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One of the important steps towards constructing an appropriate math-
ematical model for the real-life data is to determine the structure of depen-
dence. A conventional way of gaining information concerning the depen-
dence structure (in the second-order case) of a given set of observations is
estimating the autocovariance or the autocorrelation function (ACF) that
can provide useful guidance in the choice of satisfactory model or family of
models. As in some cases, calculations of ACF for the real-life data may
turn out to be insufficient to solve the model selection problem, we pro-
pose to consider the autocorrelation function of the squared series as well.
Using this approach, in this paper we investigate the dependence structure
for several cases of time series models. In order to illustrate theoretical re-
sults, we calibrate one of the examined process to real data set that presents
CO2 concentration in the indoor air.
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1. Motivation

One of the important steps towards constructing an appropriate math-
ematical model for the real-life data is to determine the structure of de-
pendence. A conventional way of gaining information concerning the de-
pendence structure (in the second-order case) of a given set of observations
is estimating one of the most popular measure of dependence — the au-
tocovariance (ACVF) or the autocorrelation (ACF) functions — and this
can provide useful guidance in the choice of satisfactory model or family
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of models, [1, 2, 3, 4]. This traditional method is well-established in time
series textbooks, see e.g. [5, 6, 7], and widely used in various areas, e.g.
physics [3, 8, 9], electrical engineering [10], in economics (finance) [11, 12],
meteorology [13,14].

However, the inspection of the correlations for the data can lead some-
times to the wrong preliminary choice of the model. For example, if we look
at the sample autocorrelation functions on the top left and bottom left pan-
els of Fig. 1 we can guess that these two sets of data were drawn from the
same time series model. But we do not make this mistake if we compare the
sample autocorrelations for the squared data. Indeed, as we can see from the
right panels of Fig. 1, the sample ACFs (circles) for the squares behave in a
quite different manner for the considered samples. Therefore, in this paper
we propose to consider not only the autocovariance or the autocorrelation
function but the higher order dependence, namely the dependence structure
for the squared series, as well.
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Fig. 1. The theoretical ACF (stars) and sample ACF (circles) for Xn (left panels)
and Yn = X2

n (right panels), whereXn is i.i.d. standard Gaussian noise (top panels)
and Xn is ARCH(2) model with φ1 = 0.4, φ2 = 0.1 and standard Gaussian noise
(bottom panels).

In Sec. 2 we recall the well-known definition of the autocovariance and
the autocorrelation functions and note that it is sufficient to restrict our
attention to the autocorrelation function. Then our aim is to show the
differences in the behavior of the ACF for the process and its squares for as-
sorted models. Therefore, in Sec. 3 we consider some time series models and
in order to keep the results simple and illustrative, we focus on particular,
low order models. We study examples of Autoregressive Moving Average
(ARMA) models as they belong to the class of linear processes and they
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are often used for modeling empirical time series. Although linear processes
are appropriate for describing many real-life phenomena, they do not cap-
ture some of the features of financial time series (e.g. periods of high and
low volatility tend to persist in the market longer than can be explained
by linear processes). Therefore, ARCH (Autoregressive Conditionally Het-
eroskedastic) and GARCH (Generalized ARCH) processes were developed in
order to model the behavior of stock, stock index, currency, etc. and thus we
discuss two examples of such models. In the same section, we consider also a
specific SARIMA model, we provide explicit expressions for the autocorrela-
tion functions and we show that the autocorrelation functions might prove a
helpful guide in selecting a possible model for the real-life data that exhibits
seasonal behavior. Section 4 contains real data analysis in the context of
presented methodology. Finally, Sec. 5 gives a few concluding remarks.

2. Measures of dependence for finite-variance time series

If we want to describe the dependence structure of finite-variance time
series {Xn} we can use one of the most popular measures of dependence,
i.e. the autocovariance function or the autocorrelation function

cov(Xn, Xm) = E(XnXm)− EXnEXm ,

corr(Xn, Ym) =
cov(Xn, Xm)√

Var(Xn)
√

Var(Xm)
.

It is worth noting that, contrary to the case of some measures defined for
infinite-variance time series (see e.g. [19]), both measures considered here
are symmetric. And the rescaled (standardized) autocovariance gives the
autocorrelation. Moreover, it is obvious that for stationary time series {Xn}
both the autocovariance and the autocorrelation functions depend only on
the difference between n and m and, therefore, we can write

covX(m− n) = cov(Xn, Xm) , corrX(m− n) = corr(Xn, Xm) .

Usually in model building it is convenient to use the autocorrelation func-
tion. Therefore, from now on, we will study only this measure. Of course, if
we have the formula for the autocorrelation function for the stationary time
series, we can get the autocovariance function by multiplication by Var(Xn).

We will denote by ρX(k) the theoretical ACF for stationary time series
{Xn} and by ρ̂X(k) the sample autocorrelation function (sample ACF) for
n observations x1, x2, . . . , xn given by

ρ̂X(k) =

∑n−|k|
i=1 (xi − x̄)(xi+|k| − x̄)∑n

i=1(xi − x̄)2
,

where x̄ = 1
n

∑n
i=1 xi.
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As we will study not only the dependence structure of the time series but
of the squared time series as well, let us assume that EX4

n exists for every
n, X2

n is stationary and denote Yn = X2
n. Moreover, as a very wide class

of stationary processes can be generated by using i.i.d. noise (independent
identically distributed random variables) as the forcing terms in a set of
equations we will use the symbol {ξn} to denote a series of zero-mean i.i.d.
random variables with finite fourth moment. We take the notation σ2 = Eξ2n,
γ = Eξ4n.

3. The ACF for time series models

In this section, let us consider a few time series models. For each of them
we provide the formula for the ACF for the time series together with the
ACF for its squares.

3.1. Independent identically distributed variables

Let us first consider time series of zero-mean independent identically
distributed random variables with finite fourth moment, i.e. Xn = ξn. It
is clear that this series is stationary and that autocorrelation functions are
given by

ρX(k) = Ik=0 , ρY (k) = Ik=0 .

This means that not only for {Xn} the autocorrelations are zero (except
k = 0) but the same result we have for the squared process {Yn}. And now
we can look at top panels of Fig. 1 again because these graphs were plotted
for i.i.d. standard Gaussian noise.

3.2. MA(1) model

The sequence {Xn} is said to be MA(1) (Moving Average) process if for
every n

Xn = ξn + aξn−1 , (3.1)

where the innovations ξn are defined as in Sec. 2. MA processes found
many practical applications, i.e. they were used to model human vocal-tract
system using natural speech signals, [15]. The other applications the reader
can find in [16].

It is clear that this process is stationary and we can show that

ρX(k) =
Ik=0 + a2Ik=0 + aIk=1

1 + a2
,
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ρY (k) =


1 for k = 0 ,

a2γ−σ4a2

γ(1+a4)+σ4(4a2−1−a4)
for k = 1 ,

0 for k > 1 .

This means that for both MA(1) and squared MA(1) models the autocor-
relation function is equal to zero except k = 0 and k = 1. Note also that
if a > 0 then ρX(1) is greater than zero while for a < 0, ρX(1) falls below
zero.

Let us consider an example of MA(1) model, i.e., let {Xn} be given by
(3.1) with a = 0.8 and standard Gaussian noise, i.e. ξn

iid∼ N(0, 1). The
theoretical and sample ACF for {Xn} and {X2

n} are presented on the top
panels of Fig. 2. It is easily seen that for k > 1 the theoretical ACF is equal
to zero and sample ACF is placed within confidence intervals so it should
be treated as equal to zero.
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Fig. 2. The theoretical ACF (stars) and sample ACF (circles) for Xn (left panels)
and Yn = X2

n (right panels), where Xn is MA(1) model with a = 0.8 and standard
Gaussian noise (top panels) and Xn is AR(1) model with b = 0.7 and standard
Gaussian noise (bottom panels).

It is worth noting that one can obtain similar result for MA(q) models
but then the measures are not equal to zero only for k ≤ q. Therefore, if
the sample autocorrelation functions of both data and squared data are zero
except a few first lags one can try to describe the data with MA models.
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3.3. AR(1) models

The sequence {Xn} given by

Xn − bXn−1 = ξn , (3.2)

where the innovations ξn are defined as in Sec. 2, is called AR(1) (Autore-
gressive) model. We assume that 0 < |b| < 1 in order to get the so-called
causal model and then Xn =

∑∞
j=0 b

jξn−j . For this model we have

ρX(k) = bk ,

and this means that for b > 0 this measure decays exponentially as k tends to
infinity. However, for b < 0 the autocorrelation function oscillates and it is
convenient to investigate its behavior by taking even and odd ns separately
— the ACF tends exponentially to zero for each of these two subsequences
of ns. The autocorrelation function for squared AR(1) model tends to zero
even faster (although still exponentially) as it is given by

ρY (k) = b2k .

The AR-type models were used in many areas of interest. For example in [17]
the authors propose to use such processes to analyze variabilities of heart
rate and systolic blood pressure while in [18] the AR system describes DNA
sequences.

And now let us consider an example of AR(1) model, i.e. let {Xn} be
given by (3.2) with b = 0.7 and ξn

iid∼ N(0, 1). According to our results, the
theoretical and sample ACFs for {Xn} and {X2

n} tend to zero quite quickly,
see the bottom left and the bottom right panel of Fig. 2. Moreover, as
AR(1) can be treated as MA(∞) model, one can use the results obtained for
AR(1) model to imagine the behavior of ACF for some infinite order moving
average processes.

So when we deal with the real-life data and the sample ACF tends to
zero rapidly it could suggest the use of ARMA model as for this type of
models the autocorrelation function is bounded by functions exponentially
tending to zero.

3.4. ARCH(2) models

Although ARMA processes are useful in modeling real-life data of various
kinds, they belong to the class of linear processes and they do not capture
the structure of financial data. Therefore, the class of ARCH processes was
introduced in [20] to allow the conditional variance of a time series pro-
cess to depend on past information. ARCH models have become popular
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in the past few years as they provide a good description of financial time
series, [21, 22, 23, 24]. They are nonlinear stochastic processes, their distri-
butions are heavy-tailed with time-dependent conditional variance and they
model clustering of volatility.

Let us consider the ARCH(2) process with Gaussian innovations defined
by the equations

Xn =
√
hnξn , hn = θ + ψ1X

2
n−1 + ψ2X

2
n−2 , (3.3)

where ξn
iid∼ N(0, 1) and θ, ψ2 > 0, ψ1 ≥ 0. For such model the conditional

variance hn of Xn depends on the past through the two most recent values
of X2

n. We assume that ψ2 + 3ψ2
1 + 3ψ2

2 + 3ψ2
1ψ2−3ψ3

2 < 1, as this condition
guarantees the existence of the fourth moment for the process {Xt}, see [25].
As it was shown in [25] the following formula holds

ρX(k) = Ik=0 ,

ρY (k) =



1 for k = 0 ,

ψ1

1−ψ2
for k = 1 ,

ψ2+ψ2
1−ψ2

2
1−ψ2

for k = 2 ,

ψ1ρY (k − 1) + ψ2ρY (k − 2) for k > 2 .

So the most important fact is that for ARCH(2) model the ACF is zero
(only ρX(0) = 1) and this means that the Xns are uncorrelated (but not
independent). Therefore, if we look only at the sample ACF of the data
generated from ARCH(2) model, see e.g. the bottom left panel of Fig. 1, we
can come to the wrong conclusion that we deal with i.i.d. noise, cf. the top
left panel of Fig. 1. Fortunately, if we check the behavior of ACF for squared
time series we notice the significant difference between the ARCH(2) process
and i.i.d. variables, compare left panels of Fig. 1.

The same results are also true for the general ARCH(q) models, i.e. the
Xns are uncorrelated while the ACF is not equal to zero for the squared
time series.

3.5. GARCH(1,1) models

In empirical applications of the ARCH model a relatively long lag in the
conditional variance equation is often called for. In order to avoid prob-
lems with negative variance parameter estimates, a more general class of
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processes, GARCH process was introduced in [26], allowing for a much more
flexible lag structure. These kind of models seem to describe stock, stock
index and currency returns very well, so they are now widely used to model
financial time series (see [23, 24, 27] and references therein). The Gaussian
GARCH(1,1) model is defined by the equations

Xn =
√
hnξn , hn = θ + φhn−1 + ψX2

n−1 , (3.4)

where ξn
iid∼ N(0, 1) and θ, φ, ψ > 0. We assume that 3ψ2 + 2ψφ+φ2 < 1, as

this condition guarantees the existence of the fourth moment for the process
{Xn}, see [25]. For the considered model we have

ρX(k) = Ik=0 ,

ρY (k) =


1 for k = 0 ,

ψ(1−ψφ−φ2)
1−2ψφ−φ2 for k = 1 ,

(ψ + φ)k−1ρY (1) for k > 1 ,

see [25]. As in the case of ARCH model, for GARCH(1,1) model the ACF is
zero and this means that the Xns are uncorrelated (but not independent).
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Fig. 3. The theoretical ACF (stars) and sample ACF (circles) for Xn (left panels)
and Yn = X2

n (right panels), where Xn is GARCH(1,1) model with φ = 0.6, ψ = 0.2
and standard Gaussian noise (top panels) and Xn is SARIMA(0,0,0)×(1,0,0) with
period s = 3 and φ = 0.7 and standard Gaussian noise (bottom panels).
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The ACF for {X2
n} is not equal to zero and it tends to zero exponentially.

We can observe this behavior on the top panels of Fig. 3, where the example
of GARCH(1,1) is given. The ACF for the time series is zero while the same
function for squared time series is greater than zero but tends to zero quite
quickly.

For the general GARCH(p,q) models we get similar results, i.e. the Xns
are uncorrelated while the ACF is not equal to zero for the squared time
series. Therefore, if we analyze the data and the sample ACF is zero for all
lags, we should look at the ACF of the squared data in order to get more
information.

3.6. SARIMA models

Many real-life phenomena exhibit seasonal behavior. The traditional
time series method to deal with them is the classical decomposition where
the model of the observed series incorporates trend, seasonality and random
noise. However, in modeling empirical data it might not be reasonable to
assume, as in the classical decomposition, that the seasonal component re-
peats itself precisely in the same way cycle after cycle. SARIMA (Seasonal
Autoregressive Integrated Moving Average) models allow for randomness in
the seasonal pattern from one cycle to the next, see [5]. A SARIMA(p, d, q)×
(P,D,Q) model with period s it is a process {Xn} that satisfies the equation

φ(B)Φ(Bs)(1−B)d(1−Bs)DXn = θ(B)Θ(Bs)ξn ,

where φ(z) = 1 − φ1z − . . . − φpzp, Φ(z) = 1 − Φ1z − . . . − φP zP , θ(z) =
1 + θ1z− . . .− θqzq, Θ(z) = 1 +Θ1z− . . .−ΘQzQ and B is a backward shift
operator.

SARIMA processes were used to model real time series that exhibit
seasonality, such as energy demand and prices [28, 29], meteorological and
malaria variables [30] and data related to water quality [31].

Let us consider SARIMA(0, 0, 0) × (1, 0, 0) system with period s = 3,
standard normal innovations and let us assume that 0 < φ < 1. In this case,
the equation for Xn takes the following form

Xn − φXn−3 = ξn . (3.5)

The solution of this equation is Xn =
∑∞

j=0 φ
jξn−3j and this implies that

the unique solution of equation (3.5) is stationary. Moreover, EXn = 0 and

ρX(k) =
{
φk/3 when k mod 3 = 0 ,
0 otherwise .
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For the process Yn = X2
n we determined the explicit formula for the auto-

correlation function

ρY (k) =
{
φ2k/3 when k mod 3 = 0 ,
0 otherwise .

The considered model is called ‘seasonal’ with period s = 3 and the ACF
function reflects its character. The autocorrelation functions for both Xn

and Yn oscillate and the period is also 3 — the behavior of the theoretical
and sample ACF for the considered model with φ = 0.7 can be observed on
the bottom panels of Fig. 3.

4. Applications

In order to illustrate the theoretical results presented above in this sec-
tion, we analyze real data set that describes CO2 concentration in the air
in open space of huge company. The time series presents 2-minutes ob-
servations from working hours from Tuesday (12.04.2011, 5:36–20:26) and
Friday (15.04.2011, 5:36–20:00) because data reported on those days exhibit
completely different behavior than this reported on Monday, Wednesday and
Thursday. Before further analysis, we remove deterministic trend that in this
case is a polynomial of order 2. In Fig. 4 we present the examined (after
removing the trend) (top panel) and squared (bottom panel) time series.
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Fig. 4. The real data set after removing deterministic trend (top panel) and squared
time series (bottom panel).
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Because inspection of the correlation for real set of observations can lead
sometimes to the wrong preliminary choice of the model, therefore, in the
first step of our analysis we examine the autocorrelation functions of the
time series as well as the squared data. As we observe in Fig. 5, the sample
ACFs tend to zero rapidly, therefore, we can suggest the use of ARMA-type
model. For simplicity, we take under consideration only AR(p) processes.
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Fig. 5. The sample ACF for Xn — real data set (top panel) and Yn = X2
n (bottom

panel).

Next, by using least squares method we estimate the parameters of
AR(p) models. On the basis of final prediction error (FPE) [32] we select
the best p parameter that in this case is equal to 1. The estimated b param-
eter of AR(1) model given in (3.2) is equal to 0.2771. We also examine the
residuals. The variance ratio test applied to cumulative sums of residuals
suggest that this series is a random walk, that means the residuals consti-
tute i.i.d. sample. Moreover, we test also the distribution of the residuals
by using procedure presented in [33] based on the cumulative distribution
function and recognize that residuals come from the NIG distribution, i.e.
distribution with the following density function, [34, 35]

fNIG(x) =
αδ

π
eδ
√
α2−β2+β(x−µ)

K1

(
α
√
δ2 + (x− µ)2

)
√
δ2 + (x− µ)2

, x ∈ R , (4.6)

where K1 is a modified Bessel function of the third kind and δ > 0, 0 ≤
|β| < α, µ ∈ R. By using the maximum likelihood method [35], we obtain
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the following estimates of the parameters α, β, δ and µ

α = 0.08 , β = −0.0030 , δ = 9.7572 , µ = 0.5193 .

5. Conclusions

In this paper, we recall that in the second-order case commonly ap-
plied method of gaining information concerning the dependence structure
of a given set of observations by estimating the autocorrelation (or autoco-
variance) function can provide useful guidance in the choice of satisfactory
model or family of models. However, the results reported above, clearly
suggest that considering the autocorrelation function for the squares might
be helpful in distinguishing between different types of time series models
and prove even a better guide in selecting a set of possible model candidates
when modeling real-life data. This method is worth applying as it is very
simple. Indeed, in order to get the sample ACF for the squares one does not
need to prepare new computer programs — it is sufficient to restrict to any
well-know routine for ACF and use it for squared observations.
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