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CYCLIC SOLUTIONS IN CHAOS
AND THE SHARKOWSKII THEOREM∗

M. Howard Lee

Department of Physics and Astronomy, University of Georgia
Athens, GA 30602, USA†

and
Korea Institute for Advanced Study, Seoul 130-012, Korea

MHLee@uga.edu

(Received April 2, 2012)

The fixed points of the logistic map at full chaos are the roots of a
special class of polynomials. These polynomials are solvable by a method
of multiple angles. The solutions are expressible in cyclic form. By using
the theorem due to Sharkovskii we show that the fixed point spectrum has a
finite measure. We argue that chaos in 1d, defined through a finite spectral
measure, is superior to any phenomenological definitions of chaos such as
the Lyapunov exponent.
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1. Introduction

The Lyapunov exponent lambda is what one uses to determine whether
the trajectories in iterative space are periodic or chaotic. It is defined as:
λ = lim(n→∞) log |dfn(x∗)/dx|, where f is a map, x a real number and x∗

a fixed point of fn(x), where fn = f(fn−1), n = 1, 2, . . . with f1 ≡ f . If
λ ≤ 0, the trajectories are periodic. If λ > 0, they are chaotic. This is
how one usually knows when there is chaos in 1d maps [1,2]. In the logistic
map (the harmonic oscillator of chaos), well past the stable bifurcation there
exists a stable 3-cycle, the onset of which is analytically proved in [3]. The
parametric value and the fixed points for the super stable 3-cycle are also
analytically proved [4]. The Lyapunov exponent in the 3-cycle window would
measure nonpositive, that is, the trajectories are periodic, not chaotic.
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The above conventional observation flies in the face of a deep math the-
orem due to Sharkovskii [5] that the existence of a 3-cycle means chaos.
This theorem applies to 1d chaotic maps like the logistic map. This theorem
was published in 1964. But it seems to have remained largely unknown for
many years. More than ten years later Li and Yorke published a theorem
entitled “Period-3 implies chaos” [6]. Period-3 is another name for 3-cycle.
Apparently unaware of the earlier theorem due to Sharkovskii, Dyson wrote
only recently that the theorem by Li and Yorke is the only rigorous theorem
on chaos and “one of the important gems” in mathematics [7]. It is now
known that the theorem by Li and Yorke is a corollary of Sharkovskii’s the-
orem [8]. In any event it is clear that there is chaos in the 3-cycle window.
The Lyapunov exponent simply fails to detect chaos therein. The Lyapunov
exponent is a phenomenologically defined quantity, practical and sensible,
but not rooted in anything more fundamental. Thus this difficulty over the
3-cycle window should come as no surprise.

Given this situation, it seems desirable to find a definition of chaos from
“first principles”. One might say that chaos is a manifestation of some basic
property or properties of a fundamental equation or theorem of chaos. If
unearthed, they could serve as the definition of chaos. Such a definition
could not go awry as the Lyapunov exponent. It could even provide deeper
insights into chaos.

Our idea is that by considering Sharkovskii’s as the fundamental theorem
of chaos and by applying it on the logistic map, we might arrive at that
definition by uncovering the basic properties. The route to finding them has
to begin at 3-cycle. Why a 3-cycle gate? Since 3-cycle implies chaos, a path
that connects to other cycles must begin at 3-cycle gate.

For the logistic map the 3-cycle window begins from a = b3 = 1 +
√

8 [3]
to a = 4. A conventional definition of the 3-cycle window would range only,
where the cycle is stable. But neither Sharkovskii’s theorem nor Li–Yorke’s
theorem makes reference to stability, so that our 3-cycle window is wider
beginning from a = b3 and extending to a = 4. When a = 4, it is termed
fully developed chaos or simply full chaos. In this window we want to find
the fixed points of a 3-cycle for some values of a in the interval b3 ≤ a ≤ 4.
At that value of a, we want to find the fixed points of a 5-cycle and so on.
The possible special values of a are b3 [3], b̄3 [4], and a = 4 [4], for which
their fixed points are already known analytically. Obtaining the fixed points
of a 5-cycle at the first two special values b3 and b̄3, would prove too difficult.
We shall thus choose a = 4 (full chaos) [9]. We shall thus choose a 3-cycle
gate at full chaos in an attempt at reaching other cycles. At full chaos no
cycles are stable.
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2. 3-cycles in logistic map

Since this map is already well known [1,2], we will describe only its basic
properties that are needed. The logistic map is defined for two real variables
x and x′, both in the interval (0,1), by x′ = f(x), where f(x) = ax(1− x),
for the control parameter 0 < a ≤ 4. An n-cycle is defined by

fn(x)− x = 0 , n = 1, 2, . . . , (1)

where fn(x) = f(fn−1(x)) with f1 ≡ f . Thus the roots of fn(x)−x are the
fixed points of fn(x). If n = 3, the fixed points of f3(x) include the fixed
points of f(x). For the unique fixed points of f3(x) we must exclude the fixed
points of f(x). To obtain the unique ones only, we solve the characteristic
equation Q3(x) = 0, where

Q3 =
(
f3 − x

)
/((f − x) . (2)

It is straightforward to show that if a = 4

Q3 = 21− 105t+ 189t2 − 157t3 + 65t4 − 13t5 + t6 , (3)

where t = 4x. Thus Q3 = 6(P ), where N(p) means a polynomial of de-
gree N .

If (3) were a general sextic equation, no algebraic solutions, only numeri-
cal solutions, would be possible. Studying special classes of polynomials that
occur in physical problems has attracted much interest. See e.g. [10,11,12].

According to Abel’s theorem, the highest general polynomial solvable by
radicals is 4. But Q3 may not be a general sextic equation since it arises
from a 3-cycle. Since the 3-cycle has the structure of the regular triangle,
Q3 must have the symmetry of the triangle. It means that Q3 is composed
of the cubic equation and is solvable algebraically. Indeed, we find that it is
a product of two cubic equations

Q3 =
(
7− 14t+ 7t2 − t3

)
×
(
3− 9t+ 6t2 − t3

)
. (4)

There are two independent 3-cycles, not one. There must be two sets of
3 unrelated fixed points. We shall term them isocycles. Isocycles are cycles
of the same order but with different fixed points. Neither Sharkovskii’s
theorem nor Li–Yorke’s theorem says anything about the isocycles of order
3, just the cycle of order 3. At this stage we do not know the significance of
isocycles with respect to these theorems. For the general interest in 3-cycles,
also see [13].

The solutions for the two cubic equations may be given as (recalling that
t = 4x)

x = sin2 πy/2 , (5)
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where for the first cubic equation

y/2 = 1/7 , 2/7 and 3/7 , (6)

while for the second cubic equation

y/2 = 1/9 , 2/9 and 4/9 . (7)

Observe that in (7), 3/9 is missing. This value is the solution for the 1-cycle,
removed by the construction of the characteristic equation Q3. There are
thus altogether 6 real roots to Q3. A solution is said to be cyclic if it has
the form of (5) and y/2 or y its cyclic values.

By Sharkovskii’s theorem, we now have established that when a = 4,
there are all other cycles of order n = 4, 5, 6, 7, . . . since a pair of 3-cycles
have been shown to exist. The theorem, however, does not say that the
other cycles are cyclic or have isocycles. Let us call cycles similar if they
have these two properties.

To look for what underlies chaos, we have begun on the route of full
chaos. Going on this route past the gate of the 3-cycle, we now want to
know whether other cycles are similar. How far on this route or how many
posts of higher cycles do we need to go? If it were necessary to go past an
infinite number of them, it would not be possible. Sharkovskii’s ordering
might allow us a short cut.

3. Sharkovskii ordering

We digress briefly here to introduce what is known as Sharkovskii’s order-
ing of the natural numbers, which forms the heart of Sharkovskii’s theorem.
According to Sharkovskii, the existence of a 3-cycle implies the existence of
a 5-cycle and so in a remarkable sequence shown below:

3→ 5→ 7→ 9→ . . .→ (all odd numbers)→ [b subordering]
2× 3→ 2× 5→ 2× 7→ . . .→ 2 × (all odd numbers)→ [c subordering]
4× 3→ 4× 5→ 4× 7→ . . .→ 22 × (all odd numbers)→ [d subordering]
8× 3→ 8× 5→ 8× 7→ . . .→ 23 × (all odd numbers)→ [e subordering]
. . .→ . . .→
2∞ → . . .→ 23 → 22 → 2→ 1 . [a∗ subordering]

Given the above ordering, we first want to see whether 5-cycles are sim-
ilar. We shall do this by solving the 5-cycle problem. If 6-cycles are found
similar, it would imply that all cycles in b-subordering are similar. If 4-cycles
are found similar, it would imply that all cycles in subordering from c to a∗
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excluding cycles of order 2 and 1 are similar. The cycles of order 1 and 2
are cyclic but they do not have isocycles. Sharkovskii’s ordering allows us
to consider cycles of order 5, 6 and 4 only instead of infinitely many. This
consideration makes it possible to continue our analysis. But what must be
done is still by no means simple. To solve the cycles of order 5, 6 and 4 one
must tackle polynomials of high degrees.

4. Cycle solutions

4.1. f5(x) = x

The unique fixed points of f5(x) are the roots of Q5 = (f5−x)/(f−x) =
30(p). Again, replacing x by t = 4x, we obtain the characteristic equation

Q5 =
(
11− 55t+ 77t2 − 44t3 + 11t4 − t5

)
×A×B

≡ q5 ×A×B , (8)

where A = 15(p) and B = 10(p), too long to be displayed here. We consider
q5 a quintic equation on the r.h.s. of (8). If q5 were a general quintic
equation, we could not solve it. As in the 3-cycle problem, the 5-cycle must
reflect the symmetry of the regular pentagon. We consider the multiple
angles of sin 11α, expressing in terms of 2 sinα

sin 11α/ sinα = 11− 55(2 sinα)2 + 77(2 sinα)4

−44(2 sinα)6 + 11(2 sinα)8 − (2 sinα)10 . (9)

If one compares the coefficients of q5 with the coefficients of those in the
r.h.s., they are term by term identically the same. Therefore, q5 is congruent
to sin 11α/ sinα if t is identified with (2 sinα)2 or x by (sinα)2. Thus the
roots of q5 are the zeros of sin 11α/ sinα. The 5 roots of q5 may be expressed
by (5) with the cyclic values y/2

1/11 2/11 4/11 3/11 5/11 . (10)

This method of solution will be called the method of multiple angles.
Observe that the above cyclic values are all rational numbers as those of
the 3-cycles, see (6). There are no common cyclic values in the three sets
(6), (7) and (10). They are unique as they are solutions of the three unique
polynomials.

The above set (10) satisfies the 5-cycle definition f(xi) = xi+1, i =
1, 2, 3, 4, 5 with x6 ≡ x1 in sequence as given. Evidently q5 is cyclic. But
are there isocycles? If so, they would have to be contained in A = 15(p)
and B = 10(p). Both A and B are not further reducible to products of



1058 M.H. Lee

polynomials of lower order. But they can be solved by the method of multiple
angles: If x = sin2 α

A = sin 31α/ sinα . (11)

Thus, the 15 roots of A have the following cyclic values y/2

1/31 2/31 4/31 8/31 15/31 (12a)
3/31 6/31 12/31 7/31 14/31 (12b)
5/31 10/31 11/31 9/31 13/31 . (12c)

There are 15 distinct roots for A = 15(p). But they do not represent one
15-cycle or the cycle of order 15. Instead there are 3 isocycles of order 5.
The three sets or groups satisfy the 5-cycle definition separately.

By the method of multiple angles,

B = sinα sin 33α/ sin 3α sin 11α (13)

if x = sin2 α. Thus, the 10 roots of B have the following cyclic values y/2

1/33 2/33 4/33 8/33 16/33 (14a)
3/33 10/33 13/33 7/33 14/33 . (14b)

The 10 distinct roots do not represent one cycle of order 10. Instead there
are two cycles of order 5. Both sets satisfy the 5-cycle definition separately
reflecting the Sharkovskii groups. The 5-cycles are cyclic and there are 6
isocycles of order 5. That the 5-cycles are similar must also be implied
by the 3-cycles. The cyclic values for the 3- and 5-cycles are all rational
numbers and they are all unique.

4.2. f6(x) = x

The unique fixed points of f6(x) are the roots of the characteristic equa-
tion Q6 = (f6 − x)(f − x)/(f2 − x)(f3 − x) = 54(p). The 6-cycle has the
symmetry of the regular hexagon. Thus, as with Q3 which consists of a
pair of the cubic equation, Q6 should contain a pair of the hexatic equation.
Indeed we obtain, using t = 4x as before,

Q6 =
(
13− 91t+ 182t2 − 156t3 + 65t4 − 13t5 + t6

)
×
(
1− 16t+ 60t2 − 78t3 + 44t4 − 11t5 + t6

)
× C ×D

≡ q6 × q′6 × C ×D , (15)
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where C = 18(p) and D = 24(p), not displayed. By the method of multiple
angles and if x = sin2 α

q6 = sin 13α/ sinα , (16)
q′6 = sinα sin 21α/ sin 3α sin 7α , (17)
C = sinα sin 63α/ sin 3α sin 21α , (18)
D = sinα sin 65α/ sin 5α sin 13α . (19)

Thus the 54 roots of Q6 have the following cyclic values y/2

1/13 2/13 4/13 5/13 3/13 6/13 (20a)
1/21 2/21 4/21 8/21 5/21 10/21 (20b)
1/63 2/63 4/63 8/63 16/63 31/63 (20c)
5/63 10/63 20/63 23/63 17/63 29/63 (20d)
11/63 22/63 19/63 25/63 13/63 26/63 (20e)

1/65 2/65 4/65 8/65 16/65 32/65 (20f)
3/65 6/65 12/65 24/65 17/65 31/65 (20g)
7/65 14/65 28/65 9/65 18/65 29/65 (20h)
11/65 22/65 21/65 23/65 19/65 27/65 . (20i)

The two polynomials C = 18(p) and D = 24(p) yield 3 and 4 isocycles of
order 6. There are altogether 9 isocycles of order 6. The 6-cycles are similar.
The cyclic values are all rational numbers and are unique.

4.3. f4(x) = x

The unique fixed points of f4(x) are the roots of Q4 = (f4−x)/(f2−x) =
12(p). The 4-cycle has the symmetry of the square, implying that Q4 must
contain the quartic equation. We obtain using t = 4x again

Q4 =
(
1− 8t+ 14t2 − 7t3 + t4

)
×
(
17− 204t+ 714t2 − 1122t3 + 935t4 − 442t5 + 119t6 − 17t7 + t8

)
≡ q4 × q8 . (21)

By the method of multiple angles and if x = sin2 α

q4 = sinα sin 15α/ sin 3α sin 5α , (22)
q8 = sin 17α/ sinα . (23)
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The 12 roots of Q4 have the following cyclic values y/2

1/15 2/15 4/15 7/15 (24a)
1/17 2/17 4/17 8/17 (24b)
3/17 6/17 5/17 7/17 . (24c)

All the cyclic values are rational numbers and they are unique.

4.4. 2-cycle and 1-cycle

For completeness we include here the two trivial cases. The fixed points
of f2(x) are the roots of the characteristic equation Q2 = (f2 − x)/(f − x).
It follows that Q2 = 2(p):

Q2 = 5− 20x+ 16x2 = sin 5α/ sinα . (25)

Thus, the two roots of Q2 have the following cyclic values y/2

1/5 2/5 . (26)

Finally, the fixed point of f(x) is given by Q1 = 3− 4x = sin 3α/ sinα. The
one root has the cyclic value

y/2 = 1/3 . (27)

There are no isocycles in cycles of order 2 and 1. The cyclic values are,
however, rational numbers, distinct from all others previously obtained.

5. Cycles and isocycles

All the cyclic values obtained for cycles and isocycles of the order of
n = 3, 5, 6, 4, 2 and 1 leads us to the following two conditions:

a. All cyclic values are rational numbers in 0 < y < 1.

b. All cyclic values are unique.

We now assert on the strength of Sharkovskii’s theorem that all other
cycles must satisfy the above two conditions. Since there are infinitely many
cycles, the cyclic values assume all possible rational points in the interval
(0,1) with no gaps. Thus,

x = sin2 πy/2 , y = (0, 1) . (28)

To see the significance, we consider a couple of rational values for y: If
y = 1/3, x = 3/4, another rational number in the interval (0,1). If y = 1/5,
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x = (5 −
√

5)/8, now an irrational number but in the same interval (0,1).
Thus the rational points of set y in the interval (0,1) generate rational and
irrational points of set x in the interval (0,1). If the cardinality of set y were
finite, the cardinality of set x would be the same, one to one. In (26), the
cardinality of set y is not finite, but transfinite. Thus we can conclude that

x = x(R) + x(I) , (29)

where R and I mean infinite sets of rational points and irrational points in
the interval (0,1), respectively. If µ(x) means the Lebesgue measure of x in
the interval (0,1),

µ(x) = µ(x(I) = 1 . (30)

Above we have used the additivity property of measure and also µ(x(R)=0.
Thus the cyclic solution (28) implies that the fixed point spectrum has mea-
sure 1. The distribution of the irrational points in the interval (0,1) for this
spectrum may be calculated as follows: ρ(x) = ∆µ(x(I))/∆x. Thus,

1 =

1∫
0

ρ(x)dx . (31)

In a slight digression we show here how ρ(x) may be simply deduced by
noting that (31) corresponds to a calculation of the number of particles
in statistical mechanics. If N is the total number of ideal spinless Fermi
particles in a 1d box of length L, where N and L are both very large, then

N =
∑

k

〈nk〉 , (32)

where 〈nk〉 is the Fermi function and k the wave vector. Since L is very
large, the sum may be converted to an integral. At the ground state 〈nk〉 is
a step function: 1 if |k| ≤ kF and 0 if otherwise, where kF is the Fermi wave
vector. Thus

1 =
L

πN

kF∫
0

dk . (33)

If ε = ε(k), known as the dispersion relation of k,

1 =

εF∫
0

g(ε)dε , (34)
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where εF = ε(kF) the Fermi energy and g(ε) = L/πN dk/dε the density
of states. If ε is scaled by εF, so that the upper limit becomes 1, (34) is
identical to (31) in structure.

If the cyclic solution (28) is viewed as the dispersion relation of y, we see
the correspondence: ε↔ x and k ↔ y, thus g(ε/εF)↔ ρ(x). It follows that
ρ(x) = Mdy(x)/dx, where M is the normalization constant. We obtain

ρ(x) =
1

π
√
x(1− x)

, 0 < x < 1 . (35)

Observe that the distribution of the irrational points is greater towards the
edges than towards the center. Everywhere ρ(x) > 0 implying that there
are no gaps [14,15].

6. Concluding remarks

The logistic map is a rich source of polynomials of a special interest. At
full chaos, different cycles generate special classes of polynomials which we
find solvable by the method of multiple angles. In other domains of a, where
a 3-cycle exists, i.e. b3 < a < 4, where b3 = 1 +

√
8 [3], solutions for the

polynomials are cyclic modified. As a result, it is more difficult to apply
Sharkovskii’s theorem than at full chaos. If one could carry out an analysis
much like that at full chaos, there should also be found fixed-point spectra
of finite measure. It should result in the same kind of definition for chaos
that we have been able to obtain at full chaos. Our definition of chaos by
finite spectral measure may be said to be of first principles since it is derived
by application of a fundamental theorem of chaos on a model of chaos which
is the logistic map.

The author is indebted to Dr Y.T. Millev of the American Physical Soci-
ety for directing me to Ref. [7] and for several discussions on the Sharkovskii
theorem. A portion of this work was completed at the Korea Institute for
Advanced Study. I thank Profs. D. Kim and H. Park of the Institute for
their warm hospitality and support during my visits.
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