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The stochastic Verhulst equation for the population density with fluc-
tuating volume of resources is considered. Using the exact solution of this
equation, the conditional probability density function is calculated for the
excitation in the form of Lévy white noise with one-sided stable distribu-
tion. The phenomenon of transient bimodality and non-monotonic relax-
ation of mean population density for the white noise with Lévy–Smirnov
stable distribution are found. An exact expression for the transitional time
from bimodality to unimodality is obtained. It is interesting that for such
a case the correlation function of population density in a steady state has
a simple exponential form, and the correlation time does not depend on
noise parameters.
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1. Introduction

The behavior of nonlinear dynamical systems in the presence of random
perturbations attracted much attention in connection with the concept of
noise-induced transitions and a wide range of applications in physics, chem-
istry and biology [1]. Transitions caused by noise are usually associated with
a change in the number of extrema in the probability distribution of vari-
able and may depend both quantitatively and qualitatively from statistics
of noise.

The logistic model, proposed in the XIX century by the Belgian math-
ematician Verhulst, is one of the classic examples of self-organization in
natural and artificial systems [2, 3, 4]. This model occurs in population
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dynamics of photons in a single-mode laser [5], self-replication of macro-
molecules [6], freezing of supercooled liquids [7], nonequilibrium chemical
kinetics [8, 9, 10, 11] and autocatalytic chemical reactions [12], dynamics
of biological populations [13, 14, 15], spread of viral epidemics [16], tumor
growth [17,18], etc.

The probabilistic and momentum characteristics of solution of the
stochastic Verhulst equation have been investigated for Gaussian [1,19] and
Poisson [20] fluctuations of the growth rate and also for the case of complete
correlation with fluctuations of the saturation parameter [12, 13, 18, 21, 22].
Some exact results for Malthus–Verhulst–Bernoulli equation with nonlinear
coupled fluctuations in the form of Markovian dichotomous noise and pe-
riodical excitation with random phase have been obtained in Refs. [23, 24].
In particular, a non-monotonic relaxation of mean population density to
stationary value was found.

In this paper, we analyze Verhulst model for evolution of biological pop-
ulation with fluctuating volume of resources. An excitation in the form of
white noise with one-sided stable probability distribution gives a possibility
to obtain some exact analytical results for statistical characteristics of pop-
ulation density such as the probability distribution of transitions and the
correlation function in a steady state.

2. Statement of a problem

For definiteness, we will adhere to the population biology terminology
and consider Verhulst model for the population density x(t) with fluctuating
volume of resources (saturation parameter)

dx

dt
= rx− ξ(t)x2 , (1)

where r is the rate of population growth and ξ(t) is white non-Gaussian noise
with one-sided probability distribution (ξ(t) ≥ 0). As shown in [25], such
noise is the first derivative of the generalized Wiener process (Lévy noise)
L(t), having infinitely divisible probability distribution [26]. This allows
us to write the characteristic functional of white non-Gaussian noise ξ(t),
taking a positive values, in the following form (see Ref. [27])

Θt [k] =

〈
exp

{
i

t∫
0

k (τ) ξ (τ) dτ

}〉
=exp

{ t∫
0

dτ

∞∫
0

eik(τ)z − 1
z2

ρ (z) dz

}
,

(2)
where k(t) is some deterministic function and ρ(z) is a non-negative kernel
function which is proportional to the probability density of jumps of Lévy
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process L(t). In particular, putting in Eq. (2) k(t) = k = const. we obtain
the characteristic function of corresponding Lévy noise

φL (k, t) =
〈
eikL(t)

〉
= exp

t
∞∫
0

eikz − 1
z2

ρ (z) dz

 . (3)

The random process x (t) is Markovian, and, using previously obtained in
Ref. [27] results (see Eq. (15)) with Eqs. (1) and (2), we can write closed
Kolmogorov’s equation for its probability density function P (x, t)

∂P

∂t
= −r ∂

∂x
(xP ) +

∞∫
0

ρ (z)
z2

[
exp

(
z
∂

∂x
x2

)
− 1
]
P (x, t) dz . (4)

However, we will not solve complex integro-differential equation (4) and
choose another way.

The exact solution of stochastic Eq. (1) reads

x (t) =
x0 e

rt

1 + x0

∫ t
0 ξ (τ) erτdτ

, (5)

where x0 = x(0) is the initial value of population density. For a convenience,
we introduce a new random process

η (t) =

t∫
0

e−r(t−τ)ξ (τ) dτ , (6)

having, in accordance with Eq. (2), the following characteristic function

ϑt (k) =
〈
eikη(t)

〉
= exp


t∫

0

dτ

∞∫
0

eikze
−rτ − 1
z2

ρ (z) dz

 . (7)

After this, the solution of Eq. (5) can be written as

x (t) =
1

η (t) + e−rt/x0
. (8)

Our main goal is to find the evolution of the conditional probability den-
sity function of random process x(t). To do this, one has to wrap Eq. (7),
i.e. find the probability distribution of random process (6) using the reverse
Fourier transform, and then apply the standard procedure for conversion of
the probability densities of random variables after a nonlinear transforma-
tion (8).
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3. Calculation of conditional probability density function

Further we analyze the probability distribution of population density
for some special cases of one-sided function ρ(z), specifying the statistics of
white noise ξ(t). For example, the kernel function in the form

ρ (z) = νze−µz , z ≥ 0 , (9)

where ν and µ are some positive parameters, corresponds to the Lévy process
L(t) with gamma-distribution. In fact, substituting Eq. (9) in Eq. (3) and
making the reverse Fourier transform, we arrive at

PL (z, t) =
µνtzνt−1e−µz

Γ (νt)
, z ≥ 0 ,

where Γ (x) is the gamma-function. After substitution of Eq. (9) in Eq. (7)
we obtain

ϑt (k) = exp
{
−ν
r

[
Li2

(
ik

µ

)
− Li2

(
ik

µ
e−rt

)]}
. (10)

Here Lin(z) is the polylogarithms expressed by the following power series

Lin (z) =
∞∑
k=1

zk

kn
.

Since Eq. (10) already contains a special function, it is impossible to find
the probability distribution of random process η(t) in closed analytical form
as well as the probability distribution of population density x(t).

As well-known [28], the entire class of stable probability distributions
Pα,β(x) with the following characteristic functions

θα,β (k) = exp
{
− |k|α exp

(
iπβ

2
sgn (k)

)}
(11)

can be presented in the form of a set of diamond points at the parameter
plane (α, β) (see the shaded area in Fig. 1)

|α− 1|+ |β| ≤ 1 .

In Fig. 1 a part of horizontal axis β = 0 inside the diamond corresponds to
the α-stable symmetric probability density functions, while the points of the
thick line β = −α correspond to the one-sided stable distributions.
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Fig. 1. The range of parameters (shaded area) corresponding to the stable prob-
ability laws. The thick side of the diamond corresponds to the one-sided stable
distributions [28].

The stable probability distributions derived by the reverse Fourier trans-
form of characteristic functions (11)

Pα,β (x) =
1
π

Re


∞∫
0

exp
(
−ikx− kαeiπβ/2

)
dk

 (12)

can be expressed in analytical form only in rare cases and has a heavy
tails: Pα,β(x) ∼ 1/ |x|α+1 at |x| → ∞. As a result, all stable probability
density functions have infinite variance except the Gaussian distribution,
which corresponds to the point (2, 0) in Fig. 1. Moreover, all one-sided stable
probability distributions have also an infinite mean value. In particular,
calculating the integral (12) for α = 1/2, β = −1/2 we arrive at one-sided
Lévy–Smirnov distribution

P1/2,−1/2 (x) =
1

2
√
π x3/2

e−1/(4x) , x ≥ 0 . (13)

Let us consider now the random excitation ξ(t) with one-sided stable
probability distribution in Verhulst equation (1). In view of stability, the
random process η(t), obtained by linear integral transformation (6) of ξ(t),
should have the same distribution as ξ(t). This allows us to simplify the
calculations.

Choosing the following power kernel function

ρ (z) = qz1−α , z ≥ 0 (0 < α < 1) (14)
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in Eq. (3) and calculating the integral, we obtain the characteristic function
in the form (11) with β = −α, i.e. arrive to Lévy noise L(t) with one-sided
stable probability distribution. Substituting Eq. (14) in Eq. (7), performing
the double integration and taking into account Eq. (11), we arrive at

ϑt (k) = θα,−α (k σ (t)) , (15)

where

σ (t) = σ
(
1− e−rαt

)1/α
, σ =

[
q Γ (1− α)

rα2

]1/α

. (16)

In accordance with Eq. (15), the probability distribution of random process
η(t) reads

Pη (y, t) =
1

σ (t)
Pα,−α

(
y

σ (t)

)
. (17)

Using well-known relation of the probability theory regarding a nonlinear
transformation of random variables, from Eqs. (8) and (17) we find finally
the non-stationary probability distribution of population density

P (x, t) =
1

x2σ (t)
Pα,−α

(
1

σ (t)

(
1
x
− e−rt

x0

))
. (18)

Equation (18) determines the evolution of the probability density func-
tion from initial state to the following steady state in asymptotics (t→∞)
(see Eqs. (16) and (18))

Pst (x) =
1
x2σ

Pα,−α

(
1
xσ

)
. (19)

4. Analysis of transient bimodality

Further we demonstrate our general results (18) and (19) for white non-
Gaussian noise ξ(t) with Lévy–Smirnov stable distribution (α = 1/2). From
Eqs. (13), (16) and (18) we find

P (x, t) =
2q
(
1− e−rt/2

)
r
√
x (1− xe−rt/x0)

3/2
exp

{
−

4πq2x
(
1− e−rt/2

)2
r2 (1− xe−rt/x0)

}
. (20)

The plots of non-stationary probability distribution of population density
(20) are shown in Fig. 2 for different times. The thick dashed line corre-
sponds to the following asymptotic distribution (t→∞)

Pst (x) =
2q
r
√
x
e−4πq2x/r2 , x > 0 . (21)



Transient Dynamics of Verhulst Model with Fluctuating Saturation . . . 941

As seen from Fig. 2, the initial distribution in the form of delta-function
immediately transforms into bimodal at t > 0 (see the curves for t = 0.1
and t = 0.4) with two peaks corresponding to the scenarios of annihilation
and survival of biological population. Then, after some transitional time
tc = 0.737645 (thick solid curve in Fig. 2), the probability density function
becomes again unimodal with one maximum at the origin (see the curve for
t = 1.5), approaching in the limit of large times to the steady state distribu-
tion (thick dashed curve in Fig. 2). Thus, the fluctuations in resources with
infinite mean value lead to annihilation of the population in most likely sce-
nario, in contrast to the fluctuations in the growth rate, when the maximum
is shifted to non-zero values [19,20].

0.5 1 1.5 2

1

2

3

4

0

P(x,t)

x

t=0.1

t=10
t=0.4

t=0.737645
t=1.5

Fig. 2. The evolution of the probability distribution of population density. The
thick solid curve corresponds to the transition from bimodality to unimodality
(t = 0.737645) and thick dashed curve corresponds to the steady-state distribution
(t = 10). The parameters are x0 = 0.8, r = 1, q = 0.5.

To find the time tc of noise-induced transition from bimodality to uni-
modality one should equate to zero the first derivative (or the logarithmic
derivative) of the distribution (18) with respect to x. As a result, we arrive at

[lnPα,−α (z)]′ = − 2
z + τ0 (t)

, (22)

where

z =
1

xσ (t)
− τ0 (t) > 0 , τ0 (t) =

e−rt

x0σ (t)
. (23)

For Lévy–Smirnov stable distribution (13) Eq. (22) transforms to the fol-
lowing quadratic equation with respect to 1/z

τ0 (t)
z2

+
1− 6τ0 (t)

z
+ 2 = 0 . (24)
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As seen from Fig. 2, within the time interval (0, tc) the probability density
function has two extrema (minimum and maximum) in the area x > 0 and
for t > tc these two extrema disappear. On the other hand, Eq. (24) has not
real roots when its discriminant is negative, i.e.

36 τ2
0 (t)− 20 τ0 (t) + 1 < 0 . (25)

According to Eqs. (16) and (23), τ0 (t)→∞ at t→ 0. As a result, we obtain
from Eq. (25) the following equation to determine the transitional time tc

τ0 (tc) = 1
2 . (26)

Substituting Eqs. (16) and (23) into Eq. (26) and putting α = 1/2, we find
finally

tc =
2
r

ln
(

1 +
r

4q

√
2
πx0

)
. (27)

As can be seen from Eq. (27), the transitional time increases slowly with
decreasing all the parameters: the initial value of population density x0, the
noise intensity q and the rate of population growth r.

5. Non-monotonic relaxation of mean population density

Now we analyze a behavior of the mean population density. From
Eqs. (18) and (23) we obtain

〈x (t)〉 =
1

σ (t)

x0 ert∫
0

Pα,−α

(
1

xσ (t)
− τ0 (t)

)
dx

x
=

∞∫
0

Pα,−α (z) dz
σ (t) z + e−rt/x0

.

(28)
Performing the integration in Eq. (28) for Lévy–Smirnov distribution (13)
we arrive at

〈x (t)〉 = x0 e
rt
[
1−

√
πγ (t) eγ(t) erfc

(√
γ (t)

)]
, (29)

where

γ (t) =
4πq2x0

r2

(
ert/2 − 1

)2
(30)

and erfc(x) is the complementary error function.
The dependence of mean population density on time, given by Eqs. (29)

and (30), for a fixed Malthus factor r = 1, fixed noise intensity q = 0.25 and
different initial values of population density x0 is depicted in Fig. 3. For all
cases we observe a non-monotonic relaxation to the stationary value. This
interesting behavior has been first found by Zygadło in his paper [23] for
Malthus–Verhulst–Bernoulli model with external excitation in the form of
Markovian dichotomous noise and sinusoidal signal with random phase and
was confirmed by numerical simulations.
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Fig. 3. The non-monotonic relaxation of the mean population density to a station-
ary value for different initial conditions. The parameters are r = 1, q = 0.25.

6. Steady state characteristics

As it follows from Eq. (21), the probability distribution of population
density in a steady state decreases exponentially at x→∞. It means that all
the moments of x(t) are finite. Calculating from Eq. (21) the characteristic
function in a steady state

θst (k) =
(

1− ikr2

4πq2

)−1/2

and expanding its logarithm in power series in parameter k, we find the
cumulants of any order of stationary random process x(t)

κn =
(n− 1)!

2

(
r2

4πq2

)n
. (31)

In particular, Eq. (31) yields the following expressions for the mean value
(n = 1) and the variance (n = 2) of population density in a steady state

〈x〉 =
r2

8πq2
, κ2 =

r4

32π2q4
. (32)

As seen from Eq. (32), the mean value of population density as well as
the variance increases with increasing the growth rate, but decreases with
increasing the intensity of saturation parameter fluctuations. From Eq. (21)
one can also calculate the probability that the population density in a steady
state does not exceed its mean value
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Prob {x (t) < 〈x〉} = erf
(

1√
2

)
≈ 0.68 ,

where erf(x) is the error function.
To calculate the correlation function K (τ) = 〈x(t)x(t+ τ)〉 of popula-

tion density in a steady state one can use previously obtained result (28) for
the mean value. It is sufficient to multiply Eq. (28) on x0 and average over
the stationary distribution Pst(x0) (19), i.e.

K (τ) =

∞∫
0

1
σx0

Pα,−α

(
1
σx0

)
dx0

∞∫
0

Pα,−α (z) dz
σ (τ) z + e−rτ/x0

or, in accordance with Eq. (16),

K (τ) =
1
σ2

∞∫
0

Pα,−α (y) dy
y

∞∫
0

Pα,−α (z) dz

(1− e−rατ )1/α z + e−rτy
. (33)

It is surprising that for the case of white non-Gaussian noise excitation with
Lévy–Smirnov stable distribution (13) we can perform the double integration
in Eq. (33) in closed analytical form. As a result, we arrive at very simple
expression

K (τ) = κ2 e
−rτ/2 + 〈x〉2 (τ > 0) . (34)

Unexpectedly, but such complex nonlinear system as Verhulst model (1)
with multiplicative noise has a simple exponential correlation function (34)
in a steady state with the correlation time

τcor =
2
r
, (35)

which does not depend on the noise intensity q.

7. Conclusions

The strong analytical results for probabilistic characteristics of Verhulst
model with fluctuations of the saturation parameter in the form of white non-
Gaussian noise with one-sided stable distribution have been obtained using
the exact solution of the equation. The noise-induced transitions and non-
monotonic behavior of mean population density for the random excitation
having Lévy–Smirnov stable distribution have been found and analyzed in
detail. Some steady state characteristics such as all-order cumulants and the
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correlation function have been calculated. In particular, as it was shown,
the correlation function has a simple exponential form with the correlation
time which is independent on noise intensity.

This work was supported by the Russian Foundation for Basic Research
(grant 11-02-01418).
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