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In this paper we consider a generalization of one of the earliest models
of an asset price, namely the Black–Scholes model, which captures the sub-
diffusive nature of an asset price dynamics. We introduce the geometric
Brownian motion time-changed by infinitely divisible inverse subordina-
tors, to reflect underlying anomalous diffusion mechanism. In the proposed
model the waiting times (periods when the asset price stays motionless) are
modeled by general class of infinitely divisible distributions. We find the
corresponding Fractional Fokker–Planck equation governing the probabil-
ity density function of the introduced process. We prove that considered
model is arbitrage-free, construct corresponding martingale measure and
show that the model is incomplete. We also find formulas for values of Eu-
ropean call and put option prices in subdiffusive Black–Scholes model and
show how one can approximate them based on Monte Carlo methods. We
present some Monte Carlo simulations for the particular case of tempered
α-stable distribution of waiting times. We compare obtained results with
the classical and subdiffusive α-stable Black–Scholes prices.
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1. Introduction

The economic and finance theories as we know them today began at the
end of the nineteenth century by works of Walras and Pareto and their math-
ematical description of equilibrium theory (see [1] and references therein).
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The second ground-breaking contribution came soon after. In 1900 Bache-
lier [2] in his “Théorie de la Spéculation” developed mathematical tools to
describe uncertain stock price process based on theory of Brownian motion.
He initiated at that time the study of, what we call them today, diffusion
processes. Despite the novelty and elegance, the theory of Bachelier was
forgotten for over fifty years. It was rediscovered by Samuelson [3] and used
to construct more adequate model for description of stock price movement
based on the geometric Brownian motion (GBM). This process is lacking the
main drawback of Bachelier model, namely it cannot take negative values,
while the Bachelier model based on ordinary Brownian motion can. The
extensive research on GBM brought in 1973 consistent formulas for the fair
prices of European options [4, 5]. Fischer Black, Myron Scholes and Robert
Merton determined them based on continuous hedging. Their ideas turned
out to be so innovative that Merton and Scholes were awarded the Nobel
Prize for Economics in 1997.

Nowadays, after the recent findings, we observe that many of economical
processes are far away from the classical models. The most popular Black–
Scholes (BS) model of stock prices is, as empirical studies show, incapable
to capture many of characteristic properties of present markets. It is worth
to mention here such properties as: long-range correlations, heavy-tailed
and skewed marginal distributions, lack of scale invariance, periods of con-
stant values, etc. In order to overcome these difficulties, dozens of models
based on ideas and methods known from field of statistical physics have been
proposed [6].

Analysis of various real-life data shows that especially in emerging mar-
kets [7], where the number of participants and transactions is rather low,
we encounter characteristic periods of time in which economic processes
stay motionless. Searching for similar examples, where observed trajecto-
ries posses constant periods, we are guided to the physical experiments in
systems exhibiting subdiffusion. In such systems motion of small particles
is interrupted by the trapping events. During that random period of time
investigated particle is immobilized and stays motionless. Subdiffusion is
nowadays a very well established phenomenon with many real-life examples:
charge carrier transport in amorphous semiconductors, diffusion in percola-
tive and porous systems, transport on fractal geometries, to name only few
(see [8] and references therein).

The mathematical description of subdiffusion is the celebrated Fractional
Fokker–Planck equation (FFPE) derived from continuous-time random walk
scheme with heavy-tailed waiting times [8]. In last years this equation has
become a standard mathematical tool in analysis of various complex systems
[9, 10,11, 12]. Equivalent description of subdiffusion is in terms of Langevin
equation, where the standard diffusion process is time-changed by the so-
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called inverse subordinator responsible for trapping events [13, 14, 15, 16].
Following such approach, in this paper we introduce a subdiffusive GBM
as a model of stock prices. This process is defined as standard GBM time-
changed by infinitely divisible (ID) inverse subordinator.

We stress out that presented here methodology can be applied to different
diffusion processes. The case of GBM with α-stable waiting times can be
found in [17,18]. In [19] one can find general discussion of the ID arithmetic
Brownian motion as a model of stock prices. In this paper we analyze
subdiffusive GBM in full generality.

This article is structured as follows. In Sec. 2 we give precise definition
of subdiffusive geometric Brownian Motion and derive the corresponding
Fractional Fokker–Planck equation governing the dynamics of probability
density function (PDF). In Sec. 3 we will prove that the model is arbitrage
free and incomplete. We derive also formulas for fair prices of European
options in our model. In Sec. 4 we will present a particular example of
waiting times, namely tempered α-stable ones. We discuss the methods of
simulation of the trajectories and present some numerical results. Section 5
concludes the paper.

2. Subdiffusive geometric Brownian motion

The price of an asset ZBS(t) in the classical BS model is represented by
GBM

ZBS(t) = Z0 exp{σB(t) + µt} , Z0 > 0 . (1)

Here B(t) is the standard Brownian motion, σ > 0 is the volatility and
µ ∈ R is the drift parameter. To remove the influence of interest rate r > 0
to the price of an asset, we will consider discounted price process. In this
discounted world the price of an asset follows

Z(t) = e−rtZBS(t) = Z0 exp{σB(t) + µt− rt} , Z0 > 0 . (2)

Applying Itô calculus, Eq. (2) can be equivalently represented in the form
of stochastic differential equation (SDE)

dZt = Zt
[
σdB(t) +

(
µ− r + 1

2σ
2
)
dt
]
. (3)

Such process was used by Black, Scholes and Merton to derive the values of
European call and put option prices.

A European call option is a contract between buyer and seller. It gives
the buyer right, but not the obligation, to buy from a seller a predetermined
amount of an underlying asset Z(t) at a predetermined strike price K within
a particular maturity time T . Such right costs the buyer a fee (price). The
value of a call option at time T is equal to max{Z(T )−K, 0}. A put option
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is an opposite of a call option and it gives the holder right to sell shares.
The value of a put option at T equals max{K − Z(T ), 0}. By the so-called
put–call parity [20] the difference of the value of the call option C and the
price of a put option P , both with the identical strike price and a maturity
time, is given by

C − P = Z(0)−Ke−rT . (4)

The fair price CBS(Z0,K, T, σ) of the European call option in the BS model
is given by [20]

CBS(Z0,K, T, σ) = Z0N (d+)− e−rTKN (d−) (5)

with

d± =
log Z0

K ±
(
r − 1

2σ
2
)
T

σ
√
T

.

Here N is the cumulative distribution function of standard normal distri-
bution. From put–call parity we can easily determine the put option price

PBS(Z0,K, T, σ) = CBS(Z0,K, T, σ) + e−rTK − Z0 . (6)

BS model possesses many advantages, for example closed analytical form for
prices of European options, but has also some drawbacks. Growing num-
ber of emerging markets, provides us with empirical data of processes with
periods of constant prices [7]. These constant periods are similar in nature
to the observed trapping events of subdiffusive particles. Following physical
description of subdiffusion [8,16,18,19] we propose the generalization of BS
model. We introduce the following process

ZΨ (t) = Z(SΨ (t)) , (7)

t ∈ [0, T ] as the model of asset prices. We call ZΨ (t) the subdiffusive GBM.
It is the standard GBM in operational time SΨ (t). SΨ (t) is the so-called
inverse ID [16] subordinator which is independent of the Brownian motion
B(t). We define SΨ (t) as

SΨ (t) = inf{τ : TΨ (τ) > t} , (8)

where TΨ (t) is the strictly increasing Lévy process [21] with the Laplace
transform

〈exp(−uTΨ (t))〉 = exp(−tΨ(u)) . (9)

The so-called Laplace exponent Ψ is given by Ψ(u) =
∫∞

0 (1 − e−ux)ν(dx),
where ν is the Lévy measure satisfying

∫∞
0 (1 ∧ x)ν(dx) < ∞. We assume

that ν(0,∞) =∞, which assures that the trajectories of inverse subordinator
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SΨ (t) are continuous. We observe that for every jump of TΨ (t) there is a
corresponding flat period of SΨ (t), which is distributed according to ID law
(see Fig. 1). Flat periods represent waiting times in which the test particle
gets immobilized in the trap. With this property the overall motion is slowed
down and ZΨ (t) captures the empirical property of constant price periods.
The typical trajectory of the process ZΨ (t) with tempered α-stable waiting
times is shown in Fig. 1. One can see that the main difference between
classical and subdiffusive models are the constant periods in trajectory of
ZΨ (t).
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Fig. 1. Sample realizations of: subdiffusive GBM ZΨ (t) with tempered stable wait-
ing times (panel (a)), classical GBM Z(t) (panel (b)), inverse ID subordinator SΨ (t)
(panel (c)). The constant intervals in the trajectory of the process ZΨ (t) represent
the periods of stagnation in subdiffusive scenario. Parameters are, r = 0.4, σ = 0.6,
Z0 = 1, λ = 0.01, α = 0.8.

The main advantage of the proposed model is that the distribution of
waiting times can be chosen from rich family of ID distributions. This is an
essential extension of the model analyzed in [17,18]. Important examples of
ID laws are: stable, tempered stable, Pareto, gamma, exponential, Mittag–
Leffler and Linnik. Choosing different exponent Ψ(u) one obtains different
ID distributions of waiting times.

We can describe the probability density function (PDF) of the time-
changed process ZΨ (t) by the fractional Fokker–Planck equation. Equations
of this type are widely used in statistical physics in the context of subdiffusive
dynamics [8, 16]. The equation governing the PDF of the process ZΨ (t) is
derived in the next theorem.
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Theorem 2.1. Let ZΨ (t) be the subdiffusive GBM, defined in (7). Then the
PDF of ZΨ (t) is the solution of the following fractional Fokker–Planck-type
equation

∂w(x, t)
∂t

= Φ(t)
[
−
(
µ− r +

σ2

2

)
∂

∂x
xw(x, t) +

σ2

2
∂2

∂x2
x2w(x, t)

]
, (10)

w(x, 0) = δZ0(x). Here Φt stands for the integro-differential operator defined
as

Φtf(t) =
d

dt

t∫
0

M(t− y)f(y)dy , (11)

with the memory kernel M(t) defined via its Laplace transform

M̂(u) =

∞∫
0

e−utM(t)dt =
1

Ψ(u)
.

For the derivation of formula (10), see Appendix A. One can approximate
solutions of (10) by the finite element method [22]. Alternatively, one can use
Monte Carlo techniques to estimate the PDF of ZΨ (t). For some methods
of simulation of ZΨ (t), see Sec. 4 and [16].

3. Lack of arbitrage, incompleteness and option pricing formula

Let us now consider a market model, whose evolution up to time T
is contained in the probability space (Ω,F ,P). Ω is the sample probability
space, F is the set containing all information of the evolution of prices, and P
is the “objective” probability measure. ZΨ (t) will represent the asset price in
this market, and (Ft)t∈[0,T ] is the filtration generated by ZΨ (t) i.e. history of
the process up to time t. The crucial assumption for pricing rules in a given
market is that it does not admit arbitrage opportunities. Arbitrage (also
called “free lunch”) is an opportunity for investor to profit for simultaneous
purchase and sale of an asset. The difference between purchase and sale
prices allows investor to make a profit without taking any risk. Formally, an
arbitrage opportunity [23, 24] is a self financing investing strategy φ, which
can lead to a positive terminal gain without any intermediate loss

P(∀t ∈ [0, T ], Vt(φ) ≥ 0) = 1 , P(VT (φ) > V0(φ)) 6= 0 ,

where Vt(φ) denotes the value of an investor portfolio at time t. To assure
that market model is arbitrage-free, it is enough to prove the existence of
the equivalent martingale measure Q. This martingale measure, in contrast
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to physical measure P, assures that financial assets have the same expected
rate of return. The measure given in the next theorem makes the process
ZΨ (t) a martingale.

Theorem 3.1. Let Q be the probability measure defined by the equation

Q(A) =
∫
A

exp
{
−γB(SΨ (T ))− γ2

2
SΨ (T )dP

}
, (12)

where γ = µ−r+σ2/2
σ and A ∈ F . Then the process ZΨ (t) a martingale is a

martingale with respect to Q.

One can easily see that Q is a probability measure. In Appendix B we
prove that the process (ZΨ (t))t∈[0,T ] is a martingale with respect to Q. As
a consequence from Fundamental Theorem of Asset Pricing [23] we obtain
that a market model with assets prices modeled by ZΨ (t) is a arbitrage-free.

Apart from lack of arbitrage there is another idea that originates from the
classical BS model. This is the market completeness. We say that market
is complete if every FT -measurable contingent claim admits a replicating
self-financing strategy [23]. In complete markets there is only one fair price
of the option. From the Second Fundamental Theorem of asset pricing [23]
a market defined by the asset (ZΨ (t))t∈[0,T ] is complete if and only if there
is a unique market martingale measure equivalent to P. The next result
postulates that market model described by subdiffusive GBM is incomplete.

Theorem 3.2. Martingale measure defined in Eq. (12) is not unique, thus
the market described by subdiffusive GBM is incomplete.

In Appendix C we give proof of the incompleteness of financial market
based on subdiffusive GBM ZΨ (t).

In the next step we derive the option pricing formulas. Here we will con-
centrate on the European options, however other derivatives can be priced in
a similar manner. From Appendix C we know that the subdiffusive model is
incomplete, as a consequence different martingale measures lead us to differ-
ent prices of derivative. In what follows, we will concentrate on the measure
Q defined in (12) since it is a natural extension of martingale measure from
the classical BS model. Moreover, the relative entropy (i.e. the distance
between measures [25]) of Q is smaller than Qε defined in (C.1). This means
that the distance between measures Q and P is the smallest. The relative
entropy of Q is equal to

D = −
∫
Ω

log
dQ
dP

dP =
γ2

2
〈SΨ (T )〉 .
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On the other hand, we have for Qε

Dε = −
∫
Ω

log
dQε

dP
dP = log

〈
exp

{
−γB(SΨ (T ))−

(
ε+

γ2

2

)
SΨ (T )

}〉

+
(
ε+

γ2

2

)
〈SΨ (T )〉 = log 〈exp{−εSΨ (T )}〉+

(
ε+

γ2

2
〈SΨ (T )〉

)
≥ γ2

2
〈SΨ (T )〉 = D .

Thus, we confirmed that the measure Q minimizes the relative entropy.
Using martingale measure Q we can derive fair price of European call

option with expiry date T and strike price K. This is a subject of the next
theorem

Theorem 3.3. Assume that the asset price follows GBM ZΨ (t) and that
the martingale measure Q is given by (12). Then the BS formula for the
European call option price CΨ (X0,K, T, σ, r) with interest rate r > 0 is
given by

CΨ (X0,K, T, σ, r) = 〈C(X0,K, SΨ (T ), σ, r)〉

=

∞∫
0

C(X0,K, x, σ, r)gΨ (x, T )dx . (13)

Here, gΨ (x, T ) is the PDF of SΨ (T ) and C(X0,K, T, σ) is given by Eq. (5).

For the proof of the above theorem see Appendix D. The price of a put
option can be easily determined from the put–call parity (4)

PΨ (X0,K, T, σ, r) = CΨ (X0,K, T, σ, r) + e−rTK −X0 . (14)

In order to find the price of a call option in a subdiffusive market model,
one can follow two ways. The first way is to approximate the integral in
(13). However this can be done only in cases when the PDF gΨ (x, T ) is
known analytically, for instance α = 1/2. The second one is by Monte Carlo
method. One simulates trajectories of the inverse subordinator SΨ (t) on
the finite interval [0, T ] and calculates the expected value in (13). To do
this, one can adopt the following efficient approximation scheme [16] of the
process SΨ (t)

SΨ∆(t) = (min{n ∈ N : TΨ (∆n) > y} − 1)∆ . (15)

Here ∆ > 0 is the accuracy parameter and TΨ (τ) is the subordinator defined
in (9). Since TΨ (τ) is a Lévy process, for its simulation one can use the
general method presented in [27].
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4. Example: tempered α-stable waiting times

In this section, we present the numerical analysis of the subdiffusive
GBM with tempered stable waiting times.

The class of tempered α-stable times was first introduced by Rosiński [28]
and Cartea, del-Castillo-Negrete [29]. The tempered α-stable distributions
are invariant under linear transformations and have finite moments of all or-
ders. On the other hand, they resemble stable laws in many aspects (see [28]
for details). Tempered α-stable laws are particularly attractive in the mod-
eling of two-regime dynamics. Namely, when we observe the characteristic
transition from the initial subdiffusive character of motion in short times
to the standard diffusion in long times [30, 31]. Such a transition was con-
firmed in many experiments, one can mention here the case of random mo-
tion of photospheric bright points [32], motion of molecules inside living
cells [33,34] and recently discovered motion of lipid granules in living fission
yeast cells [35].

For the case of tempered α-stable waiting times, the Laplace exponent
in (9) is given by

Ψ(u) = (u+ λ)α − λα , 0 < α < 1 , λ > 0 .

For λ ↘ 0, we recover the Laplace transform of ordinary α-stable distribu-
tion.

In order to apply approximation scheme (15), we generate TΨ(∆n),
n = 1, 2, . . . , using the standard method of summing up increments [36]

TΨ (0) = 0 ,
TΨ(∆n) = TΨ(∆(n− 1)) + Zn ,

where Zn are independent, identically distributed tempered α-stable random
variables with the Laplace transform

E
(
e−uZn

)
= e−∆t((u+λ)α−λα) .

The algorithm for generating tempered stable random variable Z with the
above Laplace transform, is the following [37]:
I. Generate exponential random variable E with mean λ−1;
II. Generate totally skewed α-stable random variable S using the formula [38]

S = ∆t1/α
sin(α(U + π

2 ))
cos(U)1/α

(
cos(U − α(U + π

2 ))
W

)(1−α)/α

. (16)

Here, U is uniformly distributed on [−π/2, π/2], and W has exponential
distribution with mean 1;
III. If E > S put Z = S, otherwise go to step I.
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Finally, to obtain the trajectory of ZΨ (t) = Z(SΨ (t)), one needs to sim-
ulate the process Z(t) and put it together with previously obtained SΨ∆(t).
Since Z(t) is a standard diffusion process, its simulation methods are well
established [36].
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Fig. 2. (Color online) The comparison of the Black–Scholes prices of the European
call option CΨ (Z0,K, T, σ, r) according to the parameters α and λ. For λ ↘ 0
option prices with tempered subordinator (blue lines, α = 0.8, λ > 0) tend to the
option prices with stable subordinator (black line, α = 0.8, λ = 0). In contrary,
when λ is increasing, prices tend to classical Black–Scholes one (red line, α = 1,
λ = 0). Here Z0 = 1, K = 2, σ = 0.6, r = 0.4, and T ∈ [0, 5].
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Fig. 3. (Color online) Black–Scholes prices with α-stable waiting times of European
call options CΨ (Z0,K, T, σ, r) according to α parameter. Here Z0 = 1, K = 2,
σ = 0.6, r = 0.4, and T ∈ [0, 5].
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In Fig. 2 we have compared the classical Black–Scholes European call
option prices with the subordinated ones. One can see that for λ ↘ 0
option prices with tempered subordinator tend to option prices with stable
subordinator. In contrary for increasing λ, option prices are approaching
the classical BS prices. In Fig. 3 we present European call option prices
in the case, where the classical BS model is subordinated by pure α-stable
distribution (λ = 0) with different αs. When α↗ 1, the subdiffusive prices
tend to the classical one. Fig. 4 depicts the surface of European call option
prices in the subdiffusive BS model for different exercise date T and strike
price K. The waiting times follow the tempered stable law.
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Fig. 4. (Color online) Black–Scholes prices of European call options
CΨ (Z0,K, T, σ, r) according to exercise date T , strike price K. In the subdiffu-
sive model the waiting times follow the tempered stable law Ψ(u) = (u+λ)α−λα.
Here Z0 = 1, K = 2, σ = 0.6, r = 0.4, T ∈ [0, 10] and λ = 0.01, α = 0.9.

5. Conslusions

In this paper, we have introduced an extension of the classical Black–
Scholes model which is capable to capture the periods of stagnation of asset
prices. Our model is defined as standard GBM, subordinated by the ID in-
verse subordinator. This assures flexibility of the model since the periods in
which the asset price does not change can be chosen from the broad family of
nonnegative ID distributions. We have shown that the proposed model is ar-
bitrage free and incomplete. We derived formulas for fair prices of European
call an put options and mentioned how to approximate them numerically.
To calibrate the model to the real data, one can follow a standard proce-
dure for diffusion processes. First, one needs to remove the waiting times
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(constant periods) from the trajectory of subdiffusive GBM. This way one
obtains the trajectory of the standard GBM, which can be analyzed in the
usual way. The removed waiting times form the sample of the underlying
ID distribution, which can be recognized with the help of known statistical
methods, see for example [39].

We believe that the introduced here model will provide a more adequate
description of the assets price processes especially in emerging markets.

The research of M.M. has been partially supported by the “Juventus
Plus” grant. The research of J.G. has been partially supported by the Eu-
ropean Union within the European Social Fund.

Appendix A

Proof of Theorem 2.1. Let us denote by p(x, t) the PDF of ZΨ (t). Using
total probability formula we get for the Laplace transform

p̂(x, k) =

∞∫
0

e−ktp(x, t)dt =

∞∫
0

f(x, τ)ĝ(τ, k)dτ . (A.1)

Here the f(x, τ) and g(τ, t) are PDFs of Z(τ) and SΨ (t), respectively, and
ĝ(τ, k) =

∫∞
0 e−ktg(τ, t)dt. The process Z(t) is a standard GBM, thus its

PDF f(x, τ) obeys the ordinary Fokker–Planck Equation

∂f(x, τ)
∂τ

=
[
−
(
µ− r +

σ2

2

)
∂

∂x
xf(x, τ) +

σ2

2
∂2

∂x2
x2f(x, τ)

]
. (A.2)

Taking Laplace transform of the above we get

kf̂(x, k)−f(x, 0) = −
(
µ− r +

σ2

2

)
∂

∂x
xf̂(x, k)+

σ2

2
∂2

∂x2
x2f̂(x, k) , (A.3)

where f̂(x, k) =
∫∞

0 e−kτf(x, τ). We denote the PDF of TΨ (τ). By property
P (TΨ (τ) ≥ t) = P (SΨ (t) ≤ τ) we obtain

g(τ, t) = − ∂

∂τ

t∫
−∞

h(t′, τ)dt′ .

Consequently, by some standard calculations we obtain

ĝ(τ, k) =
Ψ(k)
k

e−τΨ(k) .
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From Eq. (A.1) we have

p̂(x, k) =
Ψ(k)
k

f̂(x, Ψ(k)) . (A.4)

The last formula after the change of variables in Eq. (A.3) k → Ψ(k) yields

Ψ(k)f̂(x, Ψ(k))−f(x, 0)=−
(
µ−r+

σ2

2

)
∂

∂x
xf̂(x, Ψ(k))+

σ2

2
∂2

∂x2
x2f̂(x, Ψ(k)) .

Now by the observation from Eq. (A.4) and the fact that f(x, 0) = p(x, 0)
we infer that p̂(x, k) satisfies the equation

kp̂(x, k)−p(x, 0) =
k

Ψ(k)

[
−
(
µ− r +

σ2

2

)
∂

∂x
xp̂(x, k) +

σ2

2
∂2

∂x2
x2p̂(x, k)

]
.

Finally inverting the above Laplace transform we obtain

∂w(x, t)
∂t

= Φ(t)
[
−
(
µ− r +

σ2

2

)
∂

∂x
xw(x, t) +

σ2

2
∂2

∂x2
x2w(x, t)

]
,

and this completes the proof.

Appendix B

Proof of Theorem 3.1. Let Q be the probability measure defined in
Eq. (12). Let us introduce the filtration (Gt)t∈[o,T ] as

Gt = HSΨ (t) , (B.1)

where
Hτ =

⋂
u>τ

{σ(B(y) : 0 ≤ y ≤ u) ∨ σ(SΨ (y) : y ≥ 0)} . (B.2)

One can observe that Ft ⊆ Gt. Moreover from [18] we get that the processes
B(SΨ (t)) and exp{−γB(SΨ (t)) − γ2

2 SΨ (t)} are Gt-martingales with respect
to P. Thus Q is a probability measure. Clearly, it is equivalent to P. Now we
will show that ZΨ (t) is a (Gt)-martingale with respect to a new probability
measure Q. Let us define

KΨ (t) = B(SΨ (t)) + γSΨ (t) ,

and

H(t) = E

(
dQ
dP

∣∣∣∣∣Gt
)

= E

(
exp

{
−γB(SΨ (T ))− γ2

2
SΨ (T )

} ∣∣∣∣∣Gt
)
.
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From martingale property we get that

H(t) = exp
{
−γB(SΨ (t))− γ2

2
SΨ (t)

}
or, equivalently, in the differential form

dH(t) = −γH(t)dB(SΨ (t)) , H(0) = 1 . (B.3)

We easily see from Eq. (7) and the above, that we can write ZΨ (t) in terms
of H(t) in the following form

ZΨ (t) = exp
{
σKΨ (t)− σ2

2
SΨ (t)

}
. (B.4)

Denote by 〈·, ·〉 the quadratic variation. Then, the quadratic variation of
KΨ (t) satisfies 〈KΨ (t),KΨ (t)〉 = SΨ (t). Using Girsanov–Meyer theorem [26]
and Eq. (B.3) we get that the process

B(SΨ (t))−
t∫

0

1
H(s)

d 〈H(s), B(SΨ (t))〉

= B(SΨ (t)) + γ

t∫
0

1
H(s)

H(s)d 〈B(SΨ (t)), B(SΨ (t))〉

= B(SΨ (t)) + γSΨ (t) = KΨ (t)

is a local martingale with respect to Q. By Eq. (B.4) we infer that also the
process ZΨ (t) is a local martingale with respect to Q. Finally, since

EQ(ZΨ (t)) = E
(

exp
{
σKΨ (t)− σ2

2
SΨ (t)− γB(SΨ (t))− γ2

2
SΨ (t)

})
= 1 ,

ZΨ (t) is a (Gt,Q)-martingale. This ends the proof.

Appendix C

Proof of Theorem 3.2. For every ε > 0 let us define the probability
measure

Qε(A) = C

∫
A

exp
{
−γB(SΨ (T ))−

(
ε+

γ2

2

)
SΨ (T )dP

}
dP , (C.1)
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where C =
(〈

exp{−γB(SΨ (T ))− (ε+ γ2

2 )SΨ (T )}
〉)−1

is the normaliz-

ing constant, γ = µ−r+σ2/2
σ and A ∈ F . We will show that ZΨ (t) is a

(Gt)-martingale with respect to Qε, where Gt = HSΨ (t) is defined in Eq. (12).
One clearly see that Qε is equivalent to P. Put

Y (t) = exp
{
−γB(t)− γ2

2
t

}
, Z(t) = exp{σB(t) + (µ− r)t} .

Then we have

Y (t)Z(t) = exp
{

(σ − γ)B(t)− (σ − γ)2

2
t

}
.

Thus Y (t)Z(t) is a (Ht)-martingale with respect to P, where (Ht) is defined
in Eq. (B.2). Let us define

ZSΨ (T )(t) = Z(t ∧ SΨ (T )) .

One can observe that the stopped process Y (t ∧ SΨ (T ))ZSΨ (T )(t) is also a
(Ht,P)-martingale. Since the filtration Ht is right continuous, the bounded
random variable e−εSΨ (T ) is a H0-measurable. It follows that the process(

e−εSΨ (T )Y (t ∧ SΨ (T ))ZSΨ (T )(t)
)
t≥0

is also a (Ht,P)-martingale. Moreover, for A ∈ Ht we have

Qε(A) = E
(
1A exp

{
γB(SΨ (T ))−

(
ε+

γ2

2

)
SΨ (T )

})
= E

(
1Ae−εSΨ (T )E

(
exp

{
γB(SΨ (T ))− γ2

2
SΨ (T )

} ∣∣∣Ht))
= E

(
1Ae−εSΨ (T )Y (t ∧ SΨ (T ))

)
.

Thus we obtain that the process ZSΨ (T )(t) is a (Ht,Qε)-martingale. Next,
we have

EQε
(

sup
t≥0

ZSΨ (T )(t)
)

= EQε

(
sup

t≤SΨ (T )
Z(t)

)

= E

(
exp

{
−γB(SΨ (T ))−

(
ε+

γ2

2

)
SΨ (T )

}
sup

t≤SΨ (T )
Z(t)

)

≤ E

(
exp{−γB(SΨ (T ))}e|µ−r|SΨ (T ) sup

t≤T
eσB(SΨ (t))

)
. (C.2)
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For any p > 0 and n ∈ N we have

〈SnΨ (t)〉 =

∞∫
0

xn−1P(SΨ (T ) > x)dx =

∞∫
0

xn−1P(TΨ (x) < t)dx

=

∞∫
0

xn−1P
(
e−pTΨ (x) > e−pt

)
dx ≤ ept

∞∫
0

xn−1e−xΨ(p) =
eptΓ (n)
Ψn(p)

.

Thus for any λ > 0 we have

〈
eλSΨ (t)

〉
=
∞∑
n=1

λn 〈SnΨ (t)〉
n!

≤ ept
∞∑
n=1

λnΓ(n)
Ψn(p)n!

= ept
∞∑
n=1

λn

Ψn(p)n
<∞

(C.3)
for large enough p (recall that Ψ(p)→∞ as p→∞). This shows existence
and finiteness of exponential moments of inverse subordinators. Condition-
ing on σ(SΨ (y) : y ≥ 0) we obtain

E(exp{λB(SΨ (T ))}) = E
(
λ2

2
SΨ (T )

)
<∞ .

From the Doob’s maximal inequality we get that

E

(
sup
t≤T

exp{λB(SΨ (t))}

)2

≤ 4E(exp{2λB(SΨ (T ))}) <∞ .

Thus by Hölder inequality, the above results with combination with (C.2)
yield

EQε
(

sup
t≥0

ZSΨ (T )(t)
)
<∞ .

Thus we obtain that ZSΨ (T )(t) is a uniformly integrable martingale. From
the martingale representation theorem it follows that there exist a random
variable X such that

ZΨ (t) = ZSΨ (T )(SΨ (t)) = EQε (X|HSΨ (t)

)
.

As conclusion we get that ZΨ (t) is a (HSΨ (t),Qε)-martingale. Since Ft ⊆
HSΨ (t) it is also a (Ft,Qε)-martingale.
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Appendix D

Proof of Theorem 3.3. The formula follows from the fact that

CΨ (X0,K, T, σ, r) = e−rT
〈
(ZΨ (T )−K)+

〉
Q

= e−rT
〈

exp
{
−γB(SΨ (T ))− γ2

2
SΨ (T )

}
(ZΨ (T )−K)+

〉
, (D.1)

where 〈·〉Q denotes the expectation with respect to martingale measure Q.
Conditioning on SΨ (T ) we easily obtain formula (13).
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