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We develop a new class of continuous-time models based on the solu-
tions of tempered fractional Langevin equations for Ornstein–Uhlenbeck
process driven by Lévy noise. We present methods of simulation of sample
paths of such processes. We show how to use such models in modeling
short term interest rate. We develop tempered Vasiček interest rate model
by finding explicit solutions of tempered fractional Langevin equations.
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1. Introduction

The concept of the interest rate r is strictly connected with our every-
day life and it tells us how the present value of money is related to its
value in future. Considering the interest-rate products one often has to drop
the assumption of deterministic behavior of interest rates and start to deal
with them in a stochastic setup. The probabilistic nature of interest rates
complicates valuing even the simplest cash flow streams. Moreover, the
need for pricing interest rate products is one of main goals for actuaries and
financial analysts. Therefore, we are still looking for models that describe
reality in more accurate way. In our research, we are often led to the field of
statistical physics and dynamics of complex physical systems. The methods
used there are very useful in the analysis of various economic processes.
∗ Presented at the XXIV Marian Smoluchowski Symposium on Statistical Physics,
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(961)



962 J. Gajda

Present paper uses physical models and some new methods from fractional
calculus to develop a new class of continuous-time models which can be
helpful in modeling short term interest rate.

One of the most pronounced examples of processes that has been of funda-
mental importance both in mathematics and physics is Ornstein–Uhlenbeck
(O–U) process

dr(t) = (a− br(t))dt+ σdW (t) , r(0) = r0 , (1)

where a, b, σ > 0 and r0 are constant coefficients. a/b is the long term mean
level, b is spead of reversion to the mean and σ is standard deviation. W (t)
is a Brownian motion. Eq. (1) can be also written in term of Langevin
equation

dr(t)
dt

= (a− br(t)) + σξ(t) , (2)

where ξ(t) is the Brownian noise i.e. the derivative of Brownian motion in
the distributional sense.

O–U was introduced originally by Uhlenbeck and Ornstein [1] as a model
for the velocity process in the Brownian diffusion. O–U process provides also
a stationary solution for the velocity in classical Klein–Kramers dynamics
[2, 3]. In finance, Ornstein–Uhlenbeck process is known as a Vasiček short
term interest rate model [4]. One can name dozens of examples of applica-
tions of this model to financial data of interest rates, currency exchange rates
or commodity prices ([5] and references therein). The characteristic feature
of this model is that it exhibits the mean-reversion, namely the process in
the long-time period is pulled to the mean level. Such mean-reversion is in
accordance with economic phenomenon that interest rates in the long time
period stays the same constant average value.

Popularity of Ornstein–Uhlenbeck process resulted in its many gener-
alizations. These generalizations are motivated by the facts that the as-
sumption of normality for many observed data is not satisfied. Empirical
observations confirm heavy-tailed or leptokurtic distribution of price changes
see e.g. [6] and references therein. Thus, Mandelbrot [7] and Fama [8] pro-
posed the α-stable distribution instead of Gaussian law to describe asset
returns. Stable laws have found applications in many fields, one can name
here finance [9], physics [10] and electrical engineering [11]. The O–U pro-
cess with α-stable noise was analyzed in [12,13] as a model for financial data
description. Apart from α-stable noise, one can also use fractional Brownian
dynamics [14], or recently introduced tempered α-stable distributions [15]
in order to capture anomalous character of financial dynamics.
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In this paper, we introduce fractional generalizations of O–U process.
Namely, in Eq. (2) we replace the ordinary derivative with the general tem-
pered Riemann–Liouville derivative [16]. Moreover, we use general Lévy
noise input

ζ(t) =
dL(t)
dt

,

instead of Brownian one. A real valued stochastic process L(t), t ≥ 0 is
called Lévy process if it is continuous in probability, has independent and
stationary increments and L(0) = 0, see [17]. Examples of such process
are α-stable, tempered α-stable, Linnik, Gaussian, generalized inverse Gaus-
sian. The similar approach with Riemann–Liouville derivative and Brownian
white noise is presented in [18]. The class of fractional differential equations
driven by Lévy noise is presented in [19,20,21,22].

This article is structured as follows. In Sec. 2 we present general defini-
tions and properties of tempered fractional derivatives. Section 3 is devoted
to solutions of tempered fractional equations with Lévy noise. In Sec. 4 we
apply earlier considerations and develop general tempered Vasiček model for
short term interest rate. We discuss basic properties of this model. Section 5
concludes the paper.

2. Tempered fractional derivatives

Fractional derivatives are usually connected in physics with stable-Lévy
processes and the subordination techniques [23]. Recently Rosiński [24] and
Cartea, del-Castillo-Negrete [25] introduced independently a new class of
tempered stable processes. Tempered α-stable processes posses very impor-
tant feature, namely, they have finite moments of all orders but, at the same
time, they resemble stable laws in many aspects (see [24] for details). We
can name many fields of applications of such processes, finance [26,27], biol-
ogy [28], physics in the description of anomalous diffusion (especially when
one observes the transition from the initial subdiffusive character of motion
in short times to standard diffusion in long times) [29,30,31]. Since tempered
α-stable processes are extension of α-stable ones, the tempered derivatives
are a natural extension of fractional ones.

Before considering general tempered fractional derivatives, let us recall
definitions of Riemann–Liouville fractional derivatives and integrals [32]. For
integrable function f and α > 0 the fractional Riemann–Liouville integral is
defined as

0I
α
t f(t) =

1
Γ (α)

t∫
0

f
(
t′
) (
t− t′

)α−1
dt′ , (3)
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where t ∈ (0, T ). For suitable good functions f(t) and 0 < α < 1, the
Riemann–Liouville fractional derivative is defined as [32]

0D
α
t f(t) =

(
∂

∂t

)
0I

1−α
t f(t) =

1
Γ (1− α)

∂

∂t

t∫
0

f (t′)
(t− t′)α

dt′ . (4)

One can observe that for α = 1 we obtain classical ordinary derivative i.e.
0D

1
t f(t) = f ′(t). Following [16] the fractional tempered derivative of the

Riemann–Liouville type is defined as

0D
α,λ
t f(t) = e−λt0D

α
t e

λtf(t)− λαf(t) , (5)

where λ > 0 is a truncation parameter. For λ = 0 one obtains fractional
derivative and for α = 1, λ = 0 we recover classical derivative.

Dealing with tempered fractional derivatives is strictly connected with
various properties of Laplace transform. Let us recall that the Laplace trans-
form of a function f(t) is defined as

L(f(t)) = f̃(s) =

∞∫
0

e−stf(t)dt .

An extensively useful property in fractional calculus of fractional derivatives
is its convolution property. The convolution of two functions f(t) and h(t)
is defined as

(f ∗ h)(t) =

t∫
0

f(t− s)h(s)ds .

The Laplace transform of convolution of two functions yields

L(f ∗ h) = L(f)L(h) .

The Laplace transform of Eq. (4) yields [32]

L
(

0D
α
t f(t)

)
= sαf̃(s)−

0
I1−α
0+ f(0+) . (6)

Thus, assuming that f(0) = 0, the Laplace transform of the Eq. (5) is
given by the formula

L
(

0D
α,λ
t f(t)

)
= (s+ λ)αf̃(s)− λαf̃(s) . (7)
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3. Tempered fractional Langevin equations

In this section, we present some generalizations of the Langevin equa-
tion for O–U process defined in Eq. (2). For simplicity we assume that
a = 0. As will be shown later, the solutions of tempered fractional Langevin
equations are of the form of stochastic integrals with Lévy integrator. Our
investigations generalize the previous results [18, 19] since we apply tem-
pered fractional derivatives. Fractional Langevin equation with fractional
Riemann–Liouville derivative was considered in [33] to study the anoma-
lous diffusion of a free particle coupled to a fractal heat bath. Generalized
Langevin equation with the fractional derivative and nonlocal dissipative
force was analyzed in [34]. Such equations serve as extensions of classical
Langevin equations and can be used in modeling various complex physical
systems. For example, using fractional derivatives one can model subdif-
fusion 0 < α < 1 or superdiffusion 1 < α < 2 [35]. On the other hand,
tempered fractional derivatives can be useful in modeling of intermediate
situations between normal and anomalous diffusion (see [30, 31] and refer-
ences therein).

Let us formulate the first generalization of Langevin equation of the form

0D
α,λ
t r(t) + br(t) = σζ(t) , 1 > α > 0, b > 0, σ > 0 , (8)

where the standard derivative is replaced by the tempered one.

Theorem 3.1 The solution of Eq. (8) with the initial condition r(0) = 0
has the following form

r(t) =

t∫
0

σe−λ(t−s)(t− s)α−1Eα,α(−(b− λα)(t− s)α)dL(s) . (9)
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Proof.

0D
α,λ
t r(t) = L−1

(
(s+ λ)αL(r(t))− λαL(r(t))

)
= L−1

(
((s+ λ)α − λα)L(σe−λttα−1Eα,α(−(b− λα)tα))L(ζ(t))

)
= L−1

(
σ(1− b

(s+ λ)α + (b− λα)
)ζ̃(s)

)
= σζ(t)− L−1

(
σbζ̃(s)

(s+ λα) + (b− λα)

)
= σζ(t)− L−1

(
L(bσe−λttα−1Eα,α(−(b− λα)tα))L(ζ(t))

)
= σζ(t)− bσe−λttα−1Eα,α(−(b− λα)tα) ∗ ζ(t)
= σζ(t)− br(t) .

To show that the solution satisfies the initial condition one can use its explicit
representation Eq. (9). This completes the proof.

Another generalization of Langevin equation for O–U process has two
tempered fractional derivatives

A 0D
α,λ
t r(t) +B 0D

β,λ
t r(t) + br(t)=σζ(t) , A,B 6=0, b > 0, 1 > α > β > 0 .

(10)

Theorem 3.2 The solution of Eq. (10) with the initial condition r(0) = 0
has the following form

r(t) =
∞∑
k=0

t∫
0

σe−λ(t−s) 1
A

(−1)k

k!

(
b−Aλα −Bλβ

A

)k

×
(

(t− s)α(k+1)−1E
(k)
α−β,α+βk

(
−B
A

(t− s)α−β
))

dL(s) . (11)

Proof. Let us first observe that the Laplace transform of the Eq. (10) yields

A(s+ λ)αr̃(s) +B(s+ λ)β r̃(s)−Aλαr̃(s)−Bλβ r̃(s) + br̃(s) = σζ̃(s)

thus

r̃(s) =
σζ̃(s)

A(s+ λ)α +B(s+ λ)β −Aλα −Bλβ + b
.
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We have that

1
A(s+ λ)α +B(s+ λ)β −Aλα −Bλβ + b

=
∞∑
k=0

(b−Aλα −Bλβ)k

Ak+1
(−1)k

(s+ λ)−β(k+1)[
(s+ λ)α−β + B

A

]k+1
.

Then we have that the Laplace transform of r equals

r̃(s) =
∞∑
k=0

(
b−Aλα −Bλβ

)k
Ak+1

(−1)k
(s+ λ)−β(k+1)[

(s+ λ)α−β + B
A

]k+1
σζ̃(s) .

Inverting the above and using the fact, see [32],

L
(
tαn+β−1

(
∂

∂u

)n
Eα,β (utα)

)
=

n!sα−β

(sα − u)n+1

we obtain desired solution. To show that the solution satisfies the initial
condition one can use its explicit representation Eq. (11). One can easily
extend Theorem 3.2 to arbitrary number of tempered fractional derivatives.

We will need one more generalization of Vasiček model, namely

A
dr(t)
dt

+B 0D
α,λ
t r(t) + br(t) = σζ(t) , A 6= 0, B, b ≥ 0, 1 > α > β > 0 .

(12)

Theorem 3.3 The solution of Eq. (12) with the initial condition r(0) = 0
has the following form

r(t) =
∞∑
k=0

t∫
0

σe−λ(t−s) 1
A

(−1)k

k!

(
b−Bλα −Aλ

A

)k
×
(

(t− s)kE(k)
1−α,1+αk

(
−B
A

(t− s)1−α
))

dL(s) . (13)

Proof of this theorem is similar to Theorem 3.2.

4. Application to finance: tempered Vasiček model for
short interest rate

The classical Vasiček model [4] was one of the first diffusion-based inter-
est rate models proposed in the literature [5]. It assumes that the interest
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rate evolves as an Ornstein–Uhlenbeck process Eq. (1) with constant coeffi-
cients under the risk-neutral measure. Direct integration of Eq. (1) gives us
the exact formula for r(t)

r(t) = r0 exp(−bt) +
a

b
(1− exp(−bt)) + σ

t∫
0

exp(−b(t− u))dW (u) .

As one can easily infer we have

E(r(t)) = r0 exp(−bt) +
a

b
(1− exp(−bt)) ,

Var(r(t)) =
σ2

2b
(1− exp(−2bt)) .

The main consequence of the above is that the short rate r is mean reverting,
since the expected value tends to a/b when t→∞.

The basic interest rate contract is a T -maturity zero-coupon bond, see [5].
It guarantees its holder the payment of one unit currency at time T . We
will denote the value of the bond at time t < T by B(t, T ). Note that
B(T, T ) = 1. One can observe that the price of a zero-coupon bond is strictly
dependent on maturity T . According to yield-to-maturity hypothesis [36] the
value of a zero coupon bond is

B(t, T ) = exp

−
T∫
t

E
(
r(s)

∣∣∣Ft) ds
 , ∀t ∈ [0, T ] . (14)

Expectation in Eq. (14) is conditioned on some σ-field Ft, which represents
the knowledge of an investor prior to time t [36,37]. For the yield to maturity
Y (t, T ) and forward interest rate f(t, T ) (see [36]) we have the following
formulas

Y (t, T ) = − 1
T − t

lnB(t, T ) =
1

T − t

T∫
t

E
(
r(s)

∣∣∣Ft) ds , (15)

f(t, T ) = −∂ lnB(t, T )
∂T

= E
(
rT

∣∣∣Ft) , ∀t ∈ [0, T ] . (16)

Y (t, T ) is a rate of return on a bond if it was held until the maturity and
f(t, T ) is an interest rate specified now for a loan that will take place at a
specified future date. In what follows, we consider the following tempered
fractional generalization of Vasiček model

A
dr(t)
dt

+B 0D
α,λ
t r(t) = a+σζ(t) , A,B 6= 0, a, σ > 0, 1 > α > 0 . (17)
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In special case, namely α = 0, λ = 0 we obtain classical O–U process (1).
Due to lineality, the general solution of Eq. (17) is the sum of two components
r(t) = rD(t) + rS(t), namely the solution of deterministic part

A
drD(t)
dt

+B 0D
α,λ
t rD(t) = a , A,B 6= 0, a > 0, 1 > α > 0 (18)

and the solution of the stochastic part

A
drS(t)
dt

+B 0D
α,λ
t rS(t) = σζ(t) , A,B 6= 0, σ > 0, 1 > α > 0 . (19)

Let us first calculate the general solution of the deterministic tempered frac-
tional differential equation Eq. (18). To do this we formulate the following
theorem.

Theorem 4.1 The general solution of the Eq. (18) with the assumption
A = −Bλα−1, has the following form

rD(t)=
c

A
e−λtE1−α,1

(
−t1−αB

A

)
+

t∫
0

1
A
e−λ(t−x)E1−α,1

(
−B
A

(t−x)1−α
)
a dx ,

(20)
where c ∈ R is some constant.

Proof. Let us first observe that the solution of Eq. (18) is a sum of solutions
of two separate equations. Namely the solution of the equation

A
dr(t)
dt

+B 0D
α,λ
t r(t) = 0 (21)

and
A
dr(t)
dt

+B 0D
α,λ
t r(t) = a . (22)

Using results of Theorem 3.3 one can easily find that deterministic part has
the form as in Eq. (20). This completes the proof.

The solution of the stochastic part can be obtained via result presented
in Theorem 3.3, thus the general solution of Eq. (17) has the form

r(t) = rD(t) +

t∫
0

σ

A
e−λ(t−s)E1−α,1

(
−(t− s)1−αB

A

)
dL(s) . (23)

In Fig. 1 we present sample realization of rS(t), which was generated by the
method presented in Appendix A.

Now using Eq. (23) we can formulate the following theorem, which gives
formulas for yield to maturity, forward rates and bond prices in tempered
fractional Vasiček model.
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Fig. 1. Sample realization of rS(t) with 1.8-stable Lévy noise. Parameters are:
α = 0.8, σ = 0.6, A,B = 1.

Theorem 4.2 In tempered fractional Vasiček model given in Eq. (17) with
additional assumption A = −Bλα−1, yield-to-maturity forward rate, and
bond price are given by the following formulas

Y (t, T ) =
1

T − t

( T∫
t

rD(s)ds+

T∫
0

φ(u− t, t)du

+

T∫
t

u−t∫
0

K ′(u− t− s)φ(s, t)dsdu

)
,

f(t, T ) = rD(T ) + φ(T − t, t) +

T−t∫
0

K ′(T − t− s)φ(s, t)ds ,

B(t, T ) = e−
R T

t rD(s)ds−
R T
0 φ(u−t,t)du−

R T
t

R u−t
0 K′(u−t−s)φ(s,t)dsdu ,

where K(t) is equal

K(t) =
∞∑
k=0

1
k!

(
Bλα

A

)k
tkE

(k)
1−α,1+αk

(
−B
A
t1−α

)
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and

φ(u, t) = rS(t) +
B

A

 1
Γ (1− α)

t∫
0

(
(t− s)−α − (t+ u− s)−α

)
rS(s)ds

 .

Proof of this theorem is based on calculation of the following conditional
expectation for the stochastic part of Eq. (17).

ψ(u, t) = E (rS(t+ u)|Ft) . (24)

Recalling that ζ(t) is the derivative of Lévy process L(t), one can observe
that the solution of the stochastic part of Eq. (19) is also the solution of the
following integral equation

rS(t) =
σ

A
L(t)− B

A

(
0I

1−α
t rS(t)− 0I

1
t λ

αrS(t)
)
.

Then we have

ψ(u, t) = E

(
σ

A
L(t+ u)− B

A

(
0
I1−α
t+u rS(t+ u)−

0
I1
t+uλ

αrS(t)
)
|Ft
)

= E

(
σ

A
L(t+ u)− B

A

(
0
I1−α
t+u rS(t+ u)−

0
I1
t+uλ

αrS(t)
)

+ rS(t)− rS(t)|Ft
)

= rS(t) +
B

A

 1
Γ (1− α)

t∫
0

(
(t− s)−α − (t+ u− s)−α

)
rS(s)ds


−B
A

 1
Γ (1− α)

t+u∫
t

(
(t+ u− s)−α

)
E(rS(s)|Ft)ds−

t+u∫
t

λαE(rS(s)|Ft)ds


= φ(u, t)−B

A

 1
Γ (1− α)

u∫
0

(
(u−k)−α

)
E(rS(t+ k)|Ft)dk −

u∫
0

λαE(rS(t+k)|Ft)ds


= φ(u, t)− B

A

 1
Γ (1− α)

u∫
0

(
(u− k)−α

)
ψ(k, t)dk −

u∫
0

λαψ(k, t)ds

 .

We thus obtained integral equation of the form

ψ(u, t) = φ(u, t)− B

A

(
0I

1−α
u ψ(u, t)− 0I

1
uλ

αψ(u, t)
)
. (25)

The solution of the above is given by [19]

ψ(u, t) = φ(u, t) +

u∫
0

K ′(u− s)φ(s, t)ds ,
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where

K(t) =
∞∑
k=0

1
k!

(
Bλα

A

)k
tkE

(k)
1−α,1+αk

(
−B
A
t1−α

)
.

Thus, conditional expectation for r is given by

E(r(t+ u)|Ft) = rD(t+ u) + φ(u, t) +

u∫
0

K(u− s)φ(s, t)ds . (26)

Now application of the above in formulas (14), (15) and (16) completes the
proof.

The above results can be further applied to model real-life data using
tempered Vasiček model. This will be the subject of another paper.

5. Conclusions

Classical Langevin equation is a model of normal diffusion. On the other
hand, by application of Riemann–Liouville fractional derivatives one can
model sub- and superdiffusion. In this paper, we go one step further and
apply tempered fractional derivatives. Due to the fact that tempered frac-
tional derivatives occupy intermediate place between ordinary and fractional
derivatives, they can serve as a proper tool in describing situations between
normal and anomalous diffusion.

In this paper, we introduced several extensions of the classical Langevin
equation. These extensions are based on application of recently introduced
tempered fractional derivatives. We derived explicit solutions of tempered
fractional Langevin equations and showed how to simulate their paths. We
also introduced extension of classical Vasiček model for short term interest
rate, providing another tool in valuing interest-rate products. We derived
formulas for yield-to-maturity, forward rate and bond price in this model.

We believe that the proposed models can serve as another useful tool
both in physical and financial modeling.

The author would like to thank Marcin Magdziarz for fruitful discussions
and helpful comments on earlier versions of this paper. The research of J.G.
has been partially supported by the European Union within the European
Social Fund.
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Appendix A

Simulation of processes of the general form

Y (t) =

t∫
0

K(t− s)dL(s) (A.1)

is based on the following Theorem [38].

Theorem A.1 Let Y be of the form (A.1) and let us assume that the func-
tion K(t) is of the form

K(t) =

∞∫
0

e−νtµ(dν) , (A.2)

where µ is a finite borel measure on [0,∞). Then we can write Y (t) in the
form

Y (t) =

∞∫
0

X(ν, t)µ(dν) ,

where X(ν, t) is a solution of the following stochastic differential equation

dX(ν, t) = −νX(ν, t)dt+ dL(t) , X(ν, 0) = 0 . (A.3)

Therefore, crucial is to write function K(t) in the form (A.2). It turns out
that the function

K(t) =
1
b
tβ−1Eβ−α,β

(
−c
b
tβ−α

)
, β ≤ 1 ,

can be written as

K(t) =
1
π

∞∫
0

cνα sin(απ) + bνβ sin(βπ)
b2ν2β + c2ν2α + 2bc cos(π(β − α))να+β

e−tνdν .

Thus for the function

K(t) = e−λt
1
π

∞∫
0

cνα sin(απ) + bνβ sin(βπ)
b2ν2β + c2ν2α + 2bc cos(π(β − α))να+β

e−tνdν ,

after the change of variables ν + λ→ u we have

K(t)=
1
π

∞∫
0

1[λ,∞]
c(u− λ)α sin(απ) + b(u−λ)β sin(βπ)

b2(u−λ)2β + c2(u−λ)2α + 2bc cos(π(β−α))(u−λ)α+β
e−tudu .
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Using this representation we can approximate process in Eq. (A.1) through
the following steps

• Define S ⊂ [λ,∞], S = [r−m, rn], where m,n ∈ N and r > 1.

• Approximate process X(ν, t) given by the Eq. (A.3) in the following
way

X∆(ν, k∆) = e−u∆X∆(ν, (k − 1)∆) + L(k∆)− L((k − 1)∆) .

• Approximate Y (t) by

Y (t) =
n−1∑
i=−m

X∆(ri, t)µ(Ai) ,

where Ai = [ri, ri+1].
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