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We focus on the study of dynamics of two kinds of random walk: generic
random walk (GRW) and maximal entropy random walk (MERW) on two
model networks: Cayley trees and ladder graphs. The stationary probabil-
ity distribution for MERW is given by the squared components of the eigen-
vector associated with the largest eigenvalue λ0 of the adjacency matrix of
a graph, while the dynamics of the probability distribution approaching to
the stationary state depends on the second largest eigenvalue λ1. Firstly,
we give analytic solutions for Cayley trees with arbitrary branching num-
ber, root degree, and number of generations. We determine three regimes of
a tree structure corresponding to strongly, critically, and weakly branched
roots. Each of them results in different statics and dynamics of MERW.
We show how the relaxation times, generically shorter for MERW than for
GRW, scale with the graph size. Secondly, we give numerical results for
ladder graphs with symmetric defects. MERW shows a clear exponential
growth of the relaxation time with the size of defective regions, which in-
dicates trapping of a particle within highly entropic intact region and its
escaping that resembles quantum tunneling through a potential barrier.
GRW shows standard diffusive dependence irrespective of the defects.
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1. Introduction

After Einstein [1] and Smoluchowski [2] gave explanations of Brownian
motion and originated the theory of diffusive processes, there has been an
unceasing research on models of random walk (RW), which may be regarded
as time or space discretization of these processes. Thousands of papers and
textbooks in statistical physics, particle physics, engineering, economics,
biophysics, etc., have been published.
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From the mathematical perspective, RW is a Markov chain describing
the random consecutive steps of a particle. As an example, the well-known
Polya random walk on a lattice [3] at each time performs equiprobable steps
to any of the neighboring nodes. This process, generalized to any graph, is
known as the ordinary or generic random walk (GRW).

RW can also maximize the entropy of paths, and hence we call it the
maximal entropy random walk (MERW); lately, this type has been studied
in [4,5]. This principle of entropy maximization, which is a global one alike
the least action principle, earlier brought about the biological concept of
evolutionary entropy [6,7]. It also served as an optimal sampling algorithm
in the problem of importance sampling [8]. MERW has also begun to be
used in the study of complex networks [9, 10,11,12,13].

The defining feature of MERW makes the paths of given length and
end-points equiprobable. This leads to an unprecedented feature that the
stationary probability on diluted lattices localizes in the biggest spherical re-
gion [4, 5]. An interactive online demonstration [14] illustrates this feature.
In this paper, we focus on how the dynamics of GRW and MERW differs.
More precisely, we show analytic expressions for stationary probability dis-
tributions and relaxation times of GRW and MERW on Cayley trees; we
also give numerical results for ladder graphs, showing that the relaxation
time for MERW grows exponentially with the size of defective regions as
opposed to diffusion behavior for GRW.

In this paper, in Sec. 2 we provide definitions and notes on the two
types of random walk. In Sec. 3, we give several analytical results concern-
ing Cayley trees (involving eigenproblem solution for the adjacency matrix,
discussion of stationary state and relaxation). Lastly, in Sec. 4, we show
numerical results concerning relaxation process on a class of ladder graphs.

2. General considerations

Let us consider a discrete time random walk defined by a constant
stochastic matrix P , on a finite connected undirected graph. The proba-
bility that a random walker which can be found on a node i at time t hops
to a node j at time t+ 1 is encoded by the element Pij ≥ 0 of this matrix.
Another condition fulfilled by this matrix element is

∑
j Pij = 1 for all i. If

we denote by A the adjacency matrix of the graph (Aij = 1 if i and j are
neighbors, and Aij = 0 otherwise), we can formulate an additional condi-
tion: Pij ≤ Aij , which means that particles are allowed to jump between
neighboring nodes only. The stochastic matrix corresponding to the generic
random walk (GRW) is given by

Pij =
Aij
ki

, (1)
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where ki =
∑

j Aij is the node degree, and the probability of selecting one
of ki neighbors of the node i is uniform. This means that the entropy of
neighbor selection is maximized and shows that this is the standard Einstein–
Smoluchowski–Polya random walk. Lastly, the stationary state of GRW is
given by πi = ki/

∑
j kj .

On the other hand, maximal entropy random walk (MERW) maximizes
the entropy of choosing a trajectory of given length and end-points. This
principle leads to

Pij =
Aij
λ0

ψ0j

ψ0i
, (2)

where λ0 is the largest eigenvalue of the adjacency matrix A and ψ0i is the
ith component of the corresponding eigenvector ~ψ0. From the Frobenius–
Perron theorem and from the fact that the adjacency matrix A is irreducible
it follows that all elements of ~ψ0 are strictly positive. Shannon–Parry mea-
sure [15] then describes the stationary state of P

πi = ψ2
0i . (3)

Intriguingly, this equation forms a connection between MERW and quantum
mechanics, as one may interpret ~ψ0 as the wave function of the ground state
of the operator −A and consequently ψ2

0i becomes the probability of finding
a particle in this state [4,5]. The two random walks, (1) and (2), in general
exhibit altogether different behaviors except for the case of k-regular graphs,
where they coincide.

3. Cayley tree

We define a Cayley tree with a branching number k, which is the number
of edges leading from a given node to the next generation of nodes, and the
number of generations G. The root of the tree is assumed to have a degree r
and it belongs to the zeroth generation (see Fig. 1). The number of nodes
in the zeroth generation is therefore n0 = 1, in the first n1 = r nodes, in
the second n2 = rk, in the third one n3 = rk2, etc. The tree has n nodes in
total: n =

∑G
g=0 ng = 1 + r(kG − 1)/(k − 1).

g=3

g=2

g=1

g=0

k=2

r=3

Fig. 1. A Cayley tree with root degree r = 3, branching number k = 2, and G = 3
generations.
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3.1. Eigenvalues of the adjacency matrix

This section is devoted to calculation of eigenvalues of the adjacency
matrix of Cayley tree, which can be determined by solving the equation

det(A− λ1) = 0 . (4)

The determinant can be calculated with the use of a sequence of elementary
transformations that leave it invariant, e.g., additions of multiple of a row
or column to another row or column. Thus, the determinant can be reduced
to a triangular form with zeros above the diagonal, as first presented in [16].
Details of this procedure can be found in [17]. The triangular form of the
determinant allows to rewrite (4) as a product of the diagonal coefficients

G∏
g=0

[Ag(λ)]mg = 0 , (5)

where mG = 1 and mG−g = ng − ng−1, for g = 1, 2, . . . , G, and Ag(λ) are
polynomials w.r.t. λ given by the recursive equations

A0(λ) = −λ ,
Ag(λ) = −λAg−1(λ)− kAg−2(λ) , for g < G , (6)
AG(λ) = −λAG−1(λ)− rAG−2(λ) .

Notice that for g = G the coefficient k is replaced by r, which is a conse-
quence of the tree structure allowing arbitrary root degree. To complete the
set of equations we have to take initial condition A−1 = 1. The real roots
of equation (5) counted with the degeneracy mg give the total number of∑

g(g + 1)mg =
∑

g ng = n, which means all n eigenvalues of the adjacency
matrix are retrieved.

The recurrence (6) can be solved

Ag = k(g+1)/2 sin[(g + 2)θ]
sin θ

, forg < G , (7)

where cos θ = −λ/(2
√
k) and θ is an auxiliary parameter. To obtain the

polynomialAG one needs to combine the last equation in (6)AG = −λAG−1−
kAG−2 with the solutions for AG−1 and AG−2 (7), which yields

AG = k(G−1)/2k sin[(G+ 2)θ] + (k − r) sin(Gθ)
sin θ

. (8)

Now, instead of (5) we can consider equations Ag = 0 and AG = 0 to
find the solutions for θ and then determine the eigenvalues of the adjacency
matrix using the formula λ = −2

√
k cos θ. The first equation, leading to

sin[(g + 2)θ] = 0 , (9)
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has g + 1 solutions

λg,j = 2
√
k cos

(
πj

g + 2

)
, for j = 1, . . . , g + 1 . (10)

As follows from (5), each eigenvalue λg,j in this series has multiplicity mg.
The equation AG = 0 produces

k sin[(G+ 2)θ] + (k − r) sin(Gθ) = 0 , (11)

for which analytical solutions exist in the case r = k

λG,j = 2
√
k cos

(
πj

G+ 2

)
, for j = 1, . . . , G+ 1 , (12)

and in the case r = 2k

λG,j = 2
√
k cos

[
π(j − 1/2)
G+ 1

]
, for j = 1, . . . , G+ 1 . (13)

Other choices of r involve numerical solving of (11).
It can be shown that the largest eigenvalue of the adjacency matrix is

λ0 = λG,1. It belongs to one of three classes of solutions depending on r,
which takes values r ∈ (0, 2k−2k/G) in the first class, r ∈ (2k−2k/G, 2k+
2k/G) in the second, and r ∈ (2k + 2k/G,+∞) in the third.

For large G (i.e., G � 2k) the second interval becomes just a single
integer value r = 2k. The first class allows values r < 2k for which an
approximate solution exists

λ0 = 2
√
k cos

π

G+ δ
, (14)

where δ ≈ 2k/(2k − r), or the exact solution for r = k (12). In the third
class, r > 2k, there are no real solutions of (11) for θ ∈ (0, π/(G + 1)) and
λ0 corresponds to a purely imaginary θ. The trigonometric equation (11) is
thus replaced by a hyperbolic one. In the limit of large G the approximate
solution is

λ0 =
2
√
k√

1− x2
, (15)

where

x = z

[
1− 2

(
1− z
1 + z

)G+1
]

and z = 1− 2k
r
. (16)
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3.2. The eigenvalues of the GRW transition matrix

The stochastic matrix of generic random walk (1) can be subjected to
the same procedure as explained in Sec. 3.1. Transforming its determinant
to the triangular form generates analogous recursion as in (6)

A0 = −λ ,

Ag = −λAg−1 −
k

(k + 1)2
Ag−2 , for g = 2, . . . , G−1 , (17)

AG = −λAG−1 −
1

k + 1
AG−2 .

We take A−1 = k + 1 as an initial condition that agrees with the rest of
equations and proceed as before, solving this recurrence to obtain eigenvalues
from the equations Ag = 0 and AG = 0. From AG = 0 one gets

2k cos(2θ) = 1 + k2 and sin(Gθ) = 0 , (18)

whose solutions lead to, respectively,

λ0 = 1 , and λG,j = 2

√
k

(k + 1)2
cos
(
πj

G

)
, for j = 1, . . . , G , (19)

and from Ag = 0
sin[(g + 2)θ] = k sin(gθ) . (20)

The last equation has the identical form as (11) except for different coeffi-
cients. The class of solutions of (11) with r ∈ (2k+ 2k/G,+∞) corresponds
to value k > 1 in the above equation. Hence, the value of θ that leads to the
largest eigenvalue in a given series is imaginary. Once again, the trigono-
metric equations (20) change into hyperbolic ones. Upon replacements
k = z+1

1−z , z = k−1
k+1 , we end up with (16) rewritten as x = k−1

k+1

[
1− 2k−(g+1)

]
.

In the large G limit, the second largest eigenvalue is thus approximated by

λ1 = 2

√
k

(k + 1)2
1√

1− x2
(21)

and clearly the second largest eigenvalue λ1 approaches λ0 = 1 exponentially
in G.

3.3. Stationary states of GRW and MERW on Cayley trees

A random walk on a graph has a stationary probability distribution if
the graph is not bipartite. If a graph is bipartite, one can define a semi-
stationary state: it involves either averaging probability distributions over
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two consecutive time steps t and t + 1 (because the distributions for even
and odd times are independent) or averaging the distribution over initial
conditions.

GRW leads to the stationary occupation probabilities

πi =
ki∑
j kj

, for i = 1, . . . , n , (22)

which comprise a flat distribution for nodes of degree ki = k + 1 and the
exception of the root having r neighbors and leaves neighboring with just
one node. As nodes in each generation have equal stationary probabilities
we can sum over them Πg = ngπi ∝ kg−1, which produces the exponential
factor.

The stationary probabilities of MERW are equal to the squared com-
ponents of ~ψ0. All elements ψ0i of this vector have the same values for i
belonging to a given generation g. This simplifies the description of the
stationary state so that we may write ψg for all nodes in the generation g
(we omit the first index, which numbers the corresponding eigenvalue). Ex-
act solution for ψg can be obtained by solving a recurrence equation analo-
gous to (6)

πi = ψ2
0i ∝ kG−g sin[(G− g + 1)θ]2 , for g = 0, . . . , G and i ∈ g , (23)

where the normalization constant has been omitted. After summing over
whole generation i ∈ g, the probabilities become

Πg = ngπi ∝ kG−1 sin[(G− g+ 1)θ]2 , for g = 1, . . . , G and i ∈ g , (24)

where the case g = 0 with its n0 = 1 needs a separate treatment.
This result depends on the choice of r, k through θ and λ. For r < 2k,

parameter θ ≈ π
G+δ and the limiting distribution is a sine square; for r = 2k,

θ = π/2
G+1 and the distribution is a cosine square; for r > 2k, θ = i arctanh x

(where x is defined in (16), while i is the imaginary unit), which yields a
hyperbolic sine. These limiting results as well as finite-size effects are showed
in an online interactive demonstration [18].

3.4. Relaxation times

A stochastic matrix does not have to be symmetric, thus its right and left
eigenvectors may differ: P ~Ψα = Λα~Ψα, ~ΦαP = Λα~Φα. Hence, there exists a
spectral decomposition of P

Pij =
∑
α

ΛαΨαiΦαj , (25)
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where for MERW one can make replacements: Λα = λα/λ0, Ψαi = ψαi/ψ0i,
Φαi = ψαiψ0i. The spectral decomposition of the adjacency matrix of a
given graph thus contains information about all properties of MERW.

From the knowledge of the initial probability distribution ~π(0) and the
transition matrix P the distribution can be determined at any time t

~π(t) = ~π(0)P t , (26)

where the elements πi(t), i = 1, . . . , n of ~π(t) denote the probability of
finding a particle performing a random walk at a node i at time t.

The last equation can be reformulated utilizing the spectral decomposi-
tion of the stochastic matrix (25)

~π(t) =
∑
α

cαΛ
t
α
~Φα , (27)

where cα denotes a spectral coefficient: cα = ~π(0) · ~Ψα =
∑

i πi(0)Ψαi.
Generally, all eigenvalues Λα of P are located inside or on the unit circle

in the complex plane |Λα| ≤ 1 and in the limit of infinite t on the right-
hand side of (27) only |Λα| = 1 survive, while all the other terms vanish
exponentially.

TABLE I

Relaxation times τ1 for large G. All rows except for the last one refer to
MERW. The symbols λg,j correspond to one of the equations (10), (12), or (13),
whichever is appropriate for the choice of parameters k, r. In the first row:

c =
(

ln r

2
√

(r−k)k

)−1

. While the number of vertices n ∼ kG, the probability

distribution relaxes a logarithm of the system size τ1 ∼ lnn.

Regime λ0 λ1 τ1

Strongly branched:
r > 2k, k > 1 Eq. (15) λG−1,1 c+ c2π2

2
1
G2 + . . .

Critically branched:
r = 2k, k > 1 λG,1 λG−1,1

8G2

3π2 + 16G
3π2 + . . .

Weakly branched:
1 < r < 2k, k > 1 λG,1 λG−1,1

2k−r
rπ2 G

3 + 3(4k−r)
2rπ2 G2 + . . .

Planted tree:
r = 1 ≈ Eq. (14) λG−2,1

2k−1
2kπ2 G

3 + 3
2π2G

2 + . . .
Linear chain:
k = 1, r = 1 λG,1 λG,2

2G2

3π2 + 8G
3π2 + . . .

GRW: r > 1, k > 1 1 Eq. (21) 8k
(k−1)2 k

G
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For both GRW and MERW on a tree only two eigenvalues on the unit
circle are left Λ0 = 1 and Λn = −1 due to bipartiteness of the graph.
For t → ∞ the relaxation to the stationary state is generically governed
by the second largest eigenvalue Λ1 and its negative counterpart Λn−1 =
−Λ1. The corresponding term in the spectral decomposition (27) decreases
exponentially as exp(−t/τ1), where τ1 = [− ln(Λ1)]−1 = [ ln(λ0/λ1)]−1.

Thus, τ1 is what we call the generic relaxation time, which is the largest
one. We note, however, that there are symmetries that lead also to other
relaxation times. As the eigenvalues of the adjacency matrix depend on
the tree parameters, also the relaxation times for MERW fall into several
classes. The relaxation times for largeG are given in Table I. It is noteworthy
that whereas the probability distribution for GRW relaxes linearly with the
system size τ1 ∼ n ∼ kG, for MERW it is as fast as a logarithm of the
system size τ1 ∼ lnn. Derivations and further details expanding the note on
symmetries can be found in [17]. An online interactive demonstration [19]
can also facilitate understanding of these results.

4. Ladder graph

In this section, we discuss a particular class of ladder graphs (exemplary
ladder graph can be seen in Fig. 2). A ladder graph consists of two chains
of integer length n/2 which are connected by rungs, i.e. node i of one chain
is connected to node i′ of the second one, then i + 1 to i′ + 1 and so forth.
We also impose periodic boundary conditions producing a ring, where node
i + n/2 is connected to node i + 1, and node i′ + n/2 to node i′ + 1. This
structure is symmetric with respect to reflection i→ i′, and so the graph is
a quasi one-dimensional system. It is a 3-regular graph, although we remove
some rungs from the ladder to introduce defects, so that MERW and GRW
are not equivalent on this graph anymore.

0 5 10 15 20

0

0.02

0.04

Lattice site i

Π
i

Fig. 2. (Color online) Stationary probability for a ladder graph with periodic
boundary conditions: the probability localizes in the intact regions. The square
nodes represent initial condition that would be chosen for this graph.
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For the adjacency matrix of the graph A, its largest eigenvalue λ0 and
the eigenvector ~ψ0 associated with it, the stationary solution for MERW is
given as the ground state of the tight-binding equation(

H ~ψ0

)
a

=
(
−∆~ψ0

)
a

+ Vaψ0,a = E0ψ0,a , (28)

where the Hamiltonian is defined asHab = kmaxδab−Aab, with the Kronecker
delta δab, maximum degree of the graph kmax, and Va = kmax − ka, E0 =
kmax − λ0. For a ladder graph with defects this equation yields

2ψ0,a − ψ0,a−1 − ψ0,a+1 + Vaψ0,a = E0ψ0,a , (29)

where E0 = 3 − λ0 and Va = 0 or 1 (rung present or absent). Stationary
states of a number of ladder graphs (with one, two, or a number of random
defects) were discussed in Section 6 of [5].

Additionally, we impose a symmetry on those defects: there can only be
two equal regions intact and two equal regions with rungs removed (gaps).
We take the initial probability 1 at the center of one of the intact regions
(this may be 2 or 4 nodes, depending on whether the length of the region is
odd or even, see Fig. 2). The systems under study have n = 48− 512 total
number of nodes and the number of deleted rungs separating two regions
(the gap size) varies between g = 1− 10.

We measure the probability P (t) summed over one whole region (as the
regions are equal in size, P∞ = 1/2 is its stationary value). It might be
understood as a macroscopic measure of the process taking place in this
region. As expected, the probability flows from one the initial intact region
to the other one until equilibrium (P (t) = 1/2 in both regions) is attained.

We fit the numerical results to exponential dependence on time t: P (t) ∼
exp[−a(t− b)], where a and b are fitting parameters from which we extract
the relaxation time τ , which is the characteristic time scale of an exponential
approach to the stationary state. The results for the behavior of relaxations
times for GRW and MERW are given in Table II. It turns out that for
MERW there is a clear dependence of the relaxation on the gap size for a
given lattice size (example in Fig. 3 (a) for n = 96): a(g) = exp(−c g − d),

TABLE II

Relaxation times τ as functions of the system size n and gap size g, where c(n) =
c∞ − fn−1/ν and d, c∞, f, ν are fitted constant.

GRW τ(n, g) = c nd, d = const. = 2
MERW τ(n, g) = exp [c(n) · g]
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b(g) = exp(c g + d), where c, d are constants with respect to the gap size g.
After extracting this dependence, only the dependence on the system size
remains in the function c = c(n), which is very well fitted with a power
law (Fig. 3 (b): c(n) = c∞ − fn−1/ν (best-fit value parameters are c∞ =
0.9643 ± 0.0078, f = 58 ± 42, ν = 0.773 ± 0.098). Thus, the macroscopic
probability depends on time, system size, and gap size

|P (t; g, n)− P∞| ∝ exp {−t exp [−c(n) g] } . (30)

2 4 6 8 10

1000

5000

1´104

5´104

1´105

5´105

1´106

Gap size g

Τ
Hg
L

HaL

100 200 300 400 500

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Lattice size n

c
Hn
L

HbL

Fig. 3. Maximal Entropy RandomWalk: (a) Logarithmic plot shows an exponential
dependence of the relaxation time on the gap size (an exemplary system size,
n = 96) reminding of quantum tunneling, (b) the dependence of the relaxation
time on the system size, c(n) = c∞ − fn−1/ν [see (30)]. Continuous lines are the
best fits of an exponential function and power law, respectively.
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0 2 4 6 8 10
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2.02

2.04

Gap size g

d
Hg
L

HbL

Fig. 4. Generic Random Walk: (a) log–log plot shows power law dependence of
relaxation time, expected for a diffusion process (continuous line is the best fit;
gap size g = 1), (b) the best-fit exponents d of the power law show independence
from the gap size. The errors result from finite-size effects.
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For GRW, both fitted parameters a and b have shown no dependence
from the gap size g, although they do depend on the system size: a(n) =
cn−d, b(n) = c′nd

′ , where d′, d ≈ 2 (see Fig. 4). This produces the familiar
behavior τ ∼ n2 which is expected for a one-dimensional random walk.

5. Conclusions

In this paper, we have discussed the dynamics of generic random walk
and maximal entropy random walk on two classes of graphs. For Cayley
trees, we have shown the analytic form of generic relaxation times governing
how fast probability distributions of those random walks approach their
stationary states. MERW has proven to be generically faster (logarithmic
with respect to the system size) than GRW (linear w.r.t. the system size).
However, on defective ladder graphs the relaxation of probability seems to
show opposite behavior: while GRW relaxes diffusively, the relaxation times
for MERW are much longer, growing exponentially with the size of the
defective region.

These results indicate that MERW might exhibit comparatively fast re-
laxation within intact or homogeneous regions (like a Cayley tree) but in-
hibits the relaxation process between regions separated by defects, bottle-
necks or bridges. While qualities of MERW’s stationary states have already
been utilized to improve centrality measures in complex networks [10], its
dynamic properties and a close relation between eigenvalues of the adja-
cency matrix and the statistics of paths may be of use in community search
algorithms on complex networks (a number of algorithms based on random
walks, path enumeration and spectral properties of the adjacency matrix are
reviewed in [20]). As a more speculative idea, it is also worth remembering
that MERW keeps all paths of a given length between any two endpoints
equiprobable, which makes it capable of hiding the route information travels,
e.g. over the Internet.
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cussions. Project operated within the Foundation for Polish Science Inter-
national Ph.D. Projects Programme co-financed by the European Regional
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