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We compute the structure functions F2 and FL in the ACOT scheme for
heavy quark production. We use the complete ACOT results to NLO, and
make use of the MS massless results at NNLO and N3LO to estimate the
higher order mass-dependent corrections. We show numerically that the
dominant heavy quark mass effects can be taken into account using mass-
less Wilson coefficients together with an appropriate rescaling prescription.
Combining the exact NLO ACOT scheme with these expressions should
provide a good approximation to the full calculation in the ACOT scheme
at NNLO and N3LO.
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1. Introduction

The production of heavy quarks in high energy processes has become
an increasingly important subject of study both theoretically and experi-
mentally. The theory of heavy quark production in perturbative Quantum
Chromodynamics (pQCD) is more challenging than that of light parton (jet)
production because of the new physics issues brought about by the additional
heavy quark mass scale. The correct theory must properly take into account
the changing role of the heavy quark over the full kinematic range of the
relevant process from the threshold region (where the quark behaves like
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a typical “heavy particle”) to the asymptotic region (where the same quark
behaves effectively like a parton, similar to the well known light quarks
{u, d, s}).

With the ever-increasing precision of experimental data and the pro-
gression of theoretical calculations and parton distribution function (PDF)
evolution to next-to-next-to-leading order (NNLO) of QCD, there is a clear
need to formulate and also implement the heavy quark schemes at this or-
der and beyond. The most important case is arguably the heavy quark
treatment in inclusive deep-inelastic scattering (DIS) since the very precise
HERA data for DIS structure functions and cross sections form the backbone
of any modern global analysis of PDFs. Here, the heavy quarks contribute
up to 30% or 40% to the structure functions at small momentum fractions x.
Extending the heavy quark schemes to higher orders is, therefore, necessary
for extracting precise PDFs, and this is a prerequisite for precise predictions
of observables at the LHC. However, we would like to also stress the theo-
retical importance of having a general pQCD framework that includes heavy
quarks and is valid to all orders in perturbation theory over a wide range of
hard energy scales.

An example, where higher order corrections are particularly important
is the structure function FL in DIS. The leading order (O(α0

S)) contribu-
tion to this structure function vanishes for massless quarks due to helicity
conservation (Callan–Gross relation). This has several consequences: (1)
FL is useful for constraining the gluon PDF via the dominant subprocess
γ∗g → qq̄. (2) The heavy quark mass effects of order O(m

2

Q2 ) are relatively
more pronounced1. (3) Since the first non-vanishing contribution to FL is
next-to-leading order (up to mass effects), the NNLO and N3LO corrections
are more important than for F2. In Fig. 1, we show a comparison of dif-
ferent theoretical calculations of FL with preliminary HERA data [2]. As
can be seen, in particular at small Q2 (i.e. small x), there are considerable
differences between the predictions.

The purpose of this paper is to calculate the leading twist neutral current
DIS structure functions F2 and FL in the ACOT factorization scheme up to
order O(α3

S) (N3LO) and to estimate the error due to approximating the
heavy quark mass terms O(α2

S ×
m2

Q2 ) and O(α3
S ×

m2

Q2 ) in the higher order
corrections. The results of this study form the basis for using the ACOT
scheme in NNLO global analyses and for future comparisons with precision
data for DIS structure functions.

1 Similar considerations also hold for target mass corrections (TMC) and higher twist
terms. We focus here mainly on the kinematic region x < 0.1, where TMC are
small [1]. An inclusion of higher twist terms is beyond the scope of this study.
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Fig. 1. FL vs. Q from combined HERA-I inclusive deep inelastic cross sections
measured by the H1 and ZEUS collaborations. Figure taken from Ref. [2].

This paper is organized as follows. In Sec. 2, we review theoretical ap-
proaches to include heavy flavors in QCD calculations. Particular emphasis
is put on the ACOT scheme which is a minimal extension of the MS scheme.
In Sec. 3, we present the prescription for constructing the approximate DIS
structure functions in the ACOT scheme up to O(α3

S) order. The corre-
sponding numerical results are presented in Sec. 4. Finally, in Sec. 5 we
summarize the main results. This work is based on Ref. [3], and further
details can be found therein.

2. Review of theoretical methods

We review theoretical methods which have been advanced to improve
existing QCD calculations of heavy quark production, and the impact on
recent experimental results.

2.1. ACOT Scheme

The ACOT renormalization scheme [4, 5] provides a mechanism to in-
corporate the heavy quark mass into the theoretical calculation of heavy
quark production both kinematically and dynamically. In 1998, Collins [6]
extended the factorization theorem to address the case of heavy quarks; this
work provided the theoretical foundation that allows us to reliably compute
heavy quark processes throughout the full kinematic realm.
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If we consider the DIS production of heavy quarks at O(α1
S) this involves

the LO QV → Q process and the NLO gV → QQ̄ process2. The key
ingredient provided by the ACOT scheme is the subtraction term (SUB)
which removes the “double counting” arising from the regions of phase space,
where the LO and NLO contributions overlap. Specifically, at NLO order,
we can express the total result as a sum of

σTOT = σLO + {σNLO − σSUB} , (1)

where the subtraction term for the gluon-initiated processes is

σSUB = fg ⊗ P̃g→Q ⊗ σQV→Q . (2)

σSUB represents a gluon emitted from a proton (fg) which undergoes a
collinear splitting to a heavy quark (P̃g→Q) convoluted with the LO quark–
boson scattering σQV→Q. Here, P̃g→Q(x, µ) = αS

2π ln(µ2/m2)Pg→Q(x), where
Pg→Q(x) is the usual MS splitting kernel, m is the quark mass and µ is the
renormalization scale which we typically choose to be µ = Q.

An important feature of the ACOT scheme is that it reduces to the appro-
priate limit both as m→ 0 and m→∞ as we illustrate below. Specifically,
in the limit where the quark Q is relatively heavy compared to the character-
istic energy scale (µ ∼< m), we find σLO ∼ σSUB such that σTOT ∼ σNLO. In
this limit, the ACOT result naturally reduces to the Fixed-Flavor-Number-
Scheme (FFNS) result. In the FFNS, the heavy quark is treated as being
extrinsic to the hadron, and there is no corresponding heavy quark PDF
(fQ ∼ 0); thus σLO ∼ 0. We also have σSUB ∼ 0 because this is proportional
to ln(µ2/m2). Thus, when the quark Q is heavy relative to the characteristic
energy scale µ, the ACOT result reduces to σTOT ∼ σNLO.

Conversely, in the limit where the quark Q is relatively light compared to
the characteristic energy scale (µ ∼> m), we find that σLO yields the dominant
part of the result, and the “formal” NLO O(αS) contribution {σNLO − σSUB}
is an O(αS) correction. In this limit, the ACOT result will reduce to the
MS Zero-Mass Variable-Flavor-Number-Scheme (ZM-VFNS) limit exactly
without any finite renormalizations. The quark mass m no longer plays any
dynamical role and purely serves as a regulator. The σNLO term diverges
due to the internal exchange of the quark Q, and this singularity is canceled
by σSUB.

We illustrate the versatile role of the quark mass in Fig. 2 (a), where we
display F c2 as a function of Q calculated in the ZM-VFNS, FFNS, ACOT,
and S-ACOT schemes. We see that the ACOT scheme coincides with the

2 At NLO, there are corresponding quark-initiated terms; for simplicity we do not
display them here, but they are fully contained in our calculations [7].
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FFNS for smallQ, and the ZM-VFNS for largeQ. In Fig. 2 (b), we plot F c2 as
a function of the quark massm for a fixed Q = 10GeV for the MS ZM-VFNS
and ACOT schemes. We observe that when m is within a decade or two
of µ, the quark mass plays a dynamic role; however, for m � µ, the quark
mass purely serves as a regulator and the specific value is not important.
Operationally, it means we can obtain the MS ZM-VFNS result either by
(i) computing the terms using dimensional regularization and setting the
regulator to zero, or (ii) by computing the terms using the quark mass as
the regulator and then setting this to zero.
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Fig. 2. (a) F c
2 for x = 0.1 for NLO DIS heavy quark production as a function of Q.

We display calculations using the ACOT, S-ACOT, Fixed-Flavor Number Scheme
(FFNS), and Zero-Mass Variable Flavor Number Scheme (ZM-VFNS). The ACOT
and S-ACOT results are virtually identical. (b) Comparison of F c

2 (x,Q) (scaled by
104) vs. the quark mass m in GeV for fixed x = 0.1 and Q = 10GeV. The full (red)
dots are the full ACOT result, and the solid (blue) line is the massless MS result.

The ACOT scheme is minimal in the sense that the construction of
the massive short distance cross sections does not need any observable-
dependent extra contributions or any regulators to smooth the transition
between the high and low scale regions. The ACOT prescription is: (a) cal-
culate the massive partonic cross sections, and (b) perform the factorization
using the quark mass as regulator.

It is in this sense that we claim the ACOT scheme is the minimal massive
extension of the MS ZM-VFNS. In the limit m/µ→ 0 it reduces exactly to
the MS ZM-VFNS, in the limit m/µ ∼> 1 the heavy quark decouples from
the PDFs and we obtain exactly the FFNS for m/µ � 1 and no finite
renormalizations are needed.

2.2. S-ACOT

In a corresponding application, it was observed that the heavy quark
mass could be set to zero in certain pieces of the hard scattering terms
without any loss of accuracy. This modification of the ACOT scheme goes by
the name Simplified-ACOT (S-ACOT) and can be summarized as follows [8].
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S-ACOT: For hard-scattering processes with incoming heavy
quarks or with internal on-shell cuts on a heavy quark line, the
heavy quark mass can be set to zero (m = 0) for these pieces.

If we consider the case of NLO DIS heavy quark production, this means
we can set m = 0 for the LO terms σQV→Q (incoming heavy quark), and
for the SUB terms (on-shell cut on an internal heavy quark line). Hence,
the only contribution which requires calculation with m retained is the NLO
gV → QQ̄ process. Figure 2 (a) displays a comparison of a calculation using
the ACOT scheme with all masses retained vs. the S-ACOT scheme; as
expected, these two results match throughout the full kinematic region.

It is important to note that the S-ACOT scheme is not an approximation;
this is an exact renormalization scheme, extensible to all orders.

2.3. ACOT and χ-rescaling

As we have illustrated in Sec. 2.1, in the limit Q2 � m2 the mass simply
plays the role of a regulator. In contrast, for Q2 ∼ m2 the value of the mass
is of consequence for the physics. The mass can enter dynamically in the
hard-scattering matrix element, and can enter kinematically in the phase
space of the process.

We will demonstrate that for the processes of interest the primary role of
the mass is kinematic and not dynamic. It was this idea which was behind
the original slow-rescaling prescription of [9] which considered DIS charm
production (e.g., γc → c) introducing the shift x → χ = x[1 + (mc/Q)2].
This prescription accounted for the charm quark mass by effectively reducing
the phase space for the final state by an amount proportional to (mc/Q)2.

This idea was extended in the χ-scheme by realizing that (in most cases)
in addition to the observed final-state charm quark, there is also an anti-
charm quark in the beam fragments since all the charm quarks are ultimately
produced by gluon splitting (g → cc) into a charm pair. For this case, the
scaling variable becomes χ = x[1+(2mc/Q)2]. This rescaling is implemented
in the ACOTχ scheme, for example [10,11,12]3. The factor (1+(2mc)2/Q2)
represents a kinematic suppression factor which will suppress the charm
process relative to the lighter quarks. Additionally, the χ-scaling ensures the
threshold kinematics (W 2 > 4m2 +M2) is satisfied; while it is important to
satisfy this condition for large x, this may prove too restrictive at small x,
where the HERA data are especially precise.

3 Use of more general rescaling prescriptions have been discussed in Ref. [13].
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To encompass all the above results, we can define a general scaling vari-
able χ(n) as

χ(n) = x

[
1 +

(
n mc

Q

)2
]
, (3)

where n = {0, 1, 2}. Here, n = 0 corresponds to the massless result without
rescaling, n = 1 corresponds to the original Barnett slow-rescaling, and
n = 2 corresponds to the χ-rescaling.

2.4. Phase space (kinematic) and dynamic mass

We now investigate the effects of separately varying the mass entering the
χ(n) variable taking into account the phase space constraints and the mass
value entering the hard scattering cross section σ̂(m). We call the former
mass parameter “phase space (kinematic) mass” and the latter “dynamic
mass”.
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Fig. 3. Comparison of phase space (kinematic) and dynamic mass effects.
(a) Comparison of F c

2 (x,Q) vs. Q for the NLO ACOT calculation for
x = {10−1, 10−3, 10−5} (left to right) using zero dynamic mass [σ̂(m = 0)] to
show the effect of n scaling; from top to bottom n = {0, 1, 2} (pink, black,
purple). (b) Comparison of F c

2 (x,Q) vs. Q for the NLO ACOT calculation for
x = {10−1, 10−3, 10−5} (left to right). Here we keep the scaling fixed n = 2 and
compare the effect of varying the dynamic mass in the Wilson coefficient. The up-
per (cyan) curve uses a non-zero dynamic mass [σ̂(m = 1.3)] and the lower (purple)
curve uses a zero dynamic mass [σ̂(m = 0)].
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In Fig. 3 (a), we display F c2 (x,Q) vs. Q. The family of 3 curves shows
the NLO ACOT calculation with χ(n) scaling using a zero dynamic mass for
the hard scattering. We compare this with Fig. 3 (b) which shows F c2 (x,Q)
in the NLO ACOT scheme using a fixed n = 2 scaling, but varying the mass
used in the hard-scattering cross section. The upper (cyan) curves use a non-
zero dynamic mass [σ̂(mc = 1.3)] and the lower (purple) curves have been
obtained with a vanishing dynamic mass [σ̂(mc = 0)]. We observe that the
effect of the “dynamic mass” in σ̂(mc) is only of consequence in the limited
region Q ∼> m, and even in this region the effect is minimal. In contrast, the
influence of the phase space (kinematic) mass shown in Fig. 3 (a) is larger
than the dynamic mass shown in Fig. 3 (b).

In conclusion, we have shown that (up to O(αS)) the phase space mass
dependence is generally the dominant contribution to the DIS structure func-
tions. Assuming that this observation remains true at higher orders, it is
possible to obtain a good approximation of the structure functions in the
ACOT scheme at NNLO and N3LO using the massless Wilson coefficients to-
gether with a non-zero phase space mass entering via the χ(n)-prescription.

2.5. Other massive schemes

There are a number of other schemes for incorporating the heavy quark
mass terms, and we briefly note a few examples. The Thorne–Roberts (TR)
scheme [14, 15] and its derivatives (TR’) are designed to provide a smooth
threshold behavior, and this is implemented by including pieces of the higher
order contributions. The FONLL scheme [16] was originally developed to
match fixed order calculations with resumed ones in the case of heavy quark
hadroproduction; this approach has been generalized and applied to other
applications including DIS structure functions [17]. Details and compar-
isons of these approached is outlined in the 2009 Les Houches Workshop re-
port [18].

3. ACOT scheme beyond NLO

In Sec. 2.4, we have shown using the NLO full ACOT scheme that the
dominant mass effects are those coming from the phase space which can be
taken into account via a generalized slow-rescaling χ(n)-prescription. As-
suming that a similar relation remains true at higher orders one can construct
the following approximation to the full ACOT result up to N3LO (O(α3

S))

ACOT
[
O
(
α0+1+2+3

S

)]
' ACOT

[
O
(
α0+1

S

)]
+ ZM-VFNSχ

[
O
(
α2+3

S

)]
.
(4)
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Here, the massless Wilson coefficients at O(αα2
S) and O(αα3

S) are substi-
tuted for the Wilson coefficients in the ACOT scheme as the corresponding
massive coefficients have not yet been computed.

There has been a calculation of neutral current electroproduction (equal
quark masses, vector coupling) of heavy quarks at this order by Smith and
van Neerven [19] in the FFNS which could be used to obtain the mas-
sive Wilson coefficients in the S-ACOT scheme by applying appropriate
collinear subtraction terms4; however, this is beyond the scope of this paper.
For charge current case massive calculations are available at order O(ααS)
[21, 22,23] and partial results at order O(αα2

S) [24].
Here, we argue that the massless Wilson coefficients at O(αα2

S) together
with a χ(n)-prescription provide a very good approximation of the exact
result. At worst, the maximum error would be of order O(αα2

S × [m2/Q2]).
However, based on the arguments of Sec. 2.4 we expect the inclusion of the
phase space mass effects to contain the dominant higher order contributions
so that the actual error should be substantially smaller.

The massless higher order coefficient functions for the DIS structure
function F2 via photon exchange can be found in Refs. [25, 26, 27, 28, 29,
30, 31, 32, 33, 34]. The expressions for the structure function FL have been
calculated in Refs. [35,29,31,36,33].

We now consider our choice for the appropriate generalized χ(n)-rescaling
variable. For the purposes of this study, we will vary the phase space mass
using the χ(n) rescaling with n = {0, 1, 2}. While n = 0 corresponds to the
massless case (no rescaling), it is not obvious whether n = 1 or n = 2 is
the preferred rescaling choice for higher orders. Thus, we will use the range
between n = 1 and n = 2 as a measure of our theoretical uncertainty arising
from this ambiguity.

4. Results

We now present our results for the F2 and FL structure functions cal-
culated at N3LO in the extended ACOT scheme. The initial PDFs, based
on the Les Houches benchmark set [37] are evolved using the QCDNUM
program [38]. In the calculation we set mc = 1.3GeV, mb = 4.5GeV and
αS(MZ) = 0.118.

In figures 4 (a) and 4 (b), we display the structure functions F2 and FL,
respectively, for selected x values as a function of Q. Each plot has three
curves which are computed using n-scalings of {0, 1, 2}. We observe that the
effect of the n-scaling is negligible except for very small Q values. This result
is in part because the heavy quarks are only a fraction of the total structure
function, and the effects of the n-scaling are reduced at larger Q values.

4 For the original ACOT scheme it would then still be necessary to compute the massive
Wilson coefficients for the heavy quark initiated subprocess at O(αα2

S). See Refs.
[12, 20] for details.
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Fig. 4. F2,L vs. Q at N3LO for fixed x = {10−1, 10−3, 10−5} (left to right). The
three lines show the scaling variable: n = {0, 1, 2} (red, green, blue). We observe
the effect of the n-scaling is negligible except for very small Q values. (a) F2 vs. Q.
(b) FL vs. Q.

In Ref. [3] we magnify the small Q region of FL of Fig. 4 (b) for x = 10−5,
where the effects of using different scalings are largest. We can see that for
inclusive observables, the n = 1 and n = 2 scalings give nearly identi-
cal results, but they differ from the massless case (n = 0). This result,
together with the observation that at NLO kinematic mass effects are domi-
nant, suggests that the error we have in our approach is relatively small and
approximated by the band between n = 1 and n = 2 results.

We can investigate the effects of the χ(n)-scaling in more details by ex-
amining the flavor decomposition of the structure functions. In figures 5 (a)
and 5 (b), we display the fractional contributions of quark flavors to the
structure functions F2,L for selected n-scaling values as a function of Q. We
observe the n-scaling reduces the relative contributions of charm and bot-
tom at low Q scales. For example, without any n-scaling (n = 0) we find
the charm and bottom quarks contribute an unusually large fraction at very
low scales (Q ∼ mc) as they are (incorrectly) treated as massless partons in
this region. The result of the different n-scalings (n = 1, 2) is to introduce a
kinematic penalty which properly suppresses the contribution of these heavy
quarks in the low Q region. In the following, we will generally use the n = 2
scaling for our comparisons.
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Fig. 5. Effect of χ(n)-scaling for n = {0, 1, 2} (left to right) at N3LO for fixed
x = {10−3}. Reading from the bottom, we have fractional contribution for each
(final-state) quark flavor to F j

2,L/F2,L vs. Q from {u, d, s, c, b} (green, blue, cyan,
magenta, pink). (a) F j

2 /F2 vs. Q. (b) F j
L/FL vs. Q.

In figures 6 (a) and 6 (b), we display the fractional contributions for the
initial-state quarks (i) to the structure functions F2 and FL, respectively,
for selected x values as a function of Q; here we have used n = 2 scaling.
Reading from the bottom, we have the cumulative contributions from the
{g, u, d, s, c, b}. We observe that for large x and low Q the heavy flavor
contributions are minimal. For example, for x = 10−1 we see the contribu-
tion of the u quark comprises ∼ 80% of the F2 structure function at low Q.
In contrast, at x = 10−5 and large Q, we see the F2 contributions of the
u quark and c quark are comparable (as they both couple with a factor 4/9),
and the d quark and s quark are comparable (as they both couple with a
factor 1/9). It is notable that the gluon contribution to FL is significant.
For x = 10−1 this is roughly 40% throughout the Q range, and can be even
larger for smaller x values.

In figures 7 (a) and 7 (b), we display the fractional contributions for the
final-state quarks (j) to the structure functions F2 and FL, respectively,
for selected x values as a function of Q; here we have used n = 2 scaling.
Reading from the bottom, we have the cumulative contributions from the
{u, d, s, c, b}. Again, we observe that for large x and low Q the heavy fla-
vor contributions are minimal, but these can grow quickly as we move to
smaller x and larger Q.
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Fig. 6. Fractional flavor decomposition of “initial-state” F i
2,L/F2,L vs. Q at N3LO

for x = {10−1, 10−3, 10−5} (left to right) for n = 2 scaling. Reading from the
bottom, we plot the cumulative contributions to F2,L from {g, u, d, s, c, b}, (red,
green, blue, cyan, magenta, pink). (a) F i

2/F2 vs. Q. (b) F i
L/FL vs. Q.
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Fig. 7. Fractional contribution for each quark flavor to F j
2,L/F2,L vs. Q at N3LO

for fixed x = {10−1, 10−3, 10−5} (left to right). Results are displayed for n = 2
scaling. Reading from the bottom, we have the cumulative contributions from the
{u, d, s, c, b} (green, blue, cyan, magenta, pink). (a) F j

2 /F2 vs. Q. (b) F j
L/FL vs. Q.



Heavy Quark Production in the ACOT Scheme Beyond NLO 1619

In figure 8 (a), we display the results for F2 vs. Q computed at various
orders. For large x (cf. x = 0.1) we find the perturbative calculation is
particularly stable; we see that the LO result is within 20% of the others at
smallQ, and within 5% at largeQ. The NLO is within 2% at smallQ, and in-
distinguishable from the NNLO and N3LO for Q values above ∼ 10GeV. The
NNLO and N3LO results are essentially identical throughout the kinematic
range. For smaller x values (10−3, 10−5), the contribution of the higher or-
der terms increases. Here, the NNLO and N3LO coincide for Q values above
∼ 5GeV, but the NLO result can differ by ∼ 5%.
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Fig. 8. F2,L vs. Q at {LO, NLO, NNLO, N3LO} (red, green, blue, cyan) for fixed
x = {10−1, 10−3, 10−5} (left to right) for n = 2 scaling. (a) F2 vs. Q. (b) FL vs. Q.

In Figure 8 (b), we display the results for FL vs. Q computed at various
orders. In contrast to F2, we find the NLO corrections are large for FL; this is
because the LO FL contribution (which violates the Callan–Gross relation) is
suppressed by (m2/Q2) compared to the dominant gluon contributions which
enter at NLO. Consequently, we observe (as expected) that the LO result for
FL receives large contributions from the higher order terms. Essentially, the
NLO is the first non-trivial order for FL, and the subsequent contributions
then converge. For example, at large x (cf. x = 0.1) for Q ∼ 10GeV we
find the NLO result yields ∼ 60 to 80% of the total, the NNLO is a ∼ 20%
correction, and the N3LO is a ∼ 10% correction. For lower x values (10−3,
10−5), the convergence of the perturbative series improves, and the NLO
results is within ∼ 10% of the N3LO result. Curiously, for x = 10−5 the
NNLO and N3LO roughly compensate each other so that the NLO and the
N3LO match quite closely for Q ≥ 2GeV.



1620 T. Stavreva et al.

While the calculation of FL is certainly more challenging, examining
Fig. 1 we see that for most of the relevant kinematic range probed by HERA
the theoretical calculation is quite stable. For example, in the high Q2 region
where HERA is probing intermediate x values (x ∼ 10−3) the spread of the
χ(n) scalings is small. The challenge arises in the low Q region (Q ∼ 2GeV),
where the x values are ∼ 10−4; in this region, there is some spread between
the various curves at the lowest x value (∼ 10−5), but for x ∼ 10−3 this is
greatly reduced.

5. Conclusions

We extended the ACOT calculation for DIS structure functions to N3LO
by combining the exact ACOT scheme at NLO with a χ(n)-rescaling which
allows us to include the leading mass dependence at NNLO and N3LO.
Using the full ACOT calculation at NLO, we demonstrated that the heavy
quarks mass dependence for the DIS structure functions is dominated by the
kinematic mass contributions, and this can be implemented via a generalized
χ(n)-rescaling prescription.

We studied the F2 and FL structure functions as a function of x and Q.
We examined the flavor decomposition of these structure functions, and
verified that the heavy quarks were appropriately suppressed in the low Q
region. We found the results for F2 were very stable across the full kinematic
range for {x,Q}, and the contributions from the NNLO and N3LO terms
were small. For FL, the higher order terms gave a proportionally larger
contribution (due to the suppression of the LO term from the Callan–Gross
relation); nevertheless, the contributions from the NNLO and N3LO terms
were generally small in the region probed by HERA.

The result of this calculation was to obtain precise predictions for the
inclusive F2 and FL structure functions which can be used to analyze the
HERA data.
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