
Vol. 43 (2012) ACTA PHYSICA POLONICA B No 5

GEOMETRIC PHASE
OF OPEN TWO-LEVEL SYSTEMS∗

Jerzy Dajka, Jerzy Łuczka

Institute of Physics, University of Silesia
Uniwersytecka 4, 40-007 Katowice, Poland

(Received April 2, 2012)

Geometric phase of open quantum systems is reviewed. An emphasis is
given on specific features of the geometric phase which can serve as an indi-
cator of type and strength of interaction between two-level system (qubit)
and its bosonic environment. We study three examples: (i) a single qubit
dephasingly coupled to the environment, (ii) a qubit being a part of quan-
tum register, and (iii) a neutrino interacting with matter and environment.
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1. Introduction

Geometric phase is an example of an ‘obvious’ features of quantum me-
chanics which could remain overlooked by almost two generations of physi-
cists [1]. Its role in various branches of quantum physics is hard to overesti-
mate. The range of applications includes (among other) molecular systems,
quantum Hall effects and field theory. For a complete and modern review the
book [2] is recommended. In recent years the concept of the geometric phase
has entered one more field of applicability: quantum information processing.
The so-called holonomic quantum computation [3] has been discovered and
recognized as a promising direction in quantum information retrieval due to
their potential fault tolerance.

Our review is devoted to the concept of the geometric phase gained by
evolving open quantum systems. Our primary aim is to convince the reader
that the geometric phase, as a global feature of quantum evolution, is capable
to reflect the information on the character of interaction between an open
system and its environment. The paper is organized as follows: we start
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with a short introduction of a highly non-trivial concept of the geometric
phase in non-unitary evolution of quantum systems in mixed states. Next,
we recall the model of pure decoherence of a two-level system and present
the exact reduced dynamics for the sytem. In the remaining part we shortly
review three systems examplifying usefulness of geometric phases: (i) a qubit
weakly coupled to the bosonic bath; (ii) a simplified quantum register and
(iii) the oscillating neutrino interacting with environment.

2. Geometric phase for open quantum systems

The origin and development of the notion of geometric phase and some
related geometric concepts of quantum mechanics are summarized in Ref. [1].
Here we are going to pass directly to the problem of the notion of geometric
phase for open quantum systems, or as will be seen below, what the geo-
metric phase may be, as there is no unique concept of the geometric phase
for mixed states under arbitrary nonunitary dynamics. The first attempt
to construct geometric phase has been proposed by Uhlmann. His proposal
is of purely mathematical character, and despite its elegance, suffers from
unsuffiently clear experimental meaning [4]. Other approaches are based on
quantum trajectories [5], quantum interferometry [6] and the state purifica-
tion (kinematic approach) [7]. In our investigations we have decided to use
the kinematic approach. The idea seems to be simple: instead of considering
mixed states of a quantum system (here we think always about qubits) one
can construct its purification, i.e. the open system is embeded into a larger
closed quantum system (described in terms of pure states only) by attach-
ing the ancillary finite dimensional system such that the reduced dynamics
reproduce the original open qubit dynamics (notice: the embeding is not
into real bath, but into a fictitious system). Having pure state dynamics of
the qubit–ancilla system in terms of a wave function one can introduce a
meaningful concept of a phase with respect to this wave function. Such a
construction is far from being trivial as there is an infinite family of possible
purifications and one needs to choose ‘the best one’. It can be achieved by
a proper choice of the geometric concept of the parallel transport of puri-
fied states [7]. The GP constructed in Ref. [7] exhibits primary features:
(i) it is purification-independent, (ii) gauge invariant and (iii) reduces to
the standard definition in the limit of an unitary evolution, i.e. in the limit
of closed qubit system. Probably the main advantage of studying this phase
is its measurability via carefully prepared interferometric experiments (the-
oretically) proposed in [6, 7] and recently successfully performed in Ref. [8].
Our choice is thus determined by its potential experimental implementation.
Here we recall the construction of the GP based on the method presented in
Ref. [7]. First, we rewrite the density matrix for the qubit in the spectral-
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decomposition form

ρ(t) =
2∑
i=1

λi(t) |wi(t)〉〈wi(t)| , (1)

where λi(t) and |wi(t)〉 are the eigenvalues and eigenvectors of the density
matrix ρ(t) calculated at the time instant t. The GP Φ(t) corresponding to
such an evolution is defined by the relation [7]

Φ(t) = Arg

 2∑
i=1

[λi(0)λi(t)]1/2〈wi(0)|wi(t)〉 exp

− t∫
0

〈wi(s)|ẇi(s)〉ds

 ,
(2)

where Arg [z] denotes the principal argument of the complex number z,
〈wi|wj〉 is a scalar product and the dot indicates the derivative with respect
to time s.

3. Pure decoherence of a qubit

We study a qubit Q (an arbitrary two-level quantum system) coupled
to its environment. We assume a pure dephasing interaction between the
qubit and the bosonic environment and we ignore the energy decay of the
qubit. This assumption is reasonable in the case when the phase coherence
decays much faster than the energy (the fastest relaxation process is pure
dephasing). When the process of energy dissipation can be neglected and
the only process which is responsible for the ‘openness’ is the pure deco-
herence the synonym of the term dephasing is also used in papers. With
no energy dissipation there is still an irreversible information loss in the
quantum system [9]. We model such a system by the Hamiltonian (~ = 1)

H = HQ ⊗ IB + IQ ⊗HB +HI , (3)

where IQ and IB are identity operators in corresponding Hilbert spaces of
the qubit Q and the environment B, respectively. Let us denote the qubit
canonical basis by {|1〉, |−1〉}. The qubit Hamiltonian HQ represented in
this basis reads

HQ = ε+|1〉〈1|+ ε−|−1〉〈−1| , (4)

where ε± are the qubit energy levels. Let us notice that the level separation is
a simplest tunable parameter of the model as it is related e.g. to a magnetic
field acting on the spin system: if ε+ = −ε− = ε then HQ = εSz is the
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spin Hamiltonian, where Sz = |1〉〈1| − |−1〉〈−1| and ε is proportional to
the amplitude of the magnetic field. The environment is modeled as a one-
dimensional bosononic field and is described by the Hamiltonian HB of the
form

HB =

∞∫
0

dω h(ω)a†(ω)a(ω) , (5)

where the real-valued spectral function h(ω) depends on specific features of
the environment. The operators a†(ω) and a(ω) are the creation and anni-
hilation boson operators, respectively. The qubit-environment interaction,
in general, can be assumed to be asymmetric

HI = |1〉〈1| ⊗H+ + |−1〉〈−1| ⊗H− ,

H± = ±
∞∫
0

dω
[
g∗±(ω)a(ω) + g±(ω)a†(ω)

]
. (6)

The van Hove operators H± depend on the coupling functions g±(ω) (the
star ∗ denotes the complex conjugate). The Hamiltonian (3) can be refor-
mulated in the following form

H = |1〉〈1| ⊗H1 + |−1〉〈−1| ⊗H−1 , (7)
H1/−1 = HB +H± + ε±IB . (8)

Hamiltonians of the similar structure like (7) have been studied in the con-
text of a quantum kicked rotator [10], chaotic dynamics of a periodically
driven superconducting single electron transistor [11], the Josephson flux
qubit [12] and quantum dots [13]. The model may also serve as a compo-
nent of a simple quantum register [9]. Moreover, it contains, as particular
cases, the widely used van Hove model [14] (for g+(ω) = g−(ω)) and the
Friedrichs model [15] (for either g+(ω) = 0 or g−(ω) = 0). The generalized
spin-boson model (7) has been applied to analyze the electron-transfer reac-
tions [16] and the interconversion of electronic and vibrational energy [17].

The model (3)–(6) is exactly solvable in the sense that the exact density
matrix of the qubit can be obtained for a wide class of initial states of the
total system.

3.1. Dynamics of the total system

Here we present a derivation of the reduced dynamics for the simplest
case of symmetric (van Hove type) coupling i.e.

g+(ω) ≡ g−(ω) =: g(ω)h(ω) . (9)
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The case of symmetric coupling has been studied in various context in
Refs. [18, 19, 20, 21]. The discussion of a more general model is present
in [22].

Let us notice that in the canonical basis, the Hamiltonian (7) is a block-
diagonal 2× 2 matrix reading

H = diag[H1, H−1] . (10)

This form is convenient because we can directly apply results of Refs. [22,23]
and solve the Schrödinger equation with the Hamiltonian (3) since the block-
diagonal structure remains preserved for an exponential of the block-diagonal
matrices. Let us specify an initial state of the total system assuming a
product state, namely

|Ψ(0)〉 = (b1|1〉+ b−1|−1〉)⊗ |R〉 , (11)

where b1 and b−1 fully determine the qubit initial state and |R〉 is the initial
state of the environment.

Time evolution of the state (11) is governed by [23]

|Ψ(t)〉 = b1e
−iΛ1(t)|1〉 ⊗D(gt − g)e−iHBt|R〉

+b−1e
−iΛ−1(t)|−1〉 ⊗D(g − gt)e−iHBt|R〉 , (12)

where the phases Λ1(t) and Λ2(t) have the form

Λ1(t) = ε+t−
∞∫
0

dω|g(ω)|2 {h(ω)t− sin[h(ω)t]} ,

Λ−1(t) = ε−t−
∞∫
0

dω|g(ω)|2 {h(ω)t− sin[h(ω)t]} . (13)

For any function f , the notation ft means

ft(ω) = e−ih(ω)tf(ω) . (14)

The displacement operator D(f) reads [24]

D(f) = exp


∞∫
0

dω
[
f(ω)a†(ω)− f∗(ω)a(ω)

] (15)

for an arbitrary square-integrable function f .
The explicit form of the wave function (12) of the total system allows to

obtain a full information on the system. The corresponding density matrix
%(t) of the total (isolated) system has the form

%(t) = |Ψ(t)〉〈Ψ(t)| . (16)
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3.2. Reduced dynamics

We do not need to know full information on the total system: qubit +
environment. Rather the dynamics of the qubit only, an object of a potential
experiment influenced by the environment, is crucial. The qubit dynamics
can be obtained for the initial states given by Eq. (11) or, more generally,
for a larger class of states defined by relation

%(0) =
∑

i,j=1,−1

pij |i〉〈j| ⊗ |R〉〈R| , (17)

where pij are non-negative parameters. The reduced state ρ(t) for the qubit
only is obtained as a (partial with respect to the environment) trace of the
full Q+B state, and can be expressed in the form

ρ(t) = TrB
{
e−iHt%(0)eiHt

}
=

∑
i,j=1,−1

pij |i〉〈j| ⊗ TrB
(
e−iHit|R〉〈R|eiHjt

)
=

∑
i,j=1,−1

pijcji(t)|i〉〈j| , (18)

where TrB denotes partial tracing over the environment degrees of freedom,
the environment operators Hi(i = 1,−1) are given by Eq. (8) and the func-
tions cji(t) are defined by the relation

cji(t) =
〈
e−iHjtR|e−iHitR

〉
= 〈ψj(t)|ψi(t)〉 , (19)

i.e. cji(t) are determined by the scalar product of the environmental wave
functions |ψj(t)〉 and |ψi(t)〉.

3.3. Explicit results

The pure decoherence model is simple enough to provide a very rare
bonus: one can obtain explicit results for the quantum system affected by an
environment, at least for certain classes of initial prepation. It follows from
Eq. (18) that the qubit reduced dynamics can exactly be constructed, pro-
vided one is able to evaluate the corresponding scalar products in Eq. (19).
It is possible at least for two classes of initial states of the environment: for
the vacuum state |R〉 = |Ω〉 and the coherent states |R〉 = D(z)|Ω〉, where
D is the displacement operator (15). A coherent state of the bosonic field is
determined by a complex function z(ω) (by analogy to the one mode cases,
where standard coherent states are parameterized by a complex number).
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We assume the initial coherent state in the form

|R〉 = D(z)|Ω〉 = exp


∞∫
0

dω
[
z(ω)a†(ω)− z∗(ω)a(ω)

] |Ω〉 (20)

for an arbitrary square-integrable function z(ω). The vacuum state is a
particular case of the coherent state for z(ω) = 0. For the coherent initial
states of the environment, Eq. (12) takes the form

|Ψ(t)〉 = b1|1〉 ⊗ |ψ1(t)〉+ b−1|−1〉 ⊗ |ψ−1(t)〉 ,
(21)

where

|ψ1(t)〉 = e−iΛ2(t)D(gt − g + zt) |Ω〉 ,
|ψ−1(t)〉 = e−iΛ−2(t)D(g − gt + zt) |Ω〉 , (22)

and the relation

D(g)D(f) = eiIm〈g|f〉D(g + f) (23)

has been applied, Im〈g|f〉 is the imaginary part of the scalar product of two
functions g and f defined as

〈g|f〉 =

∞∫
0

dωg(ω)f∗(ω) . (24)

The phases Λ2(t) and Λ−2(t) read

Λ2(t) = Λ1(t)− Im〈gt − g|zt〉 ,
Λ−2(t) = Λ−1(t)− Im〈g − gt|zt〉 . (25)

It is convenient and very popular to present an initial qubit state |θ, φ〉 in
relation to a vector on the Bloch sphere, i.e. to parameterize the state by
two angles, namely,

|θ, φ〉 = cos(θ/2)|1〉+ eiφ sin(θ/2)|−1〉 , (26)

where θ and φ are the polar and azimuthal angles, respectively. This param-
eterization corresponds to b1 = cos(θ/2) and b−1 = eiφ sin(θ/2) in Eq. (11).
The initial state ρ(0) for the reduced qubit dynamics takes then the matrix
form

ρ(0) =
(

cos2(θ/2) (1/2) sin θe−iφ

(1/2) sin θeiφ sin2(θ/2)

)
. (27)
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From Eq. (18) one gets the time evolution of the reduced density matrix ρ(t)
in the form

ρ(t) =
(

cos2(θ/2) (1/2)A(t) sin θe−iφ

(1/2)A∗(t) sin θeiφ sin2(θ/2)

)
. (28)

Let us notice that this formula can be used as a definition of the dephasing
channel, where the influence of the infinite bosonic environment is repre-
sented by the relaxation function

A(t) = w(t)e−iΦ(t) , A(0) = 1 . (29)

The damping part reads

w(t) = 〈Ω|D(2gt − 2g−)|Ω〉 = e−r(t) , (30)

with the decoherence function

r(t) = 4

∞∫
0

dω|g(ω)|2 {1− cos[h(ω)t]} . (31)

The second part which can be recognized is the phase part

Φ(t) = Λ1(t)− Λ−1(t)− Im [〈gt − g|zt〉
+〈gt − g|zt〉+ 〈gt − g − zt|gt − g + zt〉] . (32)

One can observe that a coherent initial state does not affect the damping
part but modifies a phase part of the reduced statistical operator.

In a general case, the functions g and α are complex functions of a real
variable. For further clarity, we simplify the problem and assume from now
on that they are real functions. In this case, the total phase reads

Φ(t) = (ε+ − ε−)t+ Φz(t) , (33)

where the last part

Φz(t) = 4

∞∫
0

dωg(ω)z(ω) sin[h(ω)t] (34)

is the phase related to the initial coherent state. For the initial vacuum state
z(ω) = 0 and this contribution is clearly absent.
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3.4. Exemplum

Pure decoherence model is simple enough to obtain results in analyti-
cally closed form. We consider here a simplest case when the environment
is formed by one-dimensional bosonic field prepared initially in its ground
state, i.e. for z(ω) ≡ 0. The coupling between qubit and the field is conven-
tionally given in terms of the spectral function

g2(ω) = αωµ−1 exp(−ω/ωc) , (35)

where α > 0 is the qubit-environment coupling constant, ωc is a cut-off
frequency and µ > −1 is the “ohmicity” parameter: the case −1 < µ < 0
corresponds to the sub-ohmic, µ = 0 to the ohmic and µ > 0 to super-ohmic
environments, respectively. As a result one gets explicit formula for the
damping

r(t) = 4L(α, µ, t) , (36)

where

L(α, µ, t) = αΓ (µ)ωµc

{
1− cos [µ arctan(ωct)]

(1 + ω2
c t

2)µ/2

}
(37)

and Γ (z) is the Euler gamma function.
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Fig. 1. (Color online) Geometric phase of a qubit dephasingly coupled to the en-
vironment in the initial vacuum state for selected values of the qubit-environment
coupling parameter α calculated for a quasi-cyclic evolution with time t = 2π
(in unit of ωc). The remaining parameters are: ε+ = −ε− = ε = 1, µ = 0.05.
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We derived all necessary formulas necessary for calculation of the geo-
metric phase. The most important component of the calculation procedure
is the reduced density matrix (28). From Eq. (28) one can obtain its spectral
decomposition (1) and next, via the relation (2), the geometric phase. In
Fig. 1 we present the geometric phase calculated after quasi-cyclic evolution
(such that in the absence of dephasing α = 0 it reduces to the cyclic one [1]).
Let us notice a very peculiar feature of the geometric phase in dephasing en-
vironments: for the initial state (27) at θ = π/2 the phase remains unaffected
by the environment. It is due to a high symmetry of the considered model,
as discussed in Ref. [25]. This property is a natural halmark for dephasing
character of the qubit-environment coupling and vanishes for a general type
of interaction [26].

4. Weak coupling: beyond pure dephasing

Pure decoherence is a very iluminaiting and motivating model. Unfor-
tunately, it is far from being general. Any open system exchanges energy
with its environment and neglecting the corresponding heat flow is justified
only at certain time scales. There are clearly systems which properties can
be effectively measured after the time long enough to system-environment
energy transfer to occur. It will not be surprising that for such systems
the geometric phase can also serve as a very convenient tool for detailed
investigations of various features.

It is well known that, contrary to the classical open systems, there is
no general method for constructing the (microscopically consistent) reduced
dynamics [21]. The existing methods are limited to a relatively narrow
class of models and its parameters. The main obstructions and limitations
for effective investigations are related to the system-environment coupling
strength or the need of uncorrelated system-environment initial preparation
(i.e. justifying the Born approximation and the requirement of complete
positivity of the reduced dynamics [27]). To summarize, those who want to
be rigorous are left with only a few possibilities.

The most general tools of building rigorous reduced dynamics from mi-
crosopic Hamiltonians are the perturbative methods. The one with a clear
and well established mathematical background is owned to Davies [27]. Hav-
ing acceptable models of the reduced dynamics one can pose a natural ques-
tion: does the geometric phase indicate a significance of the abberancy of
the system from the ‘pure decoherence approximation’? The answer is affir-
mative. In Ref. [26] we studied the qubit weakly coupled to the environment.
It has been assumed that the Davies approximation holds true. It allows to
construct the suitable kinetic equation whose solution is a desired reduced
dynamics. Unfortunately, the complexity of the problem forces to apply nu-
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merical analysis. One of the results reported in our paper [26] is that the ge-
ometric phase (2) ‘feels’ if there is a symmetry breaking term (related to the
intra-qubit tunneling) responsible for a qubit-bath energy transfer. What
remarkable, this impact can be inferred just from measuring the phase for
a single qubit-environment initial preparation, i.e. the measurement of the
phase of a single initial preparation of the system can tell us if the energy
transfer (the heat flow) between qubit and its bath is significant.

5. Many qubit quantum registers

Quantum register is a multi-qubit device designed for a storage and re-
trieval of quantum information [28]. In general, the register is a highly
complicated system with many components of non-negligible interactions.
Quantum information is related to the configuration of that system. By the
‘configuration’ we mean the state of its components rather than the spa-
tial structure. Any modifications require to perform quantum operations
applied to certain components without uncontrolled effect on the remaining
part. The effect can be fully avoided only in the theory. As a result, one can
consider the selected one qubit surrounded by other qubits forming a kind
of environment.

Studying dynamics of realistic many component quantum systems re-
quires highly sophisticated techniques. In Ref. [29], we studied a simplest
approach which serve in many branches of solid state physics as a primary
tool: the mean-field approach. We have limited our studies to the case when
the mean field approach becomes exact: the global coupling between qubits
forming an infinite register [29]. In this limit all components of the regis-
ter interact with another with the same strength. The more compact the
device the more sensible the approximation is. Again, the geometric phase
has been shown to indicate both the type and the strength of coupling, at
least for the studied class of models. Moreover, the geometric phase becomes
stabilized if, except the mean-field, the qubit is affected by the thermal type
environment.

6. Oscillating neutrinos

The applicability of geometric phase in studying various properties of
open quantum systems goes beyond quantum information processing. One
of recent examples is reported in our paper [30] and is concerning the very
‘urgent’ and unsolved problem in physics of neutrinos [31]: are this particles
of Dirac or Majorana type? In other words, are they or they are not their
own anti-particles?
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If we limit our consideration to two types of oscillating neutrinos (typi-
cally to µ and e neutrinos [31]) one is left with an effective two-level system.
One can further attempt to take into account a (very weak) interaction be-
tween neutrinos and the ordinary matter and one arrives at the problem of
dissipative neutrino oscillations expressed in terms of simple phenomenolog-
ical models [32]. Even in the absence of the dissipation, the geometric phase
of oscillating neutrino is worth to be studied [33]. The details are beyond
the scope of this short review. Here, we want to emphasize only one of the
features: the geometric phase, provided that the dissipation is sufficiently
general (with an off-diagonal contribution to the Kossakowski matrix [27]),
is different for Dirac and Majorana type neutrinos [30]. This result opens a
new perspectives for the neutrino physics and is limited ‘only’ by technical
difficulties in measuring the geometric phase of neutrinos.

7. Summary

Geometric phase is a quantity which containes information about a to-
tal evolution of quantum system. This feature originates from its global
character. Its relation to the notion of the paralell transport attributes the
phase with a deep geometric and topological meaning [1]. In this review we
presented that this feature can be used for investigating the way, ‘how the
open system is open indeed’. In other words, our aim was to convince and
attact the reader to think about geometric phase as a highly efficient tool
in studying properties of open quantum systems. There are more ways than
one to skin a cat, but we hope that the selection of examples included into
this paper helped us to accomplish our goal.

The work supported in part by the grant N202 052940 and the ESF
Program “Exploring the Physics of Small Devices”.
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