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We have proposed a new stochastic interpretation of the sudiffusion
described by the Sharma–Mittal entropy formalism which generates a non-
linear subdiffusion equation with natural order derivatives. We have shown
that the solution to the diffusion equation generated by Gauss entropy
(which is the particular case of Sharma–Mittal entropy) is the same as the
solution of the Fokker–Planck (FP) equation generated by the Langevin
generalised equation, where the ‘long memory effect’ is taken into account.
The external noise which pertubates the subdiffusion coefficient (occurring
in the solution of FP equation) according to the formula Dα → Dα/u,
where u is a random variable described by the Gamma distribution, pro-
vides us with solutions of equations obtained from Sharma–Mittal entropy.
We have also shown that the parameters q and r occurring in Sharma–
Mittal entropy are controlled by the parameters α and 〈u〉, respectively.
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1. Introduction

Subdiffusion is a process, where the random walk of a particle is strongly
hindered by the complex structure of the system. Over the last decades the
anomalous diffusion process has been observed in many physical systems
(see [1,2,3] and the references cited therein). One of the most used anoma-
lous diffusion models is the Continuous Time Random Walk model [2] which
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provides a linear anomalous diffusion equation with fractional derivatives.
Within this model subdiffusion occurs when the random walker waits an
anomalously long time to take its next step (the mean waiting time is infin-
ity and the length of jumps has finite moments).

The Continuous Time Random Walk formalism provides the relation〈
(x− x0)2

〉
= 2Dαt

α , (1)

where
〈
(x− x0)2

〉
denotes the mean square displacement of a random walker,

x0 is its initial location, Dα is the anomalous diffusion coefficient measured
in the units m2/sα and α is the anomalous diffusion parameter, 0 < α < 1
for subdiffusion, α > 1 for superdiffusion, and α = 1 for normal diffusion.
The relation (1) has often been used as a definition of subdiffusion. How-
ever, normal diffusion is described by the stochastic models in which the
process is assumed to be a Markovian one. As is shown in [4], there is a
non-Markovian process, where the relation (1) is fulfilled for α = 1. This
process combines subdiffusion and superdiffusion features, which causes the
effects of both processes to neutralize each other mutually and provides a
relation typical of normal diffusion. This important result shows that we
cannot find a stochastic interpretation on the basis of the relation (1). Fre-
quently, the opinion is expressed that the definition of anomalous diffusion
should be based upon the stochastic interpretation of this process.

Let us note that in the system where the relation (1) is valid, other func-
tions f(t) occur ensuring the relation f(t) ∼ tα which have the macroscopic
interpretation and are experimentally measured, such as, for example, the
time evolution of the near-membrane layer thickness [5], the time evolution
of the reaction front in the subdiffusive system with chemical reactions [6]
or the functions characterizing subdiffusive impedance [7]. Let us also
note that there are models which do not have the stochastic interpretation
(or such an interpretation has not been found yet) but in these models we
can also find the important characteristics of the system, which satisfy the
relation f(t) ∼ tα. The examples are the models based on nonextensive en-
tropy formalism. We do not exclude these models but we are searching for
their stochastic interpretation. The aim of our paper is to find the stochas-
tic interpretation of anomalous diffusion model based on the nonextensive
Sharma–Mittal entropy formalism.

The description of diffusion can be given by extensive, or nonextensive
entropy (see for example [8, 9] and references cited therein). As is shown
in [8], in the case of the description of diffusion as α 6= 1 one can only use
nonextensive entropies. Within the framework of these models, the differ-
ential non-linear diffusion equations with derivatives of the natural order
were obtained [8, 9, 10, 12, 11, 13]. The problem is that such models do not
have fully satisfactory stochastic interpretation. Until now, attempts have
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mainly been made using the modified Langevin equation for the descrip-
tion of a diffusion process which is simultaneously described by a non-linear
equations [8, 14, 15, 16, 17]. The result is that a random force occurring in
the Langevin equation depends on the solution of the non-linear equation.
This situation can be interpreted as an existence of feedback between the
system and random force which — at least in our opinion — is not easy to
interpret. We will show that the assumption of such feedback is not neces-
sary in order to obtain the stochastic interpretation of the diffusion model
based on nonextensive entropies.

In our paper, we will use a two-parameter nonextensive Sharma–Mittal
entropy for the description of the subdiffusion process. This entropy has
a general character; many other kinds of entropies (amongst others Tsallis
entropy and Gauss one) can be treated as particular cases of Sharma–Mittal
entropy [18]. First of all, we will show that the anomalous diffusion equation
generated by nonextensive Gauss entropy can be obtained from the Fokker–
Planck equation obtained from the Langevin equation describing the ‘long
memory’ process in which a particle movement is generated by the internal
noise. On this point, we will use the model presented in [19,20]. In the next
step, we will assume that the external noise can disturb the subdiffusion
parameter occurring in the solution of Fokker–Planck equation. We will
show that the distribution of this parameter connected with the Gamma
distribution changes the equation and its solution in such a way that we can
use nonextensive Sharma–Mittal entropy for the description of this process.
To pursue this goal we will generalise the ideas presented in [21] in the case
of Sharma–Mittal entropy and the case of subdiffusion. In the next part of
our work, we will only consider a subdiffusion process, i.e. we will assume
that 0 < α < 1.

2. Entropy approach

The most general form of entropy we are interested in is the two-param-
eters Sharma–Mittal entropy defined as [8]

SSM[P ] =
1−

(∫
P rdx

)(q−1)/(r−1)

q − 1
, (2)

where P is a probability density function of finding a random walker at
point x at time t. From Sharma–Mittal entropy one can obtain other
entropies, e.g. Tsallis entropy for q = r, Gauss entropy for r → 1− and
Boltzmann–Gibss–Shannon for r → 1− and q → 1−. For two statistically
independent systems A and B entropy satisfies the following equation

SSM(A+B) = SSM(A) + SSM(B) + (1− q)SSM(A)SSM(B) . (3)

Thus, for q 6= 1 one deals with nonextensive entropy.
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Entropy (2) provides the following diffusion equation [8, 17,22]

∂PSM(x, t)
∂t

= QSM

(∫
P rSMdx

)(q−r)/(r−1) ∂2P rSM(x, t)
∂x2

, (4)

where QSM is the fluctuation strength. The solution to Eq. (4) for the initial
condition

P (x, 0) = δ(x− x0) , (5)

reads [8, 22]

PSM(x, t;x0) = DSM(t)
[{

1− CSM(t)
2

(r − 1)(x− x0)2
}

+

] 1
r−1

, (6)

where {z}+ = max{z, 0},

DSM(t) =
[

1
2r(1 + q)QSMKr,q|zr|2t

] 1
1+q

, (7)

CSM(t) = 2(zrDSM(t))2 , (8)

zr =


√

π
r−1

Γ (r/(r−1))
Γ ((3r−1)/(2(r−1))) , r > 1 ,

√
π , r = 1 ,√
π

1−r
Γ ((1+r)/2(1−r))
Γ (1/(1−r)) , 1/3 < r < 1 ,

(9)

Kr,q =

{ (
3r−1
2r

) q−r
1−r , r 6= 1 ,

(
√
e)1−q , r = 1 .

(10)

The function (6) provides the relation〈
(x− x0)2

〉
=

2
3r − 1

1
CSM(t)

, (11)

where 〈
(x− x0)2

〉
=
∫

(x− x0)2 PSM(x, t;x0)dx .

Comparing (1) with (11) we get

q =
2
α
− 1 , (12)

QSM =
α[2Dα(3r − 1)]1/α

4rKr,2/α−1|zr|2(1−1/α)
. (13)
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Thus, the fundamental solution (6) fulfils the relation (1) only if its form is
as follows

PSM(x, t;x0) =
1√

2Dα(3r − 1)tα|zr|

[{
1− (r − 1)(x− x0)2

2Dα(3r − 1)tα

}
+

] 1
r−1

.

(14)
Let us note that the parameter q is controlled only by the subdiffusion pa-
rameter α (see Eq. (12)), whereas PSM is controlled by three parameters
α, Dα and r. Let us also note that the parameter r is not related to the
subdiffusion parameters α and Dα. This situation is different from the Con-
tinous Time Random Walk formalism, where the subdiffusion parameters α
and Dα fully determine the process. Let us note, for subdiffusion q > 1. In
the following considerations, we will assume that 1/3 < r < 1 which causes
functions (14) to have an infinite support.

For r → 1− the entropy takes the form of Gauss entropy

SG[P ] =
1− e(q−1)

R
P lnPdx

q − 1
, (15)

and Eq. (14) is transformed into the following function

PG(x, t;x0) =
1√

4πDαtα
e−

(x−x0)2

4Dαtα , (16)

which satisfy the following equation

∂PG(x, t)
∂t

= αDαt
α−1∂

2PG(x, t)
∂x2

. (17)

3. Stochastic approach

Subdiffusion is a process with ‘long memory’ which can be described by
the generalized Langevin equation [19,20]

M
dv(t)
dt

+M

t∫
0

γ(t− t′)v(t′) = R(t) , (18)

where M is a mass of a diffusing particle, v — its velocity, γ is the friction
coefficient, R — the random force with the following correlation function〈

R(t)R(t′)
〉

= F0t
−α . (19)
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It was assumed that diffusion is caused by the internal noise, thus the
fluctuation–dissipation theorem can be applied in the form [19,20]

γ(t) =
F0

MkBT
t−α , (20)

kB is the Boltzmann’s constant. As is shown in [19], the equations (18), (19)
and (20) provide the Fokker–Planck equation for a system without external
forces

∂P (x, t)
∂t

=
kBT

M
K(t)[1−H(t)]

∂2P (x, t)
∂x2

, (21)

where the functions K and H are defined by their Laplace transform
L[f(t)] = f̂(p) =

∫∞
0 f(t) exp(−pt)dt

K̂(p) =
1

p+ γ̂(p)
, Ĥ(p) =

1
p2 + pγ̂(p)

. (22)

Using the formula L[tν ] = Γ (1 + ν)/p1+ν , within the limit of small p,
which corresponds to the limit of long time (in practice the condition t �
[MkBT/(F0Γ (1−α)Γ (1+α))]1/(1−α) is enough), after calculations we obtain

∂P (x, t)
∂t

=
(kBT )2

F0Γ (1− α)Γ (α)
tα−1∂

2P (x, t)
∂x2

. (23)

Equation (23) has the form of Eq. (17). Comparing these equations we
find the relation between correlation function coefficient F0 and subdiffusion
coefficient

F0 =
(kBT )2

DαΓ (1− α)Γ (1 + α)
. (24)

Thus, the Langevin equation (18) provides the subdiffusion equation, the
same as the one obtained from nonextensive Gauss entropy formalism if
the random force fulfils relation (19), where F0 is given by (24). Then,
the solution of Eq. (23) with the initial condition (5) is identical with the
function (16).

Now, we will show that the external noise can disturb the system de-
scribed by Eq. (23) in such a way that this system will be described by the
solution of the equation obtained form Sharma–Mittal entropy (14). To find
the relation between (14) and the solution of Eq. (23) we use the integral
formula

∞∫
0

ζa−1e−pζdζ = p−aΓ (a) , (25)
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a > 0. Combining Eqs. (14) and (25), after calculations we get

∞∫
0

[
1

Γ (η)
(η − 1)ηuη−1e−(η−1)u

]
1

2
√
πtα (Dα/u)

e
− (x−x0)2

4tα(Dα/u)du

= PSM(x, t;x0) , (26)

where η = β − 1
2 , β = 1

1−r . The function in the square brackets is identified
as a Gamma distribution function

f(u; k,Θ) =
1

Γ (k)
Θkuk−1e−Θu , (27)

with
k = β − 1

2
=

1 + r

2(1− r)
, Θ = β − 3

2
=

3r − 1
2(1− r)

. (28)

Equation (26) can be rewritten in the following form

∞∫
0

f(u;β − 1/2, β − 3/2)
1

2
√
πtα(Dα/u)

e
− (x−x0)2

4tα(D/u)du = PSM(x, t;x0) . (29)

Equation (29) can be interpreted as follows. The subdiffusion coefficient
is subjected to the external noise which changes the effective subdiffusion
coefficient from Dα to Dα/u, where u is the random variable of the Gamma
probability distribution (27) with the parameters given by (28). Since it is
assumed that 1/3 < r < 1, we have β > 3/2, k > 1 and Θ > 0 and we
also note that f(u, k,Θ)→ 0 when u→ 0. Thus, large perturbations of the
subdiffusion coefficient Dα have a small probability of occurring.

The mean value and variation of (27) reads

〈u〉 =
k

Θ
=

1 + r

3r − 1
,

〈
(∆u)2

〉
=

k

Θ2
=

1 + r

(3r − 1)2
. (30)

These parameters fulfil the relation k = Θ + 1, so the Gamma distribution
is here controlled effectively by one of these parameters k or Θ. It is easy to
see that

k =
〈u〉
〈u〉 − 1

, Θ =
1

〈u〉 − 1
, (31)

thus, the Gamma distribution is controlled here by its mean value alone.
From Eqs. (27) and (28) we find

r =
1 + 〈u〉

3 〈u〉 − 1
. (32)
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Therefore, parameter r, unsteady up now, is controlled by the mean value
of Gamma distribution describing the external noise. Then, Eq. (14) can be
rewritten utilizing the subdiffusion parameters α, Dα and the parameters
describing the distribution of external noise, e.g. in the form

PSM(x, t;x0) =
1√

2DαΘπtα
Γ (k + 1/2)

Γ (k)

[
1 +

(x− x0)2

2ΘDαtα

]k+1/2

. (33)

where Θ and k are controlled by the mean value 〈u〉.

4. Final remarks

In our paper, we proposed a new stochastic interpretation of the sub-
diffusion described by the Sharma–Mittal entropy formalism. The other
entropies (e.g. Tsallis and Gauss entropies) frequently used in modelling
anomalous diffusion can be treated as particular cases of the Sharma–Mittal
one. Sharma–Mittal entropy generates a non-linear diffusion equation with
the natural order derivatives. We have shown that the solution to the dif-
fusion equation generated by Gauss entropy is the same as the solution of
the Langevin generalised equation, where the ‘long memory effect’ is taken
into account (Eqs. (18) and (19)). The external noise which pertubates the
subdiffusion coefficient according to the formula Dα → Dα/u, where u is
a random variable described by the Gamma distribution, provides us with
solutions of equations obtained from Sharma–Mittal entropy (33). We have
also shown that the parameters q and r occurring in Sharma–Mittal entropy
are controlled by the parameters α and 〈u〉, respectively.

Our consideration has concerned the case of 1/3 < r < 1. Let us note
that this case does not contain Tsallis entropy, since Tsallis entropy describes
subdiffusion for q = r > 1.

This paper was partially supported by the Polish National Science Centre
under grant No. N N202 19 56 40 (1956/B/H03/2011/40).
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