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Effects of resonance, or cluster production on the random (Poissonian)
fluctuations of multiplicity in rapidity bins has been analyzed. It is found
that for narrow bins (up to some 0.25 in rapidity), and for realistic assump-
tions on the resonances or clusters, this effect is reasonably small.
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1. In our recent paper with Bzdak [1], we considered fluctuations of
the particle numbers in well-separated rapidity bins. One reason for such
fluctuations are the fluctuations of the initial conditions and/or dynamics of
the evolution. E.g. in a nucleus–nucleus collision, the number and rapidity
distribution of the final state particles depends on the impact parameter of
the collision, on the number of wounded nucleons in each nucleus etc. These
are the dynamic fluctuations which were studied since the early times of high-
energy physics [2, 3, 4] and are still of interest [5, 6, 7, 8, 9, 10, 11, 12, 13]. On
top of them, however, there are purely statistical, random fluctuations. This
is well known to users of Monte Carlo programs, where the initial conditions
can be fully specified, but this is not enough to predict the numbers of
particles in the rapidity bins of a single event.

In [1], following [14, 15], we have chosen the simplest assumption that
these random fluctuations are Poissonian. Under this assumption, it is pos-
sible to correct for the random fluctuations and extract the dynamic fluctu-
ations which are much more interesting. The Poissonian Ansatz, however,
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corresponds to particles produced independently. Thus, it neglects the pro-
duction of resonances and/or particle clusters (in the following, we use the
term clusters for both resonances and clusters). In the present paper, we
discuss a simple model, where all the particles are produced from cluster
decays. This certainly exaggerates the effect of clusters, but even so we find
that the Poissonian Ansatz is an acceptable approximation, provided the
bin is sufficiently narrow. Our analysis shows that, at the present precision
of the data, bins of width up to about 0.25 rapidity units can be safely
used. We also discuss the bin-size dependence of such measurements and
show that they can be used to estimate the amount of clustering in particle
production.

2. Let us consider a rapidity bin of width ∆ and one cluster with at
least one particle among its decay products detected in the bin. Denoting
by pm the probability that exactly m particles from the cluster are detected
in the bin, we have the generating function

φ(z) =
max∑
m=1

pmz
m , (1)

where ‘max’ is the maximum number of the decay products of the cluster
which can be registered. Putting p1 = 1, and consequently pm = 0 for
all m > 1, we would reproduce the results of the model without clusters,
considered in [1]. Here we will discuss the implications of the assumption
p1 < 1.

Assume now that the distribution of the number of clusters contributing
to the population of the bin is a superposition of Poissonians with a dis-
tribution of average multiplicities ν given by the weight W (ν). Then the
generating function for the number of particles in the bin is

Φ(z) =
∫
dν W (ν)eν(φ(z)−1) . (2)

Differentiating over z and putting z = 1, we get the moments of the distri-
bution of the total number of particles n in the bin

〈n〉 = 〈m〉〈ν〉 ; 〈n(n− 1)〉 = 〈m〉2
〈
ν2
〉

+ 〈m(m− 1)〉〈ν〉 , (3)

and so on.
As an illustration, consider the special case when only the probabilities

p1 and p2 are different from zero. Then

p1 + p2 = 1 ; 〈m〉 = p1 + 2p2 = 1 + p2 ; 〈m(m− 1)〉 = 2p2 . (4)

Consequently,

〈n〉 = (1 + p2)〈ν〉 ; 〈n(n− 1)〉 = (1 + p2)2
〈
ν2
〉

+ 2p2〈ν〉 ,
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and the variance

σ2(n) ≡
〈
n2
〉
− 〈n〉2 = (1 + p2)2σ2(ν) + 〈ν〉(1 + 3p2) . (5)

The value for p2 = 0 is the result without clusters. In order to see how
important are the corrections, it is necessary to estimate p2.

3. Consider a cluster of mass M decaying into exactly two (detectable)
particles of mass µ each. The z axis is along the beam direction and, if the
transverse momentum of the cluster P T 6= 0, the x axis is parallel to P T.
The spherical angles θ, φ are defined in the rest frame of the cluster. We
need the probability p2 that both decay products of a cluster fall into the
rapidity bin [−1

2∆,+
1
2∆].

Let us denote the rapidity of the cluster by y and the rapidities of its
two decay products by yf and yb respectively, with yf corresponding to the
particle with cos θ ≥ 0. For cos θ = 0 this definition is ambiguous, but since
we will be interested only in integrals over cos θ this ambiguity is harmless.
It is assumed that the decay distribution is spherically symmetric in the rest
frame of the cluster and that the rapidity distribution for the clusters is flat.
Then the probability of a set of events is proportional to the corresponding
volume V in the {y, cos θ, φ} space.

Denoting by y0
f and y

0
b the absolute values of the rapidities of the particles

in the frame, where the cluster rapidity vanishes, we have

yf = y + y0
f , yb = y − y0

b . (6)

Therefore, the probabilities that the decay products fall into the bin
[−1

2∆,+
1
2∆] are respectively non-zero if and only if

− 1
2∆− y

0
f < y < 1

2∆− y
0
f , −1

2∆+ y0
b < y < 1

2∆+ y0
b . (7)

The range of rapidity for each of the two final particles is of length ∆,
independently of the angles θ, φ. Defining the unnormalized probability pu

as the reduced volume V
2π , we have for each particle pu = ∆. For both

particles the sum of the reduced volumes is 2∆ but the region, where both
particles fall into the bin is counted twice. Thus finally

pu1 + 2pu2 = 2∆ . (8)

The normalizing factor for the probabilities is

pu1 + pu2 = 2∆− pu2 . (9)

Therefore,
p2 =

pu2

2∆− pu2
. (10)



1360 A. Bialas, K. Zalewski

It remains to calculate pu2. Both particles fall into the bin if and only if

− 1
2∆+ y0

b = ymin ≤ y ≤ ymax = +1
2∆− y

0
f . (11)

4. We begin with the simplest case when P T = 0. Then y0
f = y0

b and
we have

y0
f + y0

b = ln
1 + α0 cos θ
1− α0 cos θ

, (12)

where

α0 =

√
1− 4µ2

M2
. (13)

From the condition (11) we deduce that, provided that ymax > ymin, the
allowed range of y is

∆y = ymax − ymin = ∆−
(
y0
b + y0

f

)
= ∆− ln

1 + α0 cos θ
1− α0 cos θ

. (14)

This range is different from zero only if

0 ≤ cos θ ≤ cos θm =
1
α0

tanh
∆

2
. (15)

Consequently,

pu2 =

1
α0

tanh ∆
2∫

0

d cos θ
(
∆− ln

1 + α0 cos θ
1− α0 cos θ

)
=

2
α0

ln cosh
∆

2
(16)

and

p2 =
ln cosh ∆

2

α0∆− ln cosh ∆
2

= z + z2 +
(

1− 8
3
α2

0

)
z3 +

(
1− 16

3
α2

0

)
z4 + . . . ,

(17)
where the convenient parameter

z =
∆

8α0
(18)

has been introduced.
5. For P T 6= 0, formula (12) gets replaced by

y0
f + y0

b =
1
2

ln
(1 + α cos θ)2 − β2 sin2 θ cos2 φ
(1− α cos θ)2 − β2 sin2 θ cos2 φ

, (19)
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where
α =

α0√
1 + P 2

T
M2

, β = α
PT

M
. (20)

One sees that both α and β depend only on the ratio PT/M (i.e. only on
the transverse velocity of the cluster).

Formula (11) yields the accessible rapidity interval for given θ and φ

∆y = ∆− 1
2

ln
(1 + α cos θ)2 − β2 sin2 θ cos2 φ
(1− α cos θ)2 − β2 sin2 θ cos2 φ

; ∆y ≥ 0 . (21)

This can be integrated numerically, but for PT ≤ 1 GeV a narrow bin ap-
proximation, analogous to (17), deviates from the exact results by less than
one percent. One finds

p2(PT) = z(PT) + z2(PT) +O
(
∆3
)
, (22)

where

z(PT) = z

√
P 2

T +M2

M

(
1−

α2
0P

2
T

2
(
P 2

T +M2
)) , (23)

This function increases with increasing PT, but rather slowly: z(0) = 0.0335
and z(1) = 0.0401.

Fig. 1. p2 versus ∆ for Gaussian distributions of PT with 〈P 2
T〉 as shown in the

figure.
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To see what happens if the transverse momentum of the cluster is not
fixed, we also calculated numerically the correction assuming the Gaussian
distribution of PT. In Fig. 1, the probability p2 is plotted versus the bin
width∆ up to∆ = 0.5 for various average transverse momenta of the cluster.
One sees that p2 increases almost linearly with ∆ and that it is pretty small
in this ∆ range.

6. Our analysis can be easily extended to more bins. For B bins the
generating function generalizing (2) is

Φ(z1, . . . , zB) =
∫
dν1, . . . , dνB W (ν1, . . . , νB)

B∏
j=1

eνj(φj(z)−1). (24)

As an illustrative example, we will estimate the correction from cluster for-
mation to left–right asymmetric fluctuations as measured by the dispersion

D2
− ≡ 1

4

〈
[ν1 − ν2]

2
〉

= 1
2

(〈
ν2
1

〉
− 〈ν1ν2〉

)
(25)

evaluated in [1]. We consider B = 2 symmetric bins

φ1(z) = φ2(z) , W (ν1, ν2) = W (ν2, ν1) . (26)

The only additional average we need is 〈ν1ν2〉. Differentiating the generating
function with respect to z1 and z2 we find

〈n1n2〉 =
∂2Φ(z1, z2)
∂z1∂z2

= 〈ν1ν2〉〈m〉2 . (27)

Combining the formulae given in the present paper, we find

D2
− =

1
〈m〉2

[
D̃2
− −

1
2
〈m(m− 1)〉〈ν〉

]
≈ D̃2

−

[
1− 2p2

(
1 +
〈n1〉
2D̃2

−

)]
, (28)

where D̃2
− is the dispersion evaluated without the correction due to cluster

production, i.e. at p2 = 0 [1]

D̃2
− ≡ 1

2 [〈n1(n1 − 1)〉 − 〈n1n2〉] = 1
2

[
D2
ff −D2

bf − 〈n1〉
]

(29)

and
D2
ff =

〈
n2

1

〉
− 〈n1〉2 = σ2(n1) , D2

bf = 〈n1n2〉 − 〈n1〉2 . (30)

These two parameters and 〈n1〉 can be evaluated from the data of the STAR
Collaboration for AuAu collisions at

√
s = 200 GeV [11, 12]. For the most

central collisions and bins 0.8 < |y| < 1.0 one finds [1]

D2
ff = 350± 17 , D2

bf = 202± 17 , 〈n1〉 = 96± 5 . (31)
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This yields
D2
− = 1

2(〈n1(n1 − 1)〉 − 〈n1n2〉)(1− 3.7p2) . (32)
For p2 = 0.03 this is an eleven percent correction, which is much smaller than
the experimental uncertainty, which is about 46%. Note that the assumption
that all the particles falling into the bins are decay products of clusters
certainly overestimates the correction.

We conclude that at the present accuracy of the data and bin width
in rapidity of some 0.25 or less, the corrections due to cluster formation
are unimportant for D2

−. With increasing accuracy of the data, it may be
necessary to include this correction, however. We show that it is negative
and can be roughly estimated.

7. Eq. (28) implies a specific dependence of the measured D2
− on the bin

width ∆. We first observe that, since one expects 〈ν〉 ∼ ∆, D̃2
− ∼ 〈ν〉

2 and,
as seen from Fig. 1, p2 ∼ ∆, the ratio

− 1
2
〈m(m− 1)〉

D̃2
−

〈ν〉 ≈ − p2

D̃2
−
〈ν〉 (33)

representing the relative correction, is independent of ∆. It follows that this
correction persists even in the limit of very small ∆.

Furthermore, we have

D̃2
−

〈n1〉2
∼ 〈m〉−2 ∼ (1 + p2)−2 ∼ (1 + ω∆)−2 , (34)

where ω is a constant. As seen in Fig. 1, ω is a small number (of the order
of 0.15), therefore, the result may be difficult to observe for small ∆, where
our approximations are expected to be valid. With increasing precision of
data, however, it will be interesting to look for this signal, as it provides a
possibility to estimate the clustering effects in particle production.

8. In conclusion, we have estimated the effect of clustering in particle
production for the random fluctuations of particle numbers in small, well
separated rapidity bins. The effect is small but non-negligible and with
increasing accuracy of data it may turn out important. It implies a charac-
teristic dependence of the fluctuations on the bin size which may be used as
a measure of the amount of clustering and thus seems to be interesting to
look for.

We thank Adam Bzdak for the fruitful collaboration on the subject of
multiplicity fluctuations and for interesting discussions on the issues related
to the present investigation. This work was supported in part by the grant
N N202 123437 of the Polish Ministry of Science and Higher Education
(2009–2012).
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