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We show that thinning of increments of the fractional Brownian motion
with Hurst exponent H 6= 1/2 breaks its H-self-similarity property. As a
result, we obtain a new Gaussian process with stationary increments which
is not the fractional Brownian motion for any H. Moreover, in the subdif-
fusion case (H < 1/2), the new process statistically resembles the classical
Brownian motion (H = 1/2). To this end, we study analytically the sec-
ond moment of such processes. Finally, Monte Carlo simulations show
that the H estimator obtained by mean square displacement is close to the
Brownian motion case with H = 1/2. These results show that stationary
data describing anomalous diffusion phenomenon can lead to different sta-
tistical conclusions for different resolution of measurement. Therefore, one
should be very careful in statistical inference, especially in strong subdiffu-
sion regimes (H ≈ 0).
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1. Introduction

Anomalous diffusion has been observed in a wide variety of systems
[1,2,3,4,5,6,7,8]. In recent years there has been great progress in the under-
standing of the different mathematical models that can lead to anomalous
diffusion [5,9]. One of them is the fractional Brownian motion (FBM), which
was introduced by A.N. Kolmogorov in 1940, see [10, 11]. It is the only
Gaussian process with self-similarity property and stationary increments,
see [12, 13]. The corresponding index of self-similarity H ∈ (0, 1] is called
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the Hurst exponent. The FBM can serve as a possible model for anoma-
lous diffusion phenomena [1, 2, 3, 4, 5]. Moreover, its increments are called
the fractional Gaussian noise (FGN) which is a stationary sequence. It can
model experimental measurements of stationary phenomena, see [14,15,16].

In this paper, we focus on the FGN derived from the corresponding FBM
with some Hurst exponent H ∈ (0, 1].We consider the thinning operation of
the FGN and the properties of the corresponding cumulative sum process.
Such a new model, loses the self-similarity property and is no longer FBM
for any H 6= 1/2.

The presented results indicate the important issue how to measure sta-
tionary experimental data. It turns out that less frequent measurement of
the strong subdiffusion phenomenon can statistically lead to the classical
Brownian motion (BM) case. That means the resolution of measurements
can significantly influences on the process modeling observed phenomena.
Therefore, one should be very careful when determine corresponding stochas-
tic model to the stationary data.

2. Thinning of FBM increments

Let {X(k) := BH(k)−BH(k− 1) : k = 1, 2, . . .} be a discrete stochastic
process of increments of the FBM {BH(t) : t ≥ 0} with the Hurst exponent
H and the covariance function

Cov(BH(t), BH(s)) = 1
2

(
t2H + s2H − |t− s|2H

)
, (1)

for any s, t ≥ 0. The increment process {X(k) : k = 1, 2, . . .} is called the
fractional Gaussian noise (FGN). It follows from covariance formula (1) that

Cov(X(k), X(k + n)) = 1
2

(
(n+ 1)2H + (n− 1)2H − 2n2H

)
. (2)

Let us denote ρXH(n) := Cov(X(k), X(k+n)) to determine dependence only
on n. Moreover, this covariance function has the following asymptotic be-
havior

ρXH(n) ∼ H(2H − 1)n2H−2 , as n→∞ . (3)

It is important to mention, that one can consider FGN, where increments
correspond to the time interval h > 0 (not necessarily with h = 1). Then,
such process {X(k, h) := BH(hk) − BH(h(k − 1)) : k = 1, 2, . . . }, has an
analogous covariance function

ρXH(n, h) := 1
2h

2H
(
(n+ 1)2H + (n− 1)2H − 2n2H

)
. (4)

Let us consider the following issue of the thinned increment process
{Y (k) : k = 1, 2, . . .}, i.e.

Y (k) := X(2k − 1) , k = 1, 2, . . . .
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The process {Y (k) : k = 1, 2, . . .} is just the process of odd increments
of {BH(t) : t ≥ 0} corresponding to the time length 1. In the trajec-
tory approach, one can think that the realizations of the thinned process
come from increment process but with the loss of even–numbered obser-
vations. We present in Fig. 1 one trajectory of the FBM with Hurst ex-
ponent H = 0.1 and the corresponding trajectories of the FGN and the
thinned process. Because it is not easy to notice the difference in the ap-
pearance of trajectories for FGN and the thinned process, we also present
its cumulative sums. Moreover, even better way to manifest the different
behavior of these processes is to display 2-dimensional trajectories consist-
ing of cumulative sum process and such process released back in time. In
details, let us assume that we have the trajectory of FGN {X(k) : k =
1, 2, . . . , N} of the length N. Then the cumulative sums sequence is just
the FBM discrete trajectory {BH(k) : k = 1, 2, . . . , N} and the mentioned
2-dimensional object is just {(BH(k), BH(N + 1 − k)) : k = 1, 2, . . . , N}.
We display analogous trajectories for corresponding thinned process, i.e.
the thinned process {Y (k) : k = 1, 2, . . . , dN/2e}, their cumulative sums
{S(k) := Y (1) +Y (2) + . . .+Y (k) : k = 1, 2, . . . , dN/2e} and 2-dimensional

0 1000 2000 3000 4000
−4

−2

0

2

4

6

X(k) = B
H

(k) − B
H

(k−1)

0 1000 2000 3000 4000
−5

0

5

10

B
H

(k) = X(1) + ... + X(k)

−5 0 5 10
−5

0

5

10

( B
H

(k) , B
H

(N+1−k) )

0 500 1000 1500 2000
−4

−2

0

2

4

6
Y(k) = X(2k−1)

0 500 1000 1500 2000
−40

−20

0

20

40

60
S(k) = Y(1) + ... + Y(k)

−40 −20 0 20 40 60
−80

−60

−40

−20

0

20
( S(k) , S([N/2] + 2 −k) )

Fig. 1. Top row, from left to right: FGN trajectory {X(k) : k = 1, 2, . . . , N}, corre-
sponding FBM trajectory {BH(k) : k = 1, 2, . . . , N} and 2-dimensional trajectory
{(BH(k), BH(N+1−k)) : k = 1, 2, . . . , N}. Bottom row, from left to right: thinned
trajectory {Y (k) : k = 1, 2, . . . , dN/2e}, corresponding cumulative sums trajectory
{S(k) := Y (1) + Y (2) + . . . + Y (k) : k = 1, 2, . . . , dN/2e} and 2-dimensional tra-
jectory {(S(k), S(N + 1− k)) : k = 1, 2, . . . , dN/2e}. The Hurst exponent H = 0.1
and N = 212.
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trajectory {(S(k), S(N + 1 − k)) : k = 1, 2, . . . , dN/2e}. From Fig. 1, we
see that for the case with H = 0.1, the thinned process behaves completely
differently than original FGN. This is particularly evident for its cumula-
tive sums and 2-dimensional trajectory. Moreover, the behavior looks more
like Brownian diffusion case. This observation explains why the thinning
transformation of the FBM can be very interesting and surprising.

Now we continue with some calculations related to the thinned FGN
process. First, we focus on the covariance function of such process. Let us
denote it as ρYH(n) := Cov(Y (k), Y (k + n)). We easily get from (2)

ρYH(n) = ρXH(2n) = 1
2

(
(2n+ 1)2H + (2n− 1)2H − 2(2n)2H

)
(5)

and according to (3)

ρYH(n) ∼ H(2H − 1)22H−2n2H−2 , as n→∞ .

So the asymptotic of the covariance function of thinned process {Y (k) : k =
1, 2, . . .} is the same power function as for {X(k) : k = 1, 2, . . .}, but with
new asymptotic constant 22H−2. What is also very important, formulas (4)
and (5) imply that the thinned process cannot be any FGN process even
with any H 6= 1/2 and observed at time intervals of any length h. The only
exception is the classical case of BM when H = 1/2. We present the co-
variance functions ρXH of FGN processes with different H and the covariance
functions ρYH of the corresponding thinned processes, see Fig. 2. From Fig. 2
we see the biggest differences between covariance functions (of FGN and
thinned process) for small lags. We present these differences more precisely
in Fig. 3 and Fig. 4 (horizontal axis with logarithmic scale) separately for
H < 1/2 and H > 1/2 cases. When H > 1/2 we see in Fig. 4 that the
covariance of thinned process is just a little lower then for the original FGN
process. On the contrary, for cases with H < 1/2 the difference is very dras-
tic and covariance values for first lag are extremely increased for thinned
process, see Fig. 3. Moreover, the smaller H the greater value of ρYH(1).
After such observation, we can suspect that the thinning operation on FGN
process changes its structure and properties, especially for small values of
Hurst exponent H ≈ 0.

Now we concentrate on the cumulative sum process of thinned process
{Y (k) : k = 1, 2, . . .}. For the FGN {X(k) : k = 1, 2, . . .} its cumulative
sums determine just the FBM process {BH(k) : k = 1, 2, . . .}. Since, as
mentioned earlier, the thinned process {Y (k) : k = 1, 2, . . .} is not the FGN
(for any H and time step h), the cumulative sums {S(k) : k = 1, 2, . . .}
cannot be a discrete process coming from any FBM process. Now we give
a simple argument showing that the {S(k) : k = 1, 2, . . .} process is not a
FBM. It concerns the self-similarity property.
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Fig. 2. The covariance functions ρX
H and ρY

H of FGN (lines with circles) and corre-
sponding thinned process (lines with squares) respectively. The case with H = 0.35
(light grey/red lines) and H = 0.65 (dark grey/blue lines).
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Fig. 4. The covariance functions ρX
H and ρY

H of FGN (lines with circles) and
corresponding thinned process (lines with squares) respectively. The cases with
H > 1/2.

Let us suppose that the process {S(k) : k = 1, 2, . . .} is self-similar with
some Hurst exponent H̃ ∈ (0, 1). Then from H̃ self-similarity property we
have that

S(k) = kH̃S(1) ,

and so
E(S(k)2) = k2H̃ .

But, on the other hand, we have

E
(
S(k)2

)
= E

(
k∑
i=1

BH(2i− 1)−
k∑
i=1

BH(2i− 2)

)2

= k + 2(k + 1) ∗ ρH(2(k + 1))(k − 2) , (6)

where ∗ means the finite convolution

a(k) ∗ b(k)(k) :=
k∑
i=1

a(i)b(k − i) . (7)

Hence
k2H̃ = k + 2(k + 1) ∗ ρH(2(k + 1))(k − 2) ,
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and consequently,

H̃ =
ln (k + 2(k + 1) ∗ ρH(2(k + 1))(k − 2))

2 ln k
.

This quantity is constant for any k only when H = 1/2 (because if H = 1/2
then ρH(n) = 0 for all n) and then H̃ = 1/2. Thus the process {S(k) : k =
1, 2, . . .} is not self-similar, except the case with H = 1/2. That means the
thinning operation on FGN process breaks the self-similarity structure of the
corresponding FBM process. Because the process {S(k) : k = 1, 2, . . .} is
Gaussian with stationary increments {Y (k) : k = 1, 2, . . .}, it is not FBM for
any Hurst exponent H ∈ (0, 1). Only in the classical BM case with H = 1/2
the thinning leads again to BM and preserves 1/2 self-similarity.

3. Second moment behavior

Let us now focus on the second moment of the process {S(k) : k =
1, 2, . . .}. The formula (6) can be rewritten, by applying (7), as

E
(
S(k)2

)
= k + 2

k−1∑
i=1

(k − i)ρH(2i) . (8)

It is straightforward to notice that when H ↘ 0 then

E(S(k)2) ≈ k = E
(
B(k)2

)
,

where {B(t) : t ≥ 0} is a standard BM. That means, the second moment
of the process {S(k) : k = 1, 2, . . .}, which is the cumulative sum process
of odd increments of FBM with very small H, is very close to the second
moment of BM. Therefore, the thinning operation on the increments of ex-
treme subdiffusion process changes the second moment of their cumulative
sums as the second moment of pure Brownian diffusion.

Now, let us consider how, in general, the thinning operation change the
second moment of the process. Let us study two following sequences using
formula (8)

M(k) := min
H∈(0,1)

E(S(k)2) , k = 2, 3, . . . ,

and
H(k) := arg minH∈(0,1)E

(
S(k)2

)
, k = 2, 3, . . . .

Observe that M(1) ≡ 1 for any H ∈ (0, 1). These sequences are marked in
Fig. 5.



1164 G. Sikora

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

k

E
(S

(k
)2

)

0 50
0

50

 

 

H = 0.05

H = 0.15

H = 0.25

H = 0.35

H = 0.45

0 10 20 30 40 50

0.3

0.32

0.34

k

H
(k

)

M(k) = min
H∈(0,1)

E(S(k)
2
)

Linear identity E(S(k)
2
) = k

H(k) = argmin
H∈(0,1)

E(S(k)
2
)

Fig. 5. The second moments E(BH(k)2) and E(S(k)2) of FBM (lines with circles)
and corresponding cumulative sum process {S(k) : k = 1, 2, . . .} (lines with squares)
respectively. The cases with H < 1/2.

When H < 1/2, then ρH(k) < 0 for all k and according to formula (8)
we subtract something from linear component k of E(S(k)2). In Fig. 5, we
present the second moment E(S(k)2) of the process {S(k) : k = 1, 2, . . .}
and the second moment E(BH(k)2) = k2H of the corresponding FBM. We
also mark the sequence {M(k) : k = 2, 3, . . .} showing the minimum values
(with respect to H) of the second moment E(S(k)2) of the thinned process.
From Fig. 5 we see that the second moment E(S(k)2) of the thinned process
behaves like BM or FBM with H ↗ 1/2. Moreover, the smallest values of
E(S(k)2) are obtained for H > 0.25, see Fig. 5.

Summarizing, in the subdiffusion case of FBM with Hurst exponent H <
1/2 the thinning operation on FGN leads to the cumulative sum process
{S(k) : k = 1, 2, . . .} with the second moment similar to the Brownian
diffusion or subdiffusion case with H close to 1/2.

When H > 1/2, then ρH(k) > 0 for all k and according to formula (8)
the second moment E(S(k)2) grows faster than linearly (Brownian diffusion
case). In Fig. 6, we present the second moment E(S(k)2) of the process
{S(k) : k = 1, 2, . . .} and the second moment E(BH(k)2) = k2H of the
corresponding FBM for cases with H > 1/2. From Fig. 6 we see that the
second moment E(S(k)2) of the thinned process is a little lower then for cor-
responding FBM but still greater then 1/2. Therefore, in the superdiffusion
case of FBM with Hurst exponent H > 1/2 the thinning operation on FGN
leads to the cumulative sum process {S(k) : k = 1, 2, . . .} which exhibits
weaker superdiffusion behavior (smaller H) of its second moment.
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Fig. 6. The second moments E(BH(k)2) and E(S(k)2) of FBM (lines with circles)
and corresponding cumulative sum process {S(k) : k = 1, 2, . . .} (lines with squares)
respectively. The cases with H > 1/2.

4. Sample MSD

The complementary issue is to show the difference between the estimated
H values for the process {S(k) : k = 1, 2, . . .} and the true value of H. For
such goal we consider the sample mean square displacement (MSD), see [17].
Let {X(k) : k = 1, 2, . . . , N} be a sample of length N. Then the sample MSD
is defined by

MN (τ) =
1

N − τ

N−τ∑
k=1

(X(k + τ)−X(k))2 .

If N is large and τ small and the sample comes from FBM, then

MN (τ) d∼ τ2d+1 ,

where d = H−1/2 and d∼ means similarity in distribution. One can consider
ln(MN (τ)) and get the estimate of H as the half of the slope value for the
line (ln(n), ln(MN (τ))), see [18].

We conduct the following simulation experiment. For each value of Hurst
exponent H ∈ {0+ i×0.01 : i = 1, 2, . . . , 99} we simulate 100 trajectories of
FGN (each of length N = 214). We thin each of FGN trajectory obtaining
the trajectory of the thinned process {Y (k) : k = 1, 2, . . . , dN/2e}. Then for
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the corresponding cumulative sum process {S(k) : k = 1, 2, . . . , dN/2e} for
thinned process {Y (k) : k = 1, 2, . . . , dN/2e}, we compute the sample MSD
and estimator of Hurst exponent for each of 100 trajectories corresponding
one value of H. In Fig. 7 we present the boxplots of estimated H values for
this process. One can see that the biggest difference between the estimated
H values for the process {S(k) : k = 1, 2, . . .} and the true value of H occur
especially for cases with H < 1/2. Thus the thinning operation extremely
changes the memory structure of the strong subdiffusion processes (H ≈ 0)
and as a result one gets the subdiffusion processes with H ≈ 1/2 similar to
the pure Brownian diffusion.
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Fig. 7. The boxplots of estimated values of Hurst exponent H, obtained via the
MSD method for cumulative sum process {S(k) : k = 1, 2, . . . , . . . , dN/2e}. The
length of corresponding FBM trajectories is N = 214.

5. Conclusions

We have considered thinning of the FGN sequence which is the incre-
ment process of FBM. Such operation leads to the thinned Gaussian process
{Y (k)} with the same asymptotic of the covariance function, but with a new
asymptotic constant. By analysis of the second moment we have proved that
for H 6= 1/2 the cumulative sum process S(k) of the thinned process is a new
Gaussian process with stationary increments but without H-self-similarity
property. Therefore, it is not an FBM, except for the classical Brownian
motion case with H = 1/2.
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Numerically, we have obtained the lower bounds (with respect to in-
dex H) for the second moment of such new cumulative sum process. For
subdiffusion cases with H < 1/2, the second moment behaves like for Brow-
nian diffusion or weak subdiffusion regime. For H > 1/2 the second moment
is a little lower than for the corresponding FBM but still greater than 1/2.
Hence the significant difference between cumulative sum process of FGN and
the corresponding FBM holds mainly for strong subdiffusion cases.

We believe that these results are important for experimentalists. Station-
ary data describing the collection of measurements of an anomalous diffusion
phenomenon can lead to different statistical conclusions for different reso-
lution of measurements. One should be very careful in statistical inference,
especially in strong subdiffusion regimes when the less frequent measure-
ments can show classical diffusion behavior.
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