)

It is seen that function (19) is normalized
∫∞
−∞ fG(E,L)dE = 1.

Next terms in ρ expansions generate already non-Gaussian distribution
functions. The physical meaning of above asymptotic solution is that the
less disorder (i.e. more dipoles or spins occupying the free host lattice cites)
has a system, the narrower is the distribution function of random fields. So,
if there is almost no disorder, the distribution function is delta-function,
signifying the validity of a mean field approximation, for a little stronger
disorder we have Gaussian distribution function and for stronger fluctuations
the function becomes non-Gaussian.

3. The correspondence between interaction potentials and
distribution functions

We have shown above that for weak disorder the system has Gaussian
distribution function of random field (19). In the opposite limiting case
of strong disorder, the distribution function of random fields is the heavy-
tailed non-Gaussian distribution. To model the effect of strong disorder, we
assume that our system has small numbers of dipoles or spins, interacting
via long-range (like dipole–dipole) interaction

Kddαβ(r) =
d2

ε0r3
(δαβ − 3mαmβ) . (20)
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We show that such interaction generates the Lorentzian distribution of ran-
dom field. To be more specific, we consider the system of electric dipoles
(or Ising spins) at zero temperature having two possible orientations along
z-axis. In this case Kddαβ =Kddzz and we have

fL(E) = lim
N→∞
V→∞

1
2π

∞∫
−∞

eiEρ[Ψ(ρ)]Ndρ ,

Ψ(ρ) =
1

2V

∫
V

e−iρK
dd
zz(r)d3r +

∫
V

eiρK
dd
zz(r)d3r

 . (21)

With respect to explicit form of Kddzz , we obtain

Ψ(ρ) = 1− α

N
|ρ| , α =

8π2

9
√

3
nd

ε0
, (22)

fL(E) =
1

2π
lim
N→∞

∞∫
−∞

eiEρ
(

1− α

N
|ρ|
)N

dρ

=
1

2π

∞∫
−∞

eiEρ−α|ρ|dρ =
α

π(E2 + α2)
. (23)

Function (23) is a Lorentzian and, as it is easy to see, normalizable. Al-
though any distribution function of random fields (not only Lorentzian) be-
haves similarly at the impurity concentration variation, the Lorentzian has
its own peculiarities. Namely, the function (23) at any z does not admit
any moments. This shows its physical meaning, namely that this distribu-
tion (regardless of value of z) occurs in solids with strong disorder. Also,
the Lorentzian (23) is centered at E = 0, while Gaussian (19) at the point
E0L. This is because for Lorentzian case the disorder is so strong that it
suppresses long-range order parameter L.

The interaction (20) for classical spins generates the 3D Lorentz distri-
bution (see also [22]). Denoting for a moment E ≡ |E|, we obtain

f3D
L (E) =

1
(2π)3

∫
eiEρ−δρd3ρ =

δ

π2(E2 + δ2)2
,

4π

∞∫
0

E2f3D
L (E)dE = 1 , δ =

α

2
, (24)

where parameter α is defined by Eq. (22).
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For a six-orientable dipole, the interaction (20) generates the distribution
function, which is a product of partial functions in x, y and z directions

f(E) =
1
π3

δxδyδz
(δ2x + E2

x)(δ2y + E2
y)(δ2z + E2

z )
,

δx =
nd

ε0
2.462051 , δy =

nd

ε0
1.69643 , δz =

nd

ε0
1.493629 .(25)

The intermediate case between Gaussian function (19) and the above
Lorentzians is achieved at lowering of the dipoles or spin concentration along
with corresponding temperature variations. Generally, at concentration low-
ering and fixed temperature, the distribution function varies from Gaussian
to Lorentzian “through” Holtzmarkian with characteristic function logarithm
∼ ρ3/2. The easiest way to analyze this is to consider the case of Ising spins
1/2 (or two-orientable dipoles) (17). In Fig. 1 we plot schematically the
general behavior of distribution function of random fields on the example
of latter model. This behavior is qualitatively similar to the random field
model for arbitrary impurity spin or the number of orientations of impurity
dipole. Namely, the curves 1–3 of Fig. 1 correspond to long-range order exis-
tence with L 6= 0. Curve 1 corresponds to the largest impurity concentration
and largest L (which occurs at low enough temperatures), being symmetric
Gaussian. Curve 2 is asymmetric because at L > 0 all significant random
field configuration lay at positive fields. Curve 3 still corresponds to the long-

-1 -0.5 0 0.5 1 1.5

x=E/E
0

0

0.5

1

1.5

2

E
0

 f(
x
)

1
2

3

4

5

Fig. 1. Schematic plot of random fields distribution function at different degree of
disorder (figures near curves). Curve 1 corresponds to Gaussian function (L ∼ 1
and large z = nr3c ), curve 2 — intermediate L ∼ 0.5 and z, curve 3 — small L and
lower (then in curve 2) z, curves 4 and 5 comprise Lorentz curves, corresponding
to L = 0. Parameter z for curve 5 is lower then that for curve 4.
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range order (more precisely, to the mixed ferro-glass phase) with smaller L
and impurities concentrations. Curves 4 and 5 correspond to purely glassy
phases with absence of long-range order (L = 0) and wide distributions of
random fields. Curve 5 has the lowest impurity concentration z. At further
diminishing of z the width of distribution function goes to infinity while its
amplitude to zero.

4. Discussion and conclusions

Our random field treatment is valid (within approximations made, see
above) for arbitrary law of interaction between impurity dipoles or spins as
well as for arbitrary number of the dipole orientations or spin projection.
Both classical and quantum treatment of spins is possible. The distribution
functions of random field, which appear in our treatment of disordered solids,
are essentially non-Gaussian, the Lorentzian functions being their limiting
case for strongest possible disorder in a system. The fact that distribution
functions are non-Gaussian, plays an important role in the glassy (dipole
and spin glass) phases formation in the above disordered solids.

Our random field theory deliver pretty good description of experiments
about concentrational dependence of ferroelectric phase transition tempera-
ture in disordered dielectrics [23] as well as the temperature and concentra-
tional dependences of their equilibrium thermodynamic characteristics like
dielectric permittivity and/or specific heat [8,24]. The same had been done
for polymeric disordered ferroelectics [25], where the dynamical properties
had also been considered. The equilibrium thermodynamics of diluted mag-
netic semiconductors, predicting the ferromagnetic phase transition in them,
had been put forward in Refs. [14, 15]. For the system with localized spins
1/2 our method permits to construct the free energy function, which, in
turn, makes possible to consider many problems of these substances within
well developed phenomenological approach. Among them is the theory of
domain structure in disordered ferroelectrics [26] and magnetic semiconduc-
tors [16] as well as the dynamical properties within Landau–Khalatnikov
approach [22].

Let us finally say more about different physical systems, where heavy-
tailed non-Gaussian distribution functions appear. The first example, where
non-Gaussian distributions are employed, is the dynamics of amorphous ma-
terials like conventional glasses (see, e.g., [28]), the long-time relaxation in
spin [5, 28] and orientational glasses [4]. It had also been shown (see [27])
that random electric fields with the above Lorentzian distribution function,
while acting between dipole impurities in different kinds of disordered di-
electrics, generate long-time logarithmic relaxation in them. This relaxation
is a source of many experimentally observed anomalies. One more impor-
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tant application of non-Gaussian PDFs is the theory of inhomogeneously
broadened resonant lines [12]. Such broadening occurs in condensed matter
and/or biological species, in a number of spectroscopic manifestations like
the electron paramagnetic resonance (including the microwave spectroscopy
of so-called Josephson media in granular high — Tc superconductors [7]),
nuclear magnetic resonance, optical and neutron scattering methods. The
broadening arises due to random electric and magnetic fields, strains and
other perturbations from defects in a substance containing the centers whose
resonant transitions between energy levels are studied. The usual technique
of calculation of shapes of such resonant lines is the so-called statistical
method [12]. Our expressions (23), (24) and (25) have actually been ob-
tained in the framework of this method. This method determines the line
shape as an averaged (over spatial disorder and over defects intrinsic de-
grees of freedom) delta-function, stemming from the resonance of a single
center. The outcomes depend strongly on the distribution of the centers,
their concentration, and interactions between them. In the above statisti-
cal method, the Gaussian PDF is a reliable outcome in the case of large
center concentration and strong short-range interaction (it may be even a
contact interaction) between them, being itself a suitable limiting case. The
opposite limiting case refers to small center concentrations and long-range
(like dipole–dipole) interaction between them. It gives rise to the Lorentz
distribution of random fields, see above. The intermediate regimes generate
various non-Gaussian PDFs, with the Holtzmark function among them [12].
Long-time experimental research on resonant techniques confirms its effi-
ciency in determination of the resonant line shapes, which generally are by
no means Gaussian. The above discussion shows that many physical sys-
tems are characterized intrinsically by non-Gaussian (especially Lorentzian)
distributions. In many cases, they can be obtained (through intermediate
PDFs like the Holtzmark one) from the Gaussian PDF by varying the system
parameters, as for example the temperature and concentration of defects in
the case of above disordered dielectrics and magnets.
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