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We study impulsively-generated magnetoacoustic waves in the grav-
itationally stratified solar atmosphere which is permeated by a straight
magnetic field. Our numerical model solves two-dimensional magnetohy-
drodynamic equations in the limit of an ideal plasma and for a temper-
ature profile modelled by a smoothed step function. The results of our
simulations agree with the theoretical application of Klein–Gordon equa-
tion to fast magnetoacoustic waves propagating in the solar atmosphere.
The abovementioned equation introduces a cutoff frequency in the system.
Therefore, as the first wave passes, the medium behind it starts to oscillate
with a given frequency. Even a small amplitude perturbation in the pho-
tosphere generates shock waves in the corona. In addition to that, large
impulses (larger than ∼ 10 km s−1) cause oscillations of the plasma in the
transition region.
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1. Introduction

Observations of wave phenomena in the solar corona intensified in the
past decade. Detailed observational data collected by SOHO, TRACE,
Hinode and STEREO satellites provided a stimulus to theoretical stud-
ies [1, 2, 3, 4]. Most of these studies are based on magnetohydrodynamic
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(MHD) equations which in the solar corona context describe a magnetised
medium. The effect of gravity in the solar corona is less important than in
the underlying layers of the solar atmosphere. In the case of one-dimensional
wave propagation along the gravity, this effect may be accounted for by the
Klein–Gordon type of equation. This equation introduces a cutoff frequency
below which waves do not propagate [5]. An impulsive perturbation that
is governed by the Klein–Gordon equation will result in the presence of a
wavefront that is followed by an oscillating wake (e.g. [6, 7]).

The propagation of acoustic waves in the solar atmosphere, triggered
by a photospheric periodic driver was studied by Erdélyi et al. [8]. Re-
cent studies of impulsively generated acoustic waves in the solar atmosphere
confirmed the significance of the Klein–Gordon equation and extended the
theory to non-linear waves and 2D geometry [9]. Our goal here is to gen-
eralise these studies to a magnetised plasma. We limit our discussion to
impulsively generated magnetoacoustic waves and consider the simplest but
representative topology of a straight magnetic field. We will highlight several
important issues concerning magnetoacoustic waves triggered by a velocity
pulse launched below the transition region.

This paper is organised as follows. The numerical model is described in
Sec. 2. The Klein–Gordon equation governing wave propagation is derived
in Sec. 3. The numerical results are presented and discussed in Sec. 4. This
paper is concluded by a presentation of the main results in Sec. 5.

2. A numerical model

2.1. Magnetohydrodynamic equations

Our model is based upon the ideal MHD equations:

∂%

∂t
+∇ · (%V ) = 0 , (1)

∂p

∂t
+ V · ∇p = −γp∇ · V , (2)

%
∂V

∂t
+ (%V · ∇) V = −∇p+ %g +

1
µ

(∇×B)×B , (3)

∂B

∂t
= ∇× (V ×B) , (4)

= 0 , (5)

p =
kB

m
%T . (6)
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Here % is mass density, V is velocity, p is kinetic gas pressure, γ = 5/3 is adi-
abatic index, g = [0, 0,−g] is gravitational acceleration with g = 274 ms−2,
B is magnetic field, µ is the magnetic permeability, T is temperature, m is
mean particle mass and kB is Boltzmann’s constant.

2.2. Equilibrium

We adopt the 1D model of the solar atmosphere in which gravity is
balanced by the kinetic pressure gradient force

− %0g =
∂p0

∂z
. (7)

Henceforth, the subscript 0 corresponds to an equilibrium quantity. The
system is assumed to be in a static equilibrium: V 0 = [0, 0, 0], therefore,
from Eq. (3) it follows that the magnetic field must be force-free

1
µ

(∇×B0)×B0 = 0 . (8)

The above equation is satisfied by a straight magnetic field

B0 = [B0x, 0, B0z] . (9)

From Eq. (7) with the use of Eq. (6) we find

p0(z) = p00 exp

− z∫
zref

dz
′

Λ̃(z′)

 , (10)

and

%0(z) =
p0(z)
gΛ̃(z)

. (11)

Here

Λ̃(z) =
kBT0(z)
mg

(12)

is the kinetic pressure scale-height and p00 represents kinetic gas pressure at
the reference level zref = 10 Mm, corresponding to the top boundary of the
simulation region. We can rewrite Eq. (12), using Eq. (6), as

Λ̃(z) =
c2s (z)
γg

. (13)



1368 D. Daniłko, K. Murawski, R. Erdélyi

Here cs(z) is sound speed, defined as follows

cs(z) =

√
γp0(z)
%0(z)

. (14)

The plasma β parameter is defined as the ratio of kinetic gas pressure to
magnetic pressure

β =
p0(z)
B2

0/2µ
. (15)

In the solar corona β � 1 and therefore, we would refer to it as a low-β
medium. The profile of β and sound speed cs(z) is shown in Fig. 1. We
assume that the equilibrium temperature profile is given as [10,11]

T0(z) = 1
2 (Tc + Tph) + 1

2 (Tc − Tph) tanh
(
z − ztr
zw

)
, (16)

where Tph = 5000 K denotes the temperature of plasma at z = 0 (bottom
of the simulation region), which corresponds to a region located 500 km
above the optical surface of the photosphere, just above the photospheric
temperature minimum; Tc = 106 K is the temperature of the solar corona;
ztr = 1.5 Mm is the location of transition region and zw = 0.2 Mm is its
width. The temperature and mass density profiles are shown in Fig. 2.

Fig. 1. Spatial profiles of plasma β (left) and sound speed (right).
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Fig. 2. Spatial profiles of temperature and mass density.

3. Klein–Gordon equation

It has been shown by Roberts [12] (following Lamb [5]) that, in the
absence of magnetic field, sound waves propagating along the gravity action
in a gravitationally stratified atmosphere are described by the Klein–Gordon
equation

∂2Q

∂t2
− c2s (z)

∂2Q

∂z2
+Ω2

s (z)Q = 0 , (17)

where Q = Q(z, t) is a normalised function of velocity and Ωs(z) is the local
critical frequency

Ω2
s (z) =

c2s (z)
4Λ̃2(z)

[
1 + 2

∂Λ̃(z)
∂z

]
. (18)

In the case of an isothermal atmosphere, the kinetic pressure scale-height
and the sound speed are constant (Λ̃(z) = Λ̃0, cs(z) = cs) andΩs(z) becomes
the acoustic cutoff frequency, Ωac, given as

Ωac =
cs

2Λ̃0

. (19)

The corresponding dispersion relation

ω2 = k2
zc

2
s +Ω2

ac (20)
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shows that only waves with frequencies higher than the acoustic cutoff fre-
quency, ω > Ωac, propagate through the medium. It has also been shown
by Roberts [12] that the medium behind the wavefront creates a wake which
oscillates with the acoustic cutoff frequency.

In the following sections, we derive a governing equation (in the form of
the Klein–Gordon equation) for a stratified non-isothermal atmosphere with
an embedded magnetic field and analyse and compare it with the above
results.

3.1. The case of a vertical magnetic field

We consider the case of a vertical magnetic field by setting B0x = 0 and
B0z = B0 in Eq. (9). After linearising Eqs. (3) and (4) we find that small
amplitude, vertically propagating transverse waves are described by

∂2Vx

∂t2
= c2A(z)

∂2Vx

∂z2
. (21)

Here

cA(z) =
B0√
µ%0(z)

(22)

is the local Alfvén speed.
Equation (21) describes the vertical evolution of both a transverse Alfvén

wave [13] and a transverse fast MHD wave. In the considered geometry, the
two waves are indistinguishable as each of them travels along the magnetic
field at the Alfvén speed cA. Since d

dz cA(z) > 0, the amplitude of the waves
grows with altitude.

Similarly, by linearising Eqs. (2)–(4) and in the limit of low plasma-β
these equations describe (approximately) slow magnetoacoustic waves

∂2Vz

∂t2
= c2s (z)

∂2Vz

∂z2
− γg∂Vz

∂z
. (23)

The above equation was used by Roberts [14] to describe slow magnetoa-
coustic waves in a low plasma-β medium. A more adequate derivation of
slow magnetoacoustic equations which are valid for arbitrary plasma-β can
also be found in Roberts [14]. Equation (23) can be transformed to the
Klein–Gordon equation (17) (see [12]), which implies that the local critical
frequency of longitudinal MHD waves is given by Eq. (18) and that these
waves obey the Klein–Gordon equation in the considered geometry.



Numerical Simulations of Magnetoacoustic Waves in the Gravitationally . . . 1371

3.2. The case of a horizontal magnetic field

Let us discuss now the case of horizontal magnetic field by setting
B0x = B0 and B0z = 0 in Eq. (9). Linearisation of Eqs. (2)–(4) yields
that small amplitude fast magnetoacoustic waves are described by

∂2Vz

∂t2
= c2f

∂2Vz

∂z2
− γg∂Vz

∂z
, (24)

where

cf =
√
c2s + c2A (25)

denotes a fast speed.
Equation (24) indicates that there is no coupling between fast and slow

magnetoacoustic waves. By introducing a new variable, U ,

Vz(z, t) = U(z, t) exp
(
γg

2

∫
dz

c2f (z)

)
(26)

we transform Eq. (24) to a Klein–Gordon equation

∂2U

∂t2
− c2f (z)

∂2U

∂z2
+Ω2

fc(z)U = 0 , (27)

where

Ω2
fc(z) =

γ2g2

4c2f (z)

[
1 + 2

∂Λ̃f(z)
∂z

]
(28)

is the fast magnetoacoustic cutoff frequency and Λ̃f(z) is defined as follows

Λ̃f(z) =
c2f (z)
γg

. (29)

It is noteworthy that for the magnetic-free case (B = 0), Eq. (28) transforms
to Eq. (18). From MHD equations we infer that slow waves are absent from
the system.

4. Numerical results

We solve Eqs. (1)–(6) using the Athena code [15]. A modified Force
Flux [16] and a second-order Godunov method [17] are used for performing
the simulations. We limit ourselves to a two-dimensional problem with the
computation box of 10 Mm × 10 Mm that is resolved by up to 512 × 512
numerical cells.
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4.1. Perturbation

The equilibrium profiles of Eqs. (9)–(11) are perturbed by an initial pulse
in velocity

δV (x, z, t0) = [αx · δV, 0, αz · δV ] , (30)

where αx , αz ∈ {0, 1} are parameters used to launch a pulse perpendicular
to the magnetic field, and

δV = AV exp
[
−(x− x0)2

4w2
x

− (z − z0)2

4w2
z

]
. (31)

Here AV is the amplitude of the initial pulse that is launched at (x0, z0)
and wx, wz are its half-widths. We set and hold fixed x0 = 0 Mm and z0 =
0.5 Mm, which means that the perturbation is launched below the transition
region. We consider two cases: a wavefront with wx → ∞, wz = 0.25 Mm
and a localised pulse with wx = wz = 0.25 Mm.

In the present paper, we study both the horizontal and vertical orienta-
tion of the magnetic field by choosing either B0z = 0 or B0x = 0.

4.2. Vertical magnetic field

Here, we consider the case of a vertically aligned equilibrium magnetic
field by setting B0x = 0 in Eq. (9).

4.2.1. A wavefront in horizontal velocity

Let us perturb the equilibrium state of Eqs. (9)–(11) by a wavefront in Vx

of Eq. (30) with αx = 1, αz = 0 and wx →∞. Such an initial perturbation
triggers both fast and slow magnetoacoustic waves as shown in Sec. 3.1.
Figure 3 confirms that the results of the simulation agree very well with the
predictions based on the analytical equations derived in Sec. 3.1. The fast
wave (coupled with the Alfvén wave mode) propagates along the magnetic
field lines (Fig. 3 (top left)). The upward propagating wave accelerates
due to inhomogeneous Alfvén speed, while the downward propagating pulse
decelerates. The former leaves the computational domain through the upper
boundary and the latter experiences partial reflection from the dense layers
of the chromosphere.

The slow wave also splits into two counter-propagating wavefronts. It
was shown in Sec. 3.1 that the behaviour of slow waves is governed by the
Klein–Gordon equation, implying that the medium behind the wavefront
oscillates with the acoustic cutoff frequency [12]. This is clearly seen in
Fig. 3 (top right). Wavefronts that follow, elevate the plasma triggering
oscillations of the transition region, as shown in Fig. 3 (bottom).
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Fig. 3. Time dependence of Vx (top left), Vz (top right) and % (bottom) for a
wavefront of Eq. (30) with δVz = 0, z0 = 0.5 Mm, wx = wz = 0.25 Mm and
AV = 30 km s−1 collected at x = 0 Mm. The case of a vertical equilibrium
magnetic field with Bex = 0 in Eq. (9). Dashed line represents β = 1 level.

Next, we perform a Fast Fourier Transform of the Vz component of ve-
locity that is collected at the altitude z = 5 Mm. The result is shown in
Fig. 4. By analysing the results of a simulation we estimate the main period
of oscillations to be: P ∼= 205 s.

The considered atmosphere is non-isothermal, which implies that there is
a multitude of local critical frequencies. In order to evaluate the global cutoff
period, we consider a number of isothermal atmospheres in a temperature
range covered by temperatures of the system. From Eq. (19) we compute the
acoustic cutoff period for each temperature, recalling that P = 2π/Ω. Since
each elevation of our simulation region has a different temperature, we can
plot the obtained cutoff periods against altitude z, instead of temperature.
This gives us a hypothetical cutoff period profile depicted in Fig. 5. The
global cutoff period is the smallest value on the above-mentioned plot, which
is ∼ 204 s. This is in perfect agreement with the value obtained earlier in
the simulation.
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Fig. 4. Time dependence of Vz (left) collected at x = 0 Mm, z = 5 Mm and
a corresponding Fourier power spectrum (right) for a wavefront of Eq. (30) with
δVz = 0, z0 = 0.5 Mm, wx = wz = 0.25 Mm and AV = 30 km s−1. The case of a
vertical equilibrium magnetic field with Bex = 0 in Eq. (9).

Fig. 5. A hypothetical acoustic cutoff period profile, calculated for isothermal at-
mospheres from Eq. (19).

4.2.2. A localised pulse in horizontal velocity

Let us now extend the simulations performed in Sec. 4.2.1 to a fully 2D
case by perturbing the equilibrium state of Eqs. (9)–(11) by a localised pulse
of Eq. (30) with αx = 1 and αz = 0. This perturbation is launched at the
same altitude as previously. The impulse in Vx propagates as a quasi-circular
fast wave as shown in Fig. 6. From this figure we also see that in lower regions
of the atmosphere, where the plasma β parameter is high, slow waves are
triggered. Since the magnetic field is vertical, slow waves propagate along
the gravity action as shown in Fig. 6. In Fig. 7, we demonstrate that the
medium behind the first wave oscillates as predicted by the Klein–Gordon
equation for a 1D case.
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(a) (b)
Fig. 6. Spatial plots of Vx and Vz for t = 15 s (a) and t = 150 s (b). The case of a
vertical equilibrium magnetic field.

Fig. 7. Time dependence of Vz (left) and % (right) for the localised pulse of Eq. (30)
with δVz = 0, z0 = 0.5 Mm, wx = wz = 0.25 Mm and AV = 50 km s−1 collected
at x = 0 Mm. The case of a vertical equilibrium magnetic field with Bex = 0 in
Eq. (9). Dashed line represents β = 1 level.

The result of a Fast Fourier Transform of Vz component of velocity de-
termined at the altitude z = 5 Mm is shown in Fig. 8. By analysing the
plot we estimate the main period of oscillations to be: P ∼= 210 s, which is
in good agreement with theoretical and numerical results obtained for a 1D
scenario.
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Fig. 8. Time dependence of Vz (left) collected at x = 0 Mm, z = 5 Mm and a
corresponding Fourier power spectrum (right) for the localised pulse of Eq. (30)
with δVz = 0, z0 = 0.5 Mm, wx = wz = 0.25 Mm and AV = 50 km s−1. The case
of a vertical equilibrium magnetic field with Bex = 0 in Eq. (9).

4.3. Horizontal magnetic field

Here, we consider the case of a horizontally aligned equilibrium magnetic
field by setting B0z = 0 in Eq. (9).

4.3.1. A wavefront in vertical velocity

We perturb the equilibrium state of Eqs. (9)–(11) by a wavefront of
Eq. (30) with αx = 0, αz = 1 and wx →∞. In agreement with Sec. 3.2, in
this case only fast waves propagate through the medium, travelling at the
fast speed. In Fig. 9, the oscillating wake that formed behind the wavefront
is clearly seen, the creation of which was predicted by the Klein–Gordon
equation in Sec. 3.2.

Fig. 9. Time dependence of Vz (left) and % (right) for the localised initial pulse of
Eq. (30) with δVx = 0, z0 = 1.0 Mm, wx = wz = 0.25 Mm and AV = 100 km s−1

collected at x = 0 Mm. The case of a horizontal equilibrium magnetic field with
Bez = 0 in Eq. (9). Dashed line represents β = 1 level.
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We then perform FFT of the Vz component of velocity at the altitude
z = 5 Mm and estimate the main period of oscillations to be: P ∼= 205 s
(based on the results depicted in Fig. 10).

Fig. 10. Time dependence of Vz (left) collected at x = 0 Mm, z = 5 Mm and
a corresponding Fourier power spectrum (right) for a wavefront of Eq. (30) with
δVx = 0, z0 = 1.0 Mm, wx = wz = 0.25 Mm and AV = 100 km s−1. The case of a
horizontal equilibrium magnetic field with Bez = 0 in Eq. (9).

Figure 11 shows a hypothetical profile of a fast cutoff period, obtained
from Eq. (28) in a similar manner as explained in Sec. 4.2.1. The lowest
value of a fast cutoff period is ∼ 206 s, which agrees with the value obtained
in the simulation.

Fig. 11. A hypothetical fast cutoff period profile, calculated for isothermal atmo-
spheres from Eq. (28).
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4.3.2. A localised pulse in vertical velocity

Finally, let us perturb the equilibrium state of Eqs. (9)–(11) by a localised
pulse of Eq. (30) with αx = 0 and αz = 1. As in previous sections, we launch
this perturbation within the transition region: z0 < ztr = 1.5 Mm.

The results of the simulation are presented in Fig. 12. One can see
that the difference between a 2D case and a 1D scenario of Fig. 9 is signifi-
cant. The period of oscillations is significantly shorter and the amplitude is
strongly attenuated (Fig. 13).

Fig. 12. Time dependence of Vz (left) and % (right) for the localised initial pulse of
Eq. (30) with δVx = 0, z0 = 1.0 Mm, wx = wz = 0.25 Mm and AV = 50 km s−1

collected at x = 0 Mm. The case of a horizontal equilibrium magnetic field with
Bez = 0 in Eq. (9).

Fig. 13. Time dependence of Vz (left) collected at x = 0 Mm, z = 5 Mm and
a corresponding Fourier power spectrum (right) for the localised initial pulse of
Eq. (30) with δVx = 0, z0 = 1.0 Mm, wx = wz = 0.25 Mm and AV = 50 km s−1.
The case of a horizontal equilibrium magnetic field with Bez = 0 in Eq. (9).
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FFT of the Vz component of velocity at z = 5 Mm is performed and
the results (shown in Fig. 13) yield that the main period of oscillations is:
P ∼= 150 s, which is much lower than the value obtained in a 1D simulation.
In order to explain this apparent inconsistency, we plot time variance of the
cutoff period, estimated from Eq. (19) as the lowest value of the local critical
period. In Fig. 14, we show that the cutoff period changes from P ∼= 165 s
to P ∼= 240 s, which may explain the difference between the theoretical and
the numerical cutoff period.

Fig. 14. Time dependence of min(Pf) calculated from Eq. (19) for the localised
initial pulse of Eq. (30) with δVx = 0, z0 = 1.0 Mm, wx = wz = 0.25 Mm and
AV = 50 km s−1. The case of a horizontal equilibrium magnetic field with Bez = 0
in Eq. (9).

5. Summary and discussion

In this paper, we have studied impulsively generated magnetoacoustic
waves in the middle layers of the solar atmosphere. A constant gravity and
a straight magnetic field topology were taken into consideration in order to
capture the essential physics and to be able to obtain analytical formula for
the propagation of magnetoacoustic waves. The temperature profile of the
solar atmosphere above the photospheric minimum was approximated with
a model also used by Cargill et al. [10] and Del Zanna et al. [11].

Our results can be summarised as follows. An impulsive perturbation
triggers magnetoacoustic waves which propagate along the gravity action
as described by the Klein–Gordon type of equation. A trailing wake oscil-
lates with a cutoff frequency, creating waves with a given period. Both
the acoustic cutoff period and the fast cutoff period were in the range
Pf
∼= P ∼ 200–210 s.
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The initial pulse launched below the transition region moves the dense
layers upwards triggering oscillations. The vertical motion of the chromo-
spheric gas caused by Alfvén or acoustic-gravity waves was associated, e.g.
by Hollweg [18], with the generation of spicules. In the case of magnetoa-
coustic waves, the pulse results in oscillations of the transition region as can
be seen in Figs. 3, 7, 9 and 12 (right). The characteristics of these oscilla-
tions (period, amplitude) does not match the characteristics of a spicule [19],
but remain in the same range, which creates opportunity for future studies.
Similar oscillations of the transition region, triggered by a pair of periodic
drivers, were found to result in surface waves [20].

Oscillations of the transition region result in mass density profile modi-
fication. The extent of these deviations from the equilibrium state depends
on the amplitude of the initial perturbation. The change of mass density
profile alters the cutoff frequency in Eq. (27), which in linear approximation
depends only on the initial configuration. This is the reason why numerical
simulations revealed different cutoff periods for the same equilibrium pro-
files, which was especially prominent in the case presented in Sec. 4.3.2. In
order to investigate this problem in a greater detail, a more realistic model
should be incorporated.

Roberts and Webb [21] obtained similar results for a vertical flux tube
to those presented in Sec. 4.2. They calculated an acoustic cutoff period
to be P = 199 s at z = 0 Mm (corresponding to a level located 500 km
above the optical surface of the Sun) and P = 200 s at z = 500 Mm. These
numbers are in a very good agreement with the results presented in this
paper. However, the minimal value of the cutoff period obtained by Roberts
and Webb [21] was P = 159 s at z = 100 Mm, which differs from the profile
of the acoustic cutoff period depicted in Fig. 5. This difference stems from
using an alternative profile of the solar atmosphere.

Further studies of magnetoacoustic waves should be undertaken in order
to understand their influence on various solar phenomena in a greater detail.
The studies presented in this paper can be extended to examine the impor-
tance of magnetoacoustic waves in excitation and attenuation of oscillations
in coronal loops, the generation of spicules [22] and even the heating of the
corona.
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