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In this paper, we introduce a time-changed geometric Brownian mo-
tion and investigate the corresponding martingale properties and fractional
Fokker–Planck type equation. As an application, we prove that the mar-
ket model considered is arbitrage-free and gives pricing formulae for the
prices of European call options when the underlying asset price follows the
time-changed geometric Brownian motion.
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1. Introduction

Recent developments in the area of statistical physics confirm that the
classical diffusion models based on the Brownian motion fail to provide sat-
isfactory description of many complex systems (e.g. see [1]). Therefore,
systems exhibiting anomalous diffusive behavior, especially subdiffusive be-
havior, attract growing attention in many fields, including physics, finance,
biophysics and so on (e.g. [2,3,4,5,6]). The common description of subdiffu-
sive processes is in terms of the fractional Fokker–Planck equation (FFPE)
which is first derived from the continuous-time random walk (CTRW) with
heavy-tailed waiting times [2, 7, 8]. The CTRW model has been proved to
be a useful tool for the description of systems out of equilibrium [2, 9], es-
pecially of anomalous diffusion phenomena. In the CTRW model without
external force, the motion of a particle is completely determined by the two
probability density functions (PDFs), namely, jump length PDF and waiting
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time PDF. Different types of CTRW models come out through specifying
waiting time PDFs. If the waiting times between consecutive jumps follow a
power law, then the CTRW results in a subordinate process (or anomalous
diffusion) X(Tα(t)), where X(τ) is a stable Lévy process and Tα(t) is the in-
verse α-stable subordinator independent ofX(τ) [10,11]. In particular, if the
jump lengths satisfy certain conditions, X(τ) becomes the Brownian motion
B(τ). Recently, Magdziarz theoretically showed that this type of subdif-
fusions can be used to study option pricing [12] and subsequently Liang
et al. [13] generalized Magdziarz’s model to a composite-diffusive regime.
Meanwhile, Janczura and Wyłomańska [14] presented two examples of eco-
nomic data exhibiting subdiffusive behavior and modeled the market data
using the subdiffusion with a constant force. In [12], Magdziarz introduced a
subdiffusive geometric Brownian motion (SGBM) and gave the correspond-
ing FFPE and the Black–Scholes formulae for the fair prices of European
options when the underlying asset price is given by the SGBM Z(Tα(t)),
where Tα(t) is the inverse α-stable subordinator defined in the following
way

Tα(t) = inf{τ > 0 : Uα(τ) > t} , 0 < α < 1 , (1)

{Uα(τ)}τ≥0 is the strictly increasing α-stable Lévy process with Laplace
transform E(e−uUα(τ)) = e−τu

α , Z(τ) follows a geometric Brownian motion

Z(τ) = Z0 exp {µτ + σB(τ)} , Z0 > 0 , (2)

or is equivalently defined in the form of the Itô stochastic differential equa-
tion

dZ(τ) =
(
µ+

σ2

2

)
Z(τ)dt+ σZ(τ)dB(τ) , Z(0) = Z0 > 0 , (3)

with constant drift µ and volatility σ, and B(τ) is the standard Brownian
motion independent of Tα(t).

The inverse α-stable subordinator Tα(t) is continuous and nondecreasing
and hence it can be used as a time-change process. In this paper, we extend
the notion of time-change process to the more general case. That is, by
replacing the time-change process Tα(t) by the first-passage time process
Tν(t) of a mixture of stable subordinators w.r.t. (with respect to) a Borel
probability measure ν on (0, 1), we introduce a new time-changed geometric
Brownian motion

Zν(t) = Z(Tν(t)) , (4)

where Z(τ) satisfies (3) and the process B(τ) is independent of Tν(t) (see
Section 2) which contains previously SGBM Z(Tα(t)) as a special subclass.
Inspired by the idea and method in [12], we show some properties of the
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processes related to Zν(t) and discuss the generalized Black–Scholes formula
of the European options when the asset prices are described by the time-
changed Brownian motion.

This paper is organized as follows. In Section 2, a time-changed geomet-
ric Brownian motion and the corresponding fractional Fokker–Planck type
equation are discussed. In Section 3, martingale properties for the processes
B(Tν(t)) and Zν(t) are obtained. In Section 4, as an application, the gener-
alized Black–Scholes type formulae of the European options are given when
the asset prices are described by the time-changed Brownian motion.

2. Time-changed geometric Brownian motion

2.1. Subordinator and its inverse

A Lévy process {U(τ)}τ≥0 with nonnegative increments is called a sub-
ordinator. The Laplace transform of U(τ) has the form

E
[
e−uU(τ)

]
= e−τψ(u) , u ≥ 0 ,

with the Laplace exponent ψ(u) given by

ψ(z) = βz +
∫

(0,+∞)

(
1− e−xz

)
dρ(x)

for any complex z with Re z ≥ 0, where β ≥ 0 is a drift parameter and
ρ is a measure satisfying

∫
(0,+∞) min{1, x} dρ(x) < +∞ [15] which is called

the Lévy measure of {U(τ)}τ≥0. In particular, when ψ(u) = uα, α ∈ (0, 1),
U(τ) = Uα(τ) is a α-stable subordinator. Given a subordinator {U(τ)}τ≥0,
the first-passage time process defined by

T (t) := inf{τ > 0 : U(τ) > t}

is called the inverse subordinator of U(τ).
Let ν be a Borel probability measure on (0, 1) and ψν(u) =

∫
(0,1) u

x dν(x).
Consider a stochastic processes {Uν(τ)}τ≥0 with Laplace transform
Ee−uUν(τ) = e−τψν(u). It can be shown that the process {Uν(τ)}τ≥0 has
the same one-dimensional distributions with some subordinator (see Theo-
rem 2.1).

Lemma 2.1 ([15], p. 216) For every α ∈ (0, 1), the Lévy measure of Uα(t)
is absolutely continuous w.r.t. the Lebesgue measure on (0,+∞) with the
density function hα(x) = α

Γ (1−α)x
−α−1, x > 0.
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Theorem 2.1 The stochastic process {Uν(τ)}τ≥0 with the Laplace trans-
form Ee−uUν(τ) = e−τψν(u) has the same one-dimensional distributions with
a subordinator, where ψν(u) =

∫
(0,1) u

x dν(x) and ν is a Borel probability
measure on (0, 1).

Proof. It follows from Lemma 2.1 that, for u ≥ 0,

ψν(u) =
∫

(0,1)

uαdν(α) =
∫

(0,1)

∫
(0,+∞)

(1− e−ux) α

Γ (1− α)
x−α−1dxdν(α)

=
∫

(0,+∞)

(1− e−ux)
∫

(0,1)

α

Γ (1− α)
x−α−1dν(α)dx < +∞ .

If set hν(x) =
∫
(0,1)

α
Γ (1−α)x

−α−1dν(α), then hν(x) < +∞ for arbitrary
x > 0 and ∫

(0,1]

xhν(x)dx+
∫

(1,+∞)

hν(x)dx < +∞ .

Let ρν be the Borel measure on (0,+∞) satisfying dρν(x) = hν(x)dx.
Taking advantage of Lévy–Itô decomposition, there exits a subordinator
which has the Laplace exponent ψν(u) and Lévy measure ρν . That is, this
subordinator has the same one-dimensional distributions with {Uν(τ)}τ≥0

and the theorem holds.
Therefore, in this paper we always denote {Uν(τ)}τ≥0 as the subordina-

tor with the Laplace exponent ψν(u).

2.2. Time-changed geometric Brownian motion

We introduce a time-changed geometric Brownian motion Zν(t) =
Z(Tν(t)), where ν and ψν(u) are given in Subsection 2.1, Z(τ) satisfies (3),
Tν(t) is the inverse of the subordinator Uν(t) with the Laplace exponent
ψν(u) and the processes B(τ) and Tν(t) are independent. As a special case,
when ν = δα, the Dirac measure concentrated on a single point α ∈ (0, 1),
the processes Uν(τ) and Zν(t) become respectively the α-stable subordinator
Uα(τ) with Laplace transform Ee−uUα(τ) = e−τu

α and the SGBM Z(Tα) in-
troduced by Magdziarz [12]. Therefore, Zν(t) = Z(Tν(t)) is a generalization
of the SGBM. The process Uν represents a mixture of independent stable
subordinators w.r.t. the measure ν. For example, if ν = c1δα1 + c2δα2 with
α1, α2 ∈ (0, 1), then Uν(t) = c

1/α1

1 Uα1(t) + c
1/α2

2 Uα2(t) is the mixture of two
independent stable subordinators Uα1(t) and Uα2(t), where c1, c2 > 0 are
constants and c1 + c2 = 1. Moreover, if ν is a weighted sum of finite Dirac
measures, then the following property holds. Fig. 1 shows simple realizations
of the processes Zν(t) corresponding different parameters.
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Fig. 1. Simple realizations of the processes Zν(t) corresponding different parameters
µ = 0.05, σ = 0.1, Zν(0) = 1 and ν, where ν = δ0.6 in the left figure, and
ν = 1

2δ0.6 + 1
2δ0.9 in the right figure.

Property 2.1 If ν =
n∑
i=1

ciδαi , 0 < α1 < α2 < · · · < αn < 1, 0 < ci < 1,
n∑
i=1

ci = 1, then ψν(k) =
n∑
i=1

cik
αi and

ETν(t) = L −1
k→t

{
1

kψν(k)

}
(t) =

1
2πi

1+i∞∫
1−i∞

ekt

n∑
i=1

cikαi+1

dk

=
tα1

2πi

1+i∞∫
1−i∞

ez

n∑
i=1

citα1−αizαi+1

dz .

Note that∣∣∣∣∣∣∣∣
1

2πi

1+i∞∫
1−i∞

ez

n∑
i=1

citα1−αizαi+1

dz

∣∣∣∣∣∣∣∣ ≤
1
π

+∞∫
0

e∣∣∣∣ n∑
i=1

citα1−αi(1 + ix)αi+1

∣∣∣∣dx

≤ 1
π

+∞∫
0

e

c1(1 + x2)
α1+1

2

dx < +∞ .

Then, there exists a positive number M(α1) < +∞ such that ETν(t) =
EB2(Tν(t)) ≤M(α1)tα1.

In general, the PDF of the time-changed geometric Brownian motion
Zν(t) = Z(Tν(t)) satisfies the following fractional Fokker–Planck equation,
which first appeared in [16]. Here, we give a little different proof.
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Theorem 2.2 The PDF w(x, t) of Zν(t) satisfies the fractional Fokker–
Planck type equation∫

(0,1)

C
0D

α
t w(x, t)dν(α) = −

(
µ+

σ2

2

)
∂

∂x
xw(x, t) +

σ2

2
∂2

∂x2
x2w(x, t) ,

where C
0D

α
t f(t) = 1

Γ (1−α)

∫ t
0 (t − x)−αf ′(x)dx is Caputo’s fractional deriva-

tive.

Proof. The random variables (RV) and their PDFs are listed as follows

RV Uν(τ) Tν(t) Z(t) Zν(t)

PDF s(t, τ) l(τ, t) z(x, t) w(x, t)

Denote by l̂(τ, k) = Lt→k {l(τ, t)} (k) the Laplace transform of l(τ, t)
w.r.t. t. Then

l̂(τ, k) = Lt→k {l(τ, t)} (k) = Lt→k

{
∂

∂τ
Pr(Tν(t) ≤ τ)

}
(k)

= −Lt→k

{
∂

∂τ
Pr(Uν(τ) ≤ t)

}
(k) = − ∂

∂τ
Lt→k


t∫

0

s(x, τ)dx

 (k)

= − ∂

∂τ

(
1
k
e−τψν(k)

)
=
ψν(k)
k

e−τψν(k) . (5)

By using the total probability formula and (5), we get

w(x, t) =

+∞∫
0

z(x, τ)l(τ, t)dτ , w(x, 0) = z(x, 0)

ŵ(x, k) =

+∞∫
0

z(x, τ)l̂(τ, k)dτ =

+∞∫
0

z(x, τ)
ψν(k)
k

e−τψν(k)dτ

=
ψν(k)
k

ẑ (x, ψν(k)) . (6)

Since Z(t) is given by (3), z(x, t) satisfies the standard Fokker–Planck
equation

∂z(x, t)
∂t

= −
(
µ+

σ2

2

)
∂

∂x
xz(x, t) +

σ2

2
∂2

∂x2
x2z(x, t) (7)
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with the boundary condition z(x, 0) = δZ0(x). The Laplace form of (7) is

kẑ(x, k)− z(x, 0) = −
(
µ+

σ2

2

)
∂

∂x
xẑ(x, k) +

σ2

2
∂2

∂x2
x2ẑ(x, k) .

Replacing k by ψν(k), we get

ψν(k)ẑ(x, ψν(k))− z(x, 0)

= −
(
µ+

σ2

2

)
∂

∂x
xẑ(x, ψν(k)) +

σ2

2
∂2

∂x2
x2ẑ(x, ψν(k)) .

Noting that w(x, 0) = z(x, 0) = δZ0(x) and (6), we have

ψν(k)ŵ(x, k)− ψν(k)
k

w(x, 0)

= −
(
µ+

σ2

2

)
∂

∂x
xŵ(x, k) +

σ2

2
∂2

∂x2
x2ŵ(x, k) . (8)

Taking the inverse Laplace transform of both sides of (8), from Theorem 2.1
and

Lt→k
{
C
0D

α
t f(t)

}
(k) = kαLt→k{f(t)}(k)− kα−1f(0) , [22]

we obtain the result of the theorem∫
(0,1)

C
0D

α
t w(x, t)dν(α) = −

(
µ+

σ2

2

)
∂

∂x
xw(x, t) +

σ2

2
∂2

∂x2
x2w(x, t) .

Remark: The equation in Theorem 2.2 can be seen as a diffusion equa-
tion with fractional derivative of distributed-order, which is widely used in
the kinetic description of anomalous diffusion. In this field, there are some
important papers (e.g. [17, 18,19,20]).

3. Martingale properties

For convenience, we assume that the Brownian motion {B(t)}t≥0, the
subordinator {Uν(t)}t≥0 and its inverse {Tν(t)}t≥0 are defined on a com-
plete probability space (Ω,F ,P). {B(t)}t≥0 with the Brownian filtration
{Ft}t≥0 is continuous, Uν is strictly increasing with càdlàg (right-continuous
with left limits) trajectories and so {Tν(t)}t≥0 is continuous. Let F̃ :=
σ (Tν(t) : t ≥ 0) be independent of the sub-algebra σ (Ft : t ≥ 0) of F and
Gt = Ft ∨ F̃ := σ

(
Ft, F̃

)
. Then, we can obtain the following martingale

properties.
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Lemma 3.1 E
[
eTν(t)

]
< +∞, E [Tnν (t)] < +∞ and Lt→k {ETnν (t)} (k) =

n!
kψnν (k) , n ∈ N.

Proof. It follows from (5) that

Lt→k

{
E
[
eTν(t)

]}
(k) = Lt→k


+∞∫
0

exl(x, t)dx

 (k) =

+∞∫
0

ex l̂(x, k)dx

=

+∞∫
0

ψν(k)
k

e−x(ψν(k)−1)dx . (9)

Note that if k > 1, then ψν(k) > 1. Thus it follows from (9) that
Lt→k

{
E
[
eTν(t)

]}
(k) < +∞ which implies E

[
eTν(t)

]
< +∞. As a direct

conclusion, for any n ∈ N,E [Tnν (t)] < +∞. Furthermore,

Lt→k {E [Tnν (t)]} (k) = Lt→k


+∞∫
0

xnl(x, t)dx

 (k) =

+∞∫
0

xn l̂(x, k)dx

=
1

kψnν (k)

+∞∫
0

xne−xdx =
n!

kψnν (k)
.

By using the similar argument as above, the following result can be
obtained.

Corollary 3.1 The Laplace transform of the inverse subordinator Tν(t) can
be represented as

E
[
e−uTν(t)

]
= L −1

k→t

{
ψν(k)

k (ψν(k) + u)

}
(t) =

1
2πi

γ+i∞∫
γ−i∞

ekt
ψν(k)

k (ψν(k) + u)
dk ,

(10)
where γ is a fixed positive number such that ψν(γ) > |u|.

Lemma 3.2 B(Tν(t)) is a continuous martingale.

The proof of this lemma is similar to that in [21].

Corollary 3.2 For every λ ∈ R, the process exp
{
λB(Tν(t))− λ2

2 Tν(t)
}

is
a continuous {Ht}-martingale.
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Proof. Note the fact that the quadratic variance of B(Tν(t)) satisfies
〈B(Tν(t))〉 = Tν(t) and the following result

E exp
{
λB(Tν(t))−

λ2

2
Tν(t)

}
=

+∞∫
0

(
E exp

{
λB(x)− λ2

2
x

})
l(x, t)dx

=

+∞∫
0

(
E exp

{
λB(0)− 0

λ2

2

})
l(x, t)dx = 1

= E exp
{
λB(Tν(0))− λ2

2
Tν(0)

}
.

From Lemma 3.1 the conclusion is obtained.

Theorem 3.1 For T > 0, there exists a probability measure Q on (Ω,F )
such that Q is equivalent to P and {Zν(t)}t∈[0,T ] is a martingale w.r.t. Q.

Proof. Let P (T ) = exp
{
−λB(Tν(T ))− λ2

2 Tν(T )
}

with λ = σ
2 + µ

σ ,
we have EP (T ) = EP (0) = 1. Define a probability measure Q satisfying
dQ = P (T )dP, then the two measures Q and P are equivalent. For t ∈ [0, T ],
denote P (t) = E

(
dQ
dP
∣∣Ht

)
, we get that

dP (t) = P (t)d
(
−λB(Tν(t))−

λ2

2
Tν(t)

)
+

1
2
P (t)d

(
λ2Tν(t)

)
= −λP (t)dB(Tν(t)) (11)

with P (0) =1. It follows from Girsanov’s theorem, Lemma 3.1 and (11) that

Kν(t) := B(Tν(t))−
t∫

0

1
P (t)

d〈P (s) , B(Tν(s))〉 = B(Tν(t)) + λTν(t)

is a local martingale w.r.t. Q, where 〈·, ·〉 denotes the quadratic covariance
of two processes. Therefore, the quadratic variation 〈Kν(t)〉 = Tν(t) and
so exp

{
σKν(t)− σ2

2 Tν(t)
}

= Zν(t) is a continuous local martingale and
super-martingale w.r.t. Q. On the other hand, it follows from Corollary 3.1
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that

EQ exp
{
σKν(T )− σ2

2
Tν(T )

}
= E exp

{
σKν(T )− σ2

2
Tν(T )− λB(Tν(T ))− λ2

2
Tν(T )

}
= E exp

{
(σ − λ)B(Tν(T ))− (σ − λ)2

2
Tν(T )

}
= E exp

{
(σ − λ)B(Tν(0))− (σ − λ)2

2
Tν(0)

}
= 1

= EQ exp
{
σKν(0)− σ2

2
Tν(0)

}
,

where EQ denotes the expectation w.r.t. the measure Q. Thus, {Zν(t)}t∈[0,T ]

is a martingale w.r.t. Q. That ends the proof.

Theorem 3.2 For every θ > 0, denote by Qθ the probability measure on
(Ω,F ) such that dQθ = ce−θTν(T )dQ = ce−θTν(T )P (T )dP, where c−1 =
E
(
e−θTν(T )P (T )

)
is a constant, then Qθ is equivalent to P and {Zν(t)}t∈[0,T ]

is a martingale w.r.t. Qθ.

Proof. Let X(t) = exp
{
−λB(t)− λ2

2 t
}

with λ = σ
2 + µ

σ , then X(t) is
a {Gt}-martingale and P (t) = X(Tν(t)). Moreover, the process (XZ)(t) :=
X(t)Z(t) = exp

{
(σ − λ)B(t)− 1

2(σ − λ)2t
}
is also a {Gt}-martingale and

so (XZ)(t ∧ Tν(T )) is a {Gt}-martingale.
For every t > s ≥ 0 and A ∈ Gs

EQθ [1AZ(t ∧ Tν(T ))] = E
[
1AZ(t ∧ Tν(T ))c e−θTν(T )P (T )

]
= E

{
E
[
1AZ(t ∧ Tν(T ))c e−θTν(T )X(Tν(T ))

∣∣Gt]}
= E

{
1Ac e−θTν(T )Z(t ∧ Tν(T ))X(t ∧ Tν(T ))

}
= E

{
E
[
1Ac e−θTν(T )Z(t ∧ Tν(T ))X(t ∧ Tν(T ))

∣∣Gs]}
= E

[
1Ac e−θTν(T )Z(s ∧ Tν(T ))X(s ∧ Tν(T ))

]
= E

{
E
[
1Ac e−θTν(T )Z(s ∧ Tν(T ))P (T )

∣∣Gs]}
= E

[
1Ac e−θTν(T )P (T )Z(s ∧ Tν(T ))

]
= EQθ [1AZ(s ∧ Tν(T ))] ,
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that is EQθ
[
Z(t ∧ Tν(T ))

∣∣Gs] = Z(s ∧ Tν(T )). Thus Z(t ∧ Tν(T )) is a
{Gt}-martingale w.r.t. Qθ.

Next, we have

EQθ
(

sup
t≥0

Z(t ∧ Tν(T ))
)

= EQθ

(
sup
t∈[0,T ]

Z(Tν(t))

)

= E

(
c e−θTν(T )P (T ) sup

t∈[0,T ]
Z(Tν(t))

)

≤ cZ0E

(
e−λB(Tν(T ))e|µ|Tν(T ) sup

t∈[0,T ]
eσB(Tν(t))

)
.

(12)

Let k be an arbitrary constant, similar to Lemma 3.1, we have that
EekTν(T ) < +∞. It follows that

E

( sup
t∈[0,T ]

ekB(Tν(t))

)2
 =

+∞∫
0

E

( sup
t∈[0,x]

ekB(t)

)2
 l(x, T )dx

≤
+∞∫
0

E

( sup
t∈[0,x]

ekB(t)− k
2

2
t

)2
 ek

2xl(x, T )dx

≤
+∞∫
0

4E
(
e2kB(x)−k2x

)
ek

2xl(x, T )dx

= 4Ee2k
2Tν(T ) < +∞ .

The formula obtained above implies that EekB(Tν(T )) < +∞. By Hölder
inequality and (12), we have EQθ

(
supt≥0 Z(t ∧ Tν(T ))

)
< +∞ and so Z(t∧

Tν(T )) is a uniformly integrable martingale w.r.t. Qθ. It follows that there
exists a random variable Yθ such that Z(t ∧ Tν(T )) = EQθ (Yθ|Gt) and
Zν(t) = Z(Tν(T ) ∧ Tν(T )) = EQθ (Yθ|Ht). So Zν(t) is a martingale w.r.t.
the probability measure Qθ.

4. Application: option pricing

In this section, we give the corresponding price formulae of the Euro-
pean call options when the time-changed geometric Brownian motion Zν(t)
defined in (4) represents the price of the underlying asset.
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First, suppose that the risk-free interest rate is 0, then the discounted
stock price at time t equals Zν(t). By using the first and second fundamental
theorems of asset pricing, the following result can be immediately obtained
from Theorem 3.1 and Theorem 3.2.

Theorem 4.1 The market model whose underlying asset price follows the
time-changed GBM {Zν(t)}t∈[0,T ] is arbitrage-free but incomplete.

Denote by Cν(Z0, T,K, r) (or C(Z0, T,K, r)) the price of the Euro-
pean call option under the asset price model Zν(t) (or Z(t)) defined in (4)
(or (2)) with the initial value of underlying asset Z0, time to expiration
date T , strike price K and the risk-free interest rate r. Especially, we
drop the parameter r when r = 0. It is well known that the fair price
C(Z0, T,K, r) of the European call option is given as follows

C(Z0, T,K, r) = Z0N(d1)−K e−rTN(d2) ,

where

d1 =
ln Z0

K +
(
r + σ2

2

)
T

σ
√
T

, d2 = d1 − σ
√
T

and N(·) is cumulative normal density function.

Theorem 4.2 Assume that the price of the underlying asset is given by (4),
the risk-free interest rate is 0 and the equivalent martingale measure is Q,
then the fair price of the European call option satisfies

Cν(Z0, T,K) =

+∞∫
0

C(Z0, t,K)l(t, T )dt .

Proof. The fair price of the European option satisfies

Cν(Z0, T,K) = EQ ((Zν(T )−K)+
)

= E
(

exp
{
−λB(Tν(T ))− λ2

2
Tν(T )

}
(Zν(T )−K)+

)

=

+∞∫
0

l(t, T )E
(

exp
{
−λB(t)− λ2

2
t

}
(Z(t)−K)+

)
dt

=

+∞∫
0

C(Z0, t,K)l(t, T )dt .
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Additionally, the Laplace transform Lτ→u{l(τ, t)}(u) of l(τ, t) is given
by (10).

Remark: When ν = δα with α ∈ (0, 1), ψν(k) = kα, Tν(t) degenerates
to the inverse α-stable subordinator with the Laplace transform

Ee−uTν(t) = L −1
k→t

{
kα

k (kα + u)

}
(t) = Eα(−utα) ,

where Eα(z) =
∞∑
n=0

zn

Γ (nα+1) is the Mittag–Leffler function [22]. This model

is consistent with Magdziarz’s [12].
Next, assume that the risk-free interest rate r > 0, we apply the actuarial

approach (Theorem 2.1 in [23]) to derive the corresponding option pricing
formula.

Theorem 4.3 If the price of the underlying asset is given by (4), the price of
the corresponding European call option satisfies Cν(Z0, T,K, r) =∫ +∞
0 C

(
Z0, t,

EZν(T )
EZ(t) K, r

T
t

)
EZ(t)

EZν(T ) l(t, T )dt.

Proof. Computing directly the expectations of Z(t) and Zν(T ) educes

EZ(t) = Z0e
µt+σ2

2
t , EZν(T ) =

+∞∫
0

l(x, T )EZ(x)dx .

Let gν(t, T ) = EZ(t)
EZν(T ) . By the actuarial approach (Theorem 2.1 in [23]),

we have

Cν(Z0, T,K, r) = E
(
Zν(T )

Z0

EZν(T )
−K e−rT

)+

=

+∞∫
0

[
E
(
Z(t)

Z0

EZν(T )
−K e−rT

)+
]
l(t, T )dt

=

+∞∫
0

gν(t, T )

[
E
(
Z(t)

Z0

EZ(t)
− K

gν(t, T )
e−(r T

t
)t

)+
]
l(t, T )dt

=

+∞∫
0

C

(
Z0, t,

K

gν(t, T )
, r
T

t

)
gν(t, T )l(t, T )dt .
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Remark: From the anonymous referee we know the latest results in [24],
in which authors introduced a subdiffusive arithmetic Brownian motion as
a model of stock prices and investigated the corresponding option pricing.
Moreover, the proofs in [24] are fairly beautiful.

The authors would like to thank the Referees for their helpful comments
and suggestions. This work was supported by the Science and Technology
Commission of Shanghai Municipality (No 11ZR1410300) and by Shanghai
Leading Academic Discipline Project (No B407).
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