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Within the framework of supersymmetric quantum mechanics, we in-
vestigate the general algebraic properties of translational shape invariant
potentials in arbitrary k steps, in which the k remainders Rs(am) are ana-
lytic functions of the parameter am that is related to others by translation:
am = am−1 + δ. The present study is based on the fact that the simplified
potential algebra of shape invariance condition in k steps is equivalent to
that of generalized deformed oscillators with a built-in Zk-grading struc-
ture. We shall show that, despite the complexity in the study, the general
algebraic properties still can be systematically determined.
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1. Introduction

Supersymmetric quantum mechanics (SUSY QM) was initially intro-
duced as a toy model to understand dynamical supersymmetry (SUSY)
breaking in quantum field theories [1,2]. It was soon realized that SUSYQM
by itself could be a very fascinating research topic. It is because, by the
method of factorization [3], SUSY QM enables us to construct the so-called
SUSY partner of a given one-dimensional nonrelativistic Hamiltonian. The
process can be successively used to generate an entire hierarchy of isospec-
tral SUSY partner Hamiltonians. For complete reviews on SUSY QM, refer
to [4, 5, 6, 7] and references therein.

Let us be more specific. Two potentials V (−)(x, a0) and V (+)(x, a0) are
said to be SUSY partners, if they are related to each other by the superpo-
tential W (x, a0) as

V (±)(x, a0) = W 2(x, a0)±W ′(x, a0) , (1)

(1683)
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where W ′(x, a0) ≡ d
dxW (x, a0) and a0 is a set of parameters. In units of

~ = 2m = 1, the corresponding SUSY partner Hamiltonians H(−)(x, a0) and
H(+)(x, a0) take the standard form: H(±)(x, a0) = − d2

dx2 + V (±)(x, a0), re-
spectively. The SUSY partner Hamiltonians H(±)(x, a0) can then be shown
to be exactly isospectral, except for a zero-energy ground-state eigenfunc-
tion. The existence of such a zero-energy eigenstate is completely determined
by the asymptotic behavior of the superpotential W (x → ±∞, a0) ≡ w±.
In this way, the Witten index acquires the topological expression: ∆ =
1
2 [sgn(w+) − sgn(w−)]; hence ∆ 6= 0 indicates good SUSY, whereas ∆ = 0
signifies the breaking of SUSY [5]. Here, sgn(w±) is the sign of w±.

The concept of shape invariance [8] can be incorporated with the formu-
lation of SUSY QM, which effectively gives rise to an integrability condition
to the solvable potentials of nonrelativistic Schrödinger equation. Many
classes of solvable shape invariant potentials that retain SUSY are subse-
quently constructed, including (i) the translational class [9, 10], where the
parameters a0 and a1 are related by a1 = a0+δ, (ii) the scaling class [11,12],
where a1 = qa0, for 0 < q < 1, (iii) the cyclic class [13], where a0 = ap,
a1 = ap+1, and so on, for p = 2, 3, ..., and (iv) the “exotic” class [11], where
a1 = qap0 and its generalization a1 = qa0/(1 + ra0), for 0 < q < 1, ra0 � 1,
and p = 2, 3, . . .1.

By the term “shape invariance”, it is suggested that the pair of partner
potentials V (±)(x, a0) defined in equation (1) is similar in shape but differs
only up to a change of parameters and additive constants. Written in terms
of the superpotential W (x, a0), the shape invariance condition in “one step”
reads

W 2(x, a0) +W ′(x, a0) =,W 2(x, a1)−W ′(x, a1) +R(a0) , (2)

where a1 = f(a0) is a function of a0 and the remainder R(a0) is inde-
pendent of x. By equation (2), the entire energy spectrum of the initial
Hamiltonian H(−)(x, a0) can be determined algebraically: E

(−)
0 = 0 and

E
(−)
n =

∑n−1
i=0 R(ai) (for n = 1, 2, 3, . . .) [8, 14]. Here, we assume that the

superpotential W (x, a0) is constructed in such a way that the Hamiltonian
H(−)(x, a0) possesses the unique zero-energy ground state. It should be re-
marked that the simple expression of energy eigenvalues is actually a direct
consequence of what is generally referred to as the potential algebra [15,16].
That is, all shape invariant potentials described by equation (2) admit an
underlying algebraic structure, thus can be studied by group theoretical
methods [17,18].

1 Strictly speaking, the four classes are not entirely independent, since they can be
transformed into one another by suitable reparameterizations.
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The usage of shape invariance condition can be readily extended to two
and even multi-steps [11]. Based on this method, some solvable shape invari-
ant potentials in two or multi-steps are therefore established [13,14,19,20,21].
The extension is straightforward. For this, we consider the general case of
shape invariance condition in k steps, where k is an arbitrary positive integer.
In order to maintain unbroken SUSY, the k superpotentials Ws(x, a0) (for
s = 0, 1, . . . , k − 1) are chosen to fulfill the asymptotic behaviors: sgn(w0+)
= sgn(w1+) . . . = sgn(w(k−1)+) as well as the Witten index requirements:
∆s 6= 0. Otherwise, they are quite arbitrary functions of x and a0. In
terms of these k superpotentials, the shape invariance condition in k steps
is given by

W 2
0 (x, a0) +W ′0(x, a0) = W 2

1 (x, a0)−W ′1(x, a0) +R0(a0) ,
W 2

1 (x, a0) +W ′1(x, a0) = W 2
2 (x, a0)−W ′2(x, a0) +R1(a0) ,

· · · = · · ·
W 2
k−1(x, a0) +W ′k−1(x, a0) = W 2

0 (x, a1)−W ′0(x, a1) +Rk−1(a0) , (3)

where the k remainders Rs(a0) are arbitrary and independent of x. Much
in the same way, from equation (3), the energy eigenvalues for the initial
Hamiltonian H(−)

0 (x, a0) can be algebraically determined by

E
(−)
nk+s =

n−1∑
m=0

k−1∑
t=0

Rt(am) +
s−1∑
t=0

Rt(an) , (4)

where the convention
∑−1

t=0 = 0 is used. Here, n = 0, 1, 2, . . . and s =
0, 1, . . . , k − 1.

It is interesting to note that, under certain circumstances, a simplified
version of potential algebra of shape invariance condition in k steps, as de-
scribed in equations (3) and (4), can be built. For the simplest case in
k = 2 steps, it is found that the corresponding simplified potential algebra
is similar to that of shape invariance in one-step (2), and is based only on
three angular-momentum-like generators [20,22]. As for the simplified alge-
braic properties in arbitrary k steps, they can be realized and subsequently
established based on the algebra of generalized deformed oscillators with a
built-in Zk-grading structure [23]. We mention here that, as a special case,
the simplified potential algebra in k steps developed in [23] includes those
cyclic shape invariant potentials of period k [13, 24,25].

In the present article, the investigation on the simplified potential algebra
of shape invariance condition in k steps is continued. The results of [23] will
be extended. There, the algebraic structures of translational shape invariant
potentials in k steps were step-by-step carried out, in which the remainder
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functions Rs(am) depend only linearly on the parameter am which is related
to other parameters by translation am = am−1 +δ. Here, we shall generalize
the study to the case that the remainder functions Rs(am) are analytic
functions of the parameter am. In other words, the remainder functions
Rs(am) are assumed to admit series expansions in the parameter am2. We
will show that, despite tedious computations that are needed to handle this
problem, the general algebraic properties of translational shape invariant
potentials in arbitrary steps still can be systematically determined.

The article is organized as follows. In Sec. 2, for the purpose of com-
pleteness, we briefly review on how the simplified potential algebra of shape
invariance in k steps is realized by the algebra of Zk-graded generalized de-
formed oscillators. In Sec. 3, based on the Zk-graded deformed oscillator
algebra, we explicitly work out the detailed algebraic properties of trans-
lational shape invariant potentials in k steps, in which remainders Rs(am)
are analytic in the parameter am. A closed-form example of analytic re-
mainders is then given to illustrate the corresponding algebraic structure.
Finally, Sec. 4 contains a discussion of the present article.

2. Zk-graded shape invariant potentials

In this section, we review the equivalence between the simplified poten-
tial algebra of shape invariance in k steps and the Zk-graded generalized
deformed oscillator algebra, which was first established in [23]. Deformed
oscillators have been proposed and studied in many different deformation
schemes in the literature [27,28,29,30]. The so-called Zk-graded generalized
deformed oscillators are the ordinary deformed oscillators that have built-in
an extra Zk-grading symmetry [31,32].

To begin with, let us consider in equation (3) the identification of pa-
rameters a0 → α(N0) and more generally am → α(N0 −m), where N0 is
an arbitrary integer and m = 0, 1, 2, . . . The precise form of the function
α(N0) is determined by requiring that the change α(N0) → α(N0 − 1)
corresponds to the change of parameters a0 → a1. Next, to go further be-
yond equation (3), we restrict ourselves to the simplified version of potential
algebra of shape invariance condition in k steps. This is achieved by intro-
ducing extra constraints on both originally arbitrary k superpotentials and
k remainders. To be more explicit, we demand that

Ws(x,α(N0))≡W
(
x,α

(
N0−

s

k

))
, Rs(α(N0))≡R

(
α
(
N0−

s

k

))
, (5)

2 In some cases, the generalization of the remainders Rs(am) to be analytic functions of
the parameter am might be purely mathematical. It is because we are aware of the fact
that for bound state problems the nth energy eigenvalue En obeys En ≤ const× n2,
for large enough value of n [26].
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where the identification a s
k
→ α(N0 − s

k ) is implied. As a result, the k re-
lations of equation (3) are cast into a compact one, in terms of the unified
superpotential W(x,α(N0)) and unified remainder R(α(N0)), as

W2
(
x,α

(
N0−

s

k

))
+W ′

(
x,α

(
N0−

s

k

))
=W2

(
x,α

(
N0−

s+ 1
k

))
−W ′

(
x,α

(
N0−

s+ 1
k

))
+R

(
α
(
N0−

s

k

))
. (6)

Note that the k relations in equation (3) are easily reproduced from equa-
tion (6) by letting, one at a time, s = 0, 1, . . . , k − 1.

At this stage, equation (6) clearly represents a constraint on the unified
superpotential W(x,α(N0)), when the parameter N0 is changed by − 1

k as
we go from the first equality to the second one of equation (3). In quantum
mechanics, this change of parameter N0 → N0 − 1

k is very common and is
usually formulated by the action of raising and lowering operators of the
simple harmonic oscillator. With this in mind, we first define the analogous
number operator N of equation (6) by

N ≡ 1
i

∂

∂φ
, (7)

and designate the parameter N0 as the eigenvalue of the number operator
N acting on the particular eigenstate |N0〉. Thus, the entire Fock space of
number eigenstates can be denoted by the direct sum H =

∑k−1
s=0 ⊕Hs that

consists of k distinct Fock subspaces

Hs ≡
{ ∣∣∣∣N0 −

nk + s

k

〉∣∣∣∣ n = 0, 1, 2, . . .
}
. (8)

Second, the Zk-grading structure of the Fock space H is easily real-
ized by projection operators that by definition project onto the k distinct
subspaces Hs. Written out explicitly, the k projection operators Πs (for
s = 0, 1, . . . , k − 1) are expressible in terms of the number operator N
as [31,32]

Πs ≡
1
k

k−1∑
t=0

e2πit(N+s/k) ,

k−1∑
s=0

Πs = I . (9)

In this way, the number eigenstates are simultaneous eigenstates of both
operators N and Πs, in which the eigenvalue equations are, respectively,

N
∣∣∣∣N0 −

nk + s

k

〉
=
(
N0 −

nk + s

k

)∣∣∣∣N0 −
nk + s

k

〉
, (10)

Πt

∣∣∣∣N0 −
nk + s

k

〉
= δt,s

∣∣∣∣N0 −
nk + s

k

〉
, (11)

where n = 0, 1, 2, . . . and s, t = 0, 1, . . . , k − 1.
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Third, we build the analogous ladder operators, that is, A and A† =
(A)†, by using the unified superpotential W(x, α(N ))

A = e−iφ/k
[
∂

∂x
+W(x,α(N ))

]
, A† =

[
− ∂

∂x
+W(x,α(N ))

]
eiφ/k .

(12)
Since the operators A and A† in equation (12) remain invariant under the
transformation φ → φ + 2πk, we shall take the configuration space for the
variable φ to be in the interval [0, 2πk].

Finally, we are at a position to explain the associated potential algebra
that is implicitly given in equation (6). Direct computations reveal that
the simplified potential algebra of shape invariance in k steps is, in fact,
described by the set of generators I, A, A†, N , and Πs, which fulfill the
Hermiticity conditions (A)† = A†, N † = N , Π†s = Πs, and the following
relations [

N ,A†
]

=
1
k
A† , [N ,A ] = −1

k
A , (13)

A†A = F (α(N )) , AA† = F
(
α

(
N +

1
k

))
, (14)

[N , Πs ] = 0 , ΠsΠt = δs,t , A†Πs = Πs+1A† , AΠs = Πs−1A , (15)

where the convention is used for the projection operators Πt = Πs, if
t−s = 0 mod k. We realize immediately that the simplified potential algebra
described by equations (13), (14), and (15) is familiar and similar to that
of generalized deformed oscillators with a Zk-grading structure [31, 32]. In
other words, the identification (5) simplifies the would-be complex potential
algebra of shape invariance condition in k steps to the relatively simplified
version (6), which in turn is found to be identical to the well established
Zk-graded deformed oscillator algebra.

The Hermitian positive function F(α(N )) appearing in equation (14) is
called the structure function as is suggested in the generalized deformed os-
cillator algebra. According to equation (6), the structure function F(α(N ))
is related to the unified remainder functionR(α(N )) through this remainder-
structure-function relation

F(α(N ))−F
(
α

(
N +

1
k

))
= −R

(
α

(
N +

1
k

))
. (16)

Furthermore, when acting on the number eigenstates, the ladder operators
A and A† constructed in equation (12) are as usual the lowering and raising
operators of the simplified potential algebra of shape invariance in k steps,
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which, as desired, change the eigenvalues of the number operator N by − 1
k

and + 1
k , respectively,

A
∣∣∣∣N0 −

n

k

〉
=
√
F
(
α
(
N0 −

n

k

)) ∣∣∣∣N0 −
n+ 1
k

〉
, (17)

A†
∣∣∣∣N0 −

n

k

〉
=

√
F
(
α

(
N0 −

n− 1
k

)) ∣∣∣∣N0 −
n− 1
k

〉
, (18)

where n = 0, 1, 2, . . . We mention here that if the number eigenvalue spec-
trum exhibits a lowest-weight eigenstate A|N0− n0

k 〉 = 0, for a given integer
n0, then the condition F(α(N0 − n0

k )) = 0 will be satisfied. Otherwise, if
it exhibits a highest-weight eigenstate A†|N0 − n0

k 〉 = 0, then we will have
F(α(N0 − n0−1

k )) = 0.
As a byproduct, the use of simplified potential algebra of shape invari-

ance in k steps enables us to express the energy eigenvalues of initial Hamil-
tonian H

(−)
0 (x, a0) = H

(−)
0 (x,α(N0)) completely in terms of the structure

function F(α(N0 − m
k )). We can show this relation by projecting the op-

erator equation (16) on the eigenstate |N0 − m+1
k 〉. Then, by applying the

resultant relation recursively, we obtain via equation (4) the eigenenergies
of the initial Hamiltonian H(−)

0 (x,α(N0)) in the form

E(−)
n =

n−1∑
m=0

R
(
α
(
N0 −

m

k

))
= F (α(N0))−F

(
α
(
N0 −

n

k

))
, (19)

where n = 0, 1, 2, . . . It is worth pointing that equation (19) represents the
energy spectrum of the simplified shape invariance condition in k steps,
which is to be compared with the initially more complicated energy spectrum
in equation (4).

Three remarks are in order.

1. For the simplest case of shape invariance in k = 2 steps, the Z2-grad-
ing structure is characterized by the usual Klein operator. In this
sense, the Z2-graded deformed oscillator algebra is similar to the
Calogero–Vasiliev oscillator algebra [33]. Moreover, it is also related to
the so-called R-deformed Heisenberg algebra [28] that has found many
interesting applications, in the context of noncommutative geometry,
supersymmetry, and anyons [34].

2. By inspecting the energy spectrum in equation (19), we learn that the
remainder R(α(N0 − m

k )) is nothing but the energy gap between two
adjacent eigenstates. Therefore, we must have R(α(N0− m

k )) > 0, for
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any positive integer m, in order to prevent energy levels from crossing.
If R(α(N0 − m

k )) ≤ 0 happens, it simply means that the associated
shape invariant potential is of finite depth, thus contains only a finite
number of bound states.

3. As is presented in equations (13), (14), and (15), the simplified poten-
tial algebra of shape invariance in k steps will not be complete, without
knowing the details of the structure function F(α(N )), which is af-
terwards related to the unified remainder R(α(N )) via equation (16).
It, therefore, implies that different remainder functions will give dif-
ferent structure functions, thus resulting in different shape invariant
potentials in k steps. That is to say, in the terminology of deformed
oscillator algebra, different structure functions correspond to different
deformation schemes, resulting in different Zk-graded deformed oscil-
lators.

3. Translational shape invariant potentials in k steps

The detailed algebraic structures of translational shape invariant poten-
tials in k steps will be explicitly constructed, in which the parameters of
partner potentials are related to each other by translation: am = am−1 + δ.
Here, δ is a constant. As mentioned earlier, the same but relatively simpler
problem has been discussed in [23], in which the k remainders Rs(am) in
equation (3) are chosen to be only linear functions of the parameter am. In
the present section, we are interested in the more general situation, in which
the remainders Rs(am) are analytic functions of the parameter am.

We hence consider translational shape invariant potentials in k steps,
such that the relations am+ s

k
= am + s

kδ = a0 + (m+ s
k )δ are automatically

fulfilled, where m = 0, 1, 2, . . . and s = 0, 1, . . . , k − 1. In addition, without
loss of generality, we demand that, in the identification procedure mentioned
in the paragraph before equation (5), the function α(N0 − n

k ) be identical
to the parameter an

k
. In other words, for n = 0, 1, 2, . . . ,

α
(
N0 −

n

k

)
≡ an

k
= (a0 +N0)−

(
N0 −

n

k

)
δ . (20)

The algebraic properties of translational shape invariant potentials in
k steps can be established as follows. Let us first choose the k unrelated
remainders Rs(am) in equation (3) to admit the following series expansions
(m = 0, 1, 2, . . .)

Rs(am) =
I∑
i=0

αs,i(am)i , (21)
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where the expansion coefficients αs,i (s = 0, 1, . . . , k − 1) are arbitrary con-
stants, and the parameter I is any positive integer, which denotes the highest
powered order in the expansions. Of course, the value of I can go to infinity
so that equation (21) becomes an infinite series.

Next, according to equation (5), we can identify the k remainders Rs(am)
to be the unified remainder R(am+ s

k
) at different values of am+ s

k
. At the

same time, we memorize that under such identification the simplified poten-
tial algebra of shape invariance in k steps will turn out to acquire a built-in
Zk-grading structure. In mathematical formalism, we are thus led to write

Rs(am) ≡ R
(
am+ s

k

)
=

I∑
i=0

βs,i

(
am +

s

k
δ

)i
, (22)

where βs,i are another expansion coefficients that are introduced to charac-
terize the inherited Zk-grading structure of the remainder R(am+ s

k
). We as-

sume here thatR(am+ s
k
) admits the power series expansion, too. Then, com-

paring the power series expansions in am for both equations (21) and (22),
we immediately arrive at the relationship between the coefficients

αs,i =
I∑
j=i

(
j

i

)( s
k
δ
)j−i

βs,j , (23)

where
(
j
i

)
= j!/i!(j − i)! is the binomial coefficient.

In the same vein, if we denote n = mk + s in equation (22), a totally
different expansion, in the power series of nk , of the unified remainder R(an

k
)

= R(α(N0 − n
k )) can be deduced. With the help of (20), equation (22)

becomes

R
(
an

k

)
=

k−1∑
s=0

I∑
i=0

βs,i

(
a0 +

n

k
δ
)i
∆n,s =

k−1∑
s=0

I∑
i=0

ωs,i

(n
k

)i
∆n,s , (24)

where the expansion coefficients ωs,i are given by

ωs,i = δi
I∑
j=i

(
j

i

)
βs,j(a0)j−i . (25)

In equation (24), the symbol ∆n,s is presented to single out the specific
contribution, when n = mk + s. It is defined as the analogous Kronecker
delta for the cyclic group of order k

∆n,s =
{

1 , for n = s mod k ,
0 , for n 6= s mod k .

(26)
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Besides, an equivalent operator expression of equation (24) can be es-
tablished, in favor of the number operator N (7) and projection operators
Πs (9), in the compact form as

R (α (N )) ≡
I∑
i=0

Ri (α (N )) =
k−1∑
s=0

I∑
i=0

ωs,i (N0 −N )i Πs . (27)

From this, equation (24) can be readily recovered by acting the remainder
operator R(α(N )) directly on the number eigenstate |N0 − n

k 〉. In the fol-
lowing subsections, by using equation (27), the relevant algebraic quantities
of translational shape invariant potentials in arbitrary k steps will be com-
pletely determined. Because the remainderR(α(N )) shown in equation (27)
is expanded in the power series of (N0 −N ), we shall choose to present our
results in accord with the increasing power of (N0 − N ). That is, we will
analyze the remainder Ri(α(N )), step-by-step, in each order of (N0 −N ).

Before going into the details, let us introduce the short-hand notation
f0(n, k) that will be useful in the later presentations

f0(n, k) ≡
k−1∑
s=0

[
k−1∑
t=0

ωs+t

]
∆n,s , (28)

where the cyclic convention is used: ωs+t ≡ ωs+t mod k (for instance, ωk = ω0

and ωk+1 = ω1). Due to the presence of the Kronecker delta ∆n,s, only one
term in the index s summation is singled out, which fulfills the condition:
n − s = 0 mod k. Furthermore, despite the ∆n,s term appearing in the
summation, the function f0(n, k) is actually a constant independent of n.
To show this, we take as an example k = 4 in equation (28) and immediately
obtain f0(n, 4) = (ω0 +ω1 +ω2 +ω3), for all integral n. Note that the second
subscript “i” of all ωs+t,i has been suppressed.

3.1. The zeroth order remainder
Let us begin with the simplest class of translational shape invariant po-

tentials in k steps, in which the unified remainder takes the simple form
R0(α(N ))=

∑k−1
s=0 ωs,0Πs, which clearly is a Zk-graded constant in (N0−N ).

The Zk-graded Fock space of shape invariance condition in k steps is denoted
by H=

∑k−1
s=0 ⊕Hs, in which the k Fock subspaces are Hs = {|N0 −m− s

k 〉
|m = 0, 1, 2, . . . }, for s = 0, 1, . . . , k − 1. When acting the remainder
R0(α(N )) on the number eigenstates |N0− n

k 〉 (for n = 0, 1, 2, . . .), it yields
the result:

∑k−1
s=0 ωs,0∆n,s, where ∆n,s is the analogous Kronecker delta de-

fined in equation (26). The first few members of the remainder are listed
as R0(α(N0 − n

k )) = (ω0, ω1, ω2, . . . , ωk−1, ω0, ω1, . . .) corresponding to the
choice of n = (0, 1, 2, . . . , k − 1, k, k + 1, . . .). For the purpose of simplicity,
we suppress the second subscript “0” of the quantity ωs,0.
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In this class, the structure function F0(α(N )) for translational shape in-
variant potentials in k steps can be constructed, via the remainder-structure-
function relation (16). A direct computation shows that

F0

(
α
(
N0 −

n

k

))
= C0 −

[
f0(n, k)

n

k
+ f1(n, k)

]
, (29)

where n = 0, 1, 2, . . . and C0 is an arbitrary constant to render F0(α(N0−n
k ))

positive definite. The function f0(n, k) has been defined in equation (28),
whereas the function f1(n, k) will be called the first grading function, since
it is presented to characterize the inherited Zk-grading symmetry of the
structure function F0(α(N )) in k steps3. To be more specific, it is found
to be

f1(n, k) =
k−1∑
s=0

[
k−1∑
t=0

(
t

k
− 1

2

)
ωs+t

]
∆n,s , (30)

where we use the convention ωs+t ≡ ωs+t mod k. Because of the Kronecker
delta ∆n,s, only one term in the index s summation is singled out that
satisfies the condition: n − s = 0 mod k. As an illustration, we take k = 4
in equation (30) and obtain f1(4i, 4) = 1

4(−2ω0 − ω1 + ω3), f1(4i + 1, 4) =
1
4(−2ω1 − ω2 + ω0), f1(4i+ 2, 4) = 1

4(−2ω2 − ω3 + ω1), and f1(4i+ 3, 4) =
1
4(−2ω3 − ω0 + ω2), where i = 0, 1, 2, . . .

Interestingly, the two terms inside the square bracket on the right-hand
side of equation (30) can be further sorted neatly. To the purpose, we define
the modified version of the first grading function by

f̃1(n, k) =
k−1∑
s=0

[
k−1∑
t=0

(
t+ n

k
− 1

2

)
ωs+t

]
∆n,s . (31)

Equation (29) consequently reduces to the simple expression

F0

(
α
(
N0 −

n

k

))
= C0 − f̃1(n, k) . (32)

Note again that the second subscript “0” of all ωs,0 is suppressed.
The energy spectrum of the initial Hamiltonian H(−)

0 (x,α(N0)) can thus
be obtained, according to equation (19), as

E(−)
n = f̃1(n, k)− f̃1(0, k) . (33)

In the literature, the potentials that possess such energy spectrum, which is
linear in the number eigenvalue (nk ), are known as the cyclic shape invariant
potentials of period k. The analytical properties for those potentials can be
found in the study of cyclic shape invariance condition [13, 24, 25]. See also
the special case of cyclic shape invariant potentials of period two [19].

3 By the same reasoning, we shall call f0(n, k) the zeroth grading function.
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3.2. The first order remainder
We next consider translational shape invariant potentials in k steps, in

which the unified remainder is linear in (N0−N ) as R1(α(N )) =
∑k−1

s=0 ωs,1
(N0−N )Πs. When acting the remainder R1(α(N )) on the associated num-
ber eigenstates |N0− n

k 〉 (for n = 0, 1, 2, . . .), we find that
∑k−1

s=0 ωs,1(nk )∆n,s,
where ∆n,s is in equation (26). The first few members of the remainder are
listed as R1(α(N0 − n

k )) = (0, 1
kω1,

2
kω2, . . . ,

k−1
k ωk−1, ω0,

k+1
k ω1, . . .) corre-

sponding to the choices of n = (0, 1, 2, . . . , k − 1, k, k + 1, . . .). Similarly, we
suppress the second subscript “1” of the quantity ωs,1.

It is worth pointing that when n = 0, the remainder R1(α(N0)) = 0. It
looks odd at the first sight, since the remainder R1(α(N0)) by construction
is the energy gap between the ground and first excited number eigenstates,
that is, it has to be greater than zero, when the first excited eigenstate
does exist. Nevertheless, it should cause no problem because we are only
discussing the first order term of the remainder in the expansion of (N0−N ),
there presumably is a zeroth order term, which results in R0(α(N0)) 6= 0,
when n = 0.

The corresponding structure function F1(α(N )) can be determined by
using equation (16). After some calculations, we obtain (n = 0, 1, 2, . . .)

F1

(
α
(
N0 −

n

k

))
= C1 −

1
2

[
f0(n, k)

(n
k

)2
+ 2f1(n, k)

n

k
+ f2(n, k)

]
,

(34)
where the constant C1 is introduced to keep the associated structure function
positive definite, if necessary. Further, in equation (34) the grading functions
f0(n, k) and f1(n, k) are defined in equations (28) and (30), respectively,
while the second grading function f2(n, k) is found to be

f2(n, k) =
k−1∑
s=0

[
k−1∑
t=0

(
t

k

(
t

k
− 1
)

+
1
6

)
ωs+t

]
∆n,s , (35)

where the convention ωs+t ≡ ωs+t mod k is understood. Likewise, only one
term is singled out in the index s summation that satisfies the condition:
n − s = 0 mod k. Setting k = 4 in equation (35), we find that f2(4i, 4) =
1
48(8ω0−ω1−4ω2−ω3), f2(4i+1, 4) = 1

48(8ω1−ω2−4ω3−ω0), f2(4i+2, 4) =
1
48(8ω2 − ω3 − 4ω0 − ω1), and f2(4i + 3, 4) = 1

48(8ω3 − ω0 − 4ω1 − ω2),
where i = 0, 1, 2, . . . Here, we suppress in all grading functions the second
subscript “1” of ωs,1.

Much the same as in the preceding subsection, if we introduce the mod-
ified version of the second grading function by

f̃2(n, k) =
k−1∑
s=0

[
k−1∑
t=0

(
t+ n

k

(
t+ n

k
− 1
)

+
1
6

)
ωs+t

]
∆n,s , (36)
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the structure function F1(α(N0 − n
k )) in equation (34) will reduce to

F1

(
α

(
N0 −

n

k

))
= C1 −

1
2
f̃2(n, k) . (37)

Consequently, the energy spectrum of the initial HamiltonianH(−)
0 (x,α(N0))

can be algebraically determined: E
(−)
n = 1

2(f̃2(n, k) − f̃2(0, k)), by using
equation (19).

We note that, in this class, a similar algebraic result for shape invariant
potentials in two steps has been discussed in [20, 22], using different ap-
proaches. Similarly, based on different Zk-grading functions, the algebraic
properties of shape invariant potentials in arbitrary k steps are also estab-
lished [23]. As for the analytical properties of translational shape invariant
potentials in k steps, we do not know much about them, except for the
singular Pöschl–Teller I & II potentials in two steps [20].

3.3. The second order remainder
We continue to discuss translational shape invariant potentials in k steps,

in which the unified remainder is second order in (N0 −N ), which is given
by R2(α(N )) =

∑k−1
s=0 ωs,2(N0 − N )2Πs. When acting the remainder

R2(α(N )) on the associated number eigenstates |N0−n
k 〉 (for n = 0, 1, 2, . . .),

we find that
∑k−1

s=0 ωs,2(nk )2∆n,s, where ∆n,s is in equation (26). The first
few members of the remainder are listed as R2(α(N0 − n

k )) = (0, ( 1
k )2ω1,

( 2
k )2ω2, . . . , (k−1

k )2ωk−1, ω0, (k+1
k )2ω1, . . .) corresponding to the choices of

n = (0, 1, 2, . . . , k − 1, k, k + 1, . . .). The second subscript “2” of all ωs,2
is suppressed.

In the same vein, the structure function F2(α(N )) can be determined
via equation (16). We afterwards find (for n = 0, 1, 2, . . .)

F2

(
α
(
N0 −

n

k

))
= C2 −

1
3

[
f0(n, k)

(n
k

)3
+ 3f1(n, k)

(n
k

)2

+ 3f2(n, k)
n

k
+ f3(n, k)

]
, (38)

where the constant C2 is introduced to yield the structure function posi-
tive definite, if necessary. In equation (38), the grading functions f0(n, k),
f1(n, k) and f2(n, k) have been defined. The third grading function f3(n, k)
is found to take the form

f3(n, k) =
k−1∑
s=0

[
k−1∑
t=0

t

k

(
t

k
− 1

2

)(
t

k
− 1
)
ωs+t

]
∆n,s , (39)
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where the convention ωs+t ≡ ωs+t mod k is known. The term that is singled
out in the index s summation satisfies the condition: n− s = 0 mod k. As
an example, if we let k = 4 in equation (39), then f3(4i, 4) = 1

64(3ω1− 3ω3),
f3(4i+1, 4) = 1

64(3ω2−3ω0), f3(4i+2, 4) = 1
64(3ω3−3ω1), and f3(4i+3, 4) =

1
64(3ω0 − 3ω2), where i = 0, 1, 2, . . . The second subscript “2” of ωs,2 in the
four grading functions is once more omitted.

Now, the structure function F2(α(N0− n
k )) can be shown to be express-

ible into the following more compact form

F2

(
α
(
N0 −

n

k

))
= C2 −

1
3
f̃3(n, k) , (40)

if we introduce the modified third grading function by

f̃3(n, k) =
k−1∑
s=0

[
k−1∑
t=0

t+ n

k

(
t+ n

k
− 1

2

)(
t+ n

k
− 1
)
ωs+t

]
∆n,s . (41)

In the same way, the energy spectrum of the initial Hamiltonian
H

(−)
0 (x,α(N0)) is algebraically determined: E(−)

n = 1
3(f̃3(n, k) − f̃3(0, k)),

by equation (19).
To the author’s knowledge, we experience little in analytical properties of

translational shape invariant potentials in k steps, in which the remainder
is quadratic in the number eigenvalue (nk ). Perhaps, the only exception
is the restricted shape invariant potentials in two steps studied in [21], in
which the gap parameters ω0,2 and ω1,2 of the unified remainder obey the
relation ω1,2 = −ω0,2. It thus indicates that f0(n, k) = 0 in equation (38).
That is to say, the energy spectrum of the restricted type of potentials is still
quadratic in (nk ), similar to that in the preceding class. The partial algebraic
properties for those restricted shape invariant potentials in two steps have
been discussed in [22].

3.4. The third order remainder

Before discussing the general properties of translational shape invari-
ant potentials in k steps, in which the remainder can be arbitrary order
in (N0−N ), let us present one more class. After this class, we shall know
enough to deduce the common algebraic structures that share with all the
translational shape invariant potentials in k steps.

We hence analyze translational shape invariant potentials in k steps,
in which the unified remainder is expressed as R3(α(N )) =

∑k−1
s=0 ωs,3

(N0−N )3Πs. When acting the remainderR3(α(N )) on the associated num-
ber eigenstates |N0 − n

k 〉 (for n = 0, 1, 2, . . .), we have
∑k−1

s=0 ωs,3(nk )3∆n,s,
where ∆n,s is in equation (26). The first few members of the remainder
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are listed as R3(α(N0 − n
k )) = (0, ( 1

k )3ω1, ( 2
k )3ω2, . . . , ω0, (k+1

k )3ω1, . . .) cor-
responding to the choices of n = (0, 1, 2, . . . , k, k + 1, . . .). Similarly, the
second subscript “3” of all ωs,3 is suppressed.

Much in the same way as in the previous classes, the structure function
F3(α(N )) can be determined via equation (16). Written out explicitly, it is
(for n = 0, 1, 2, . . .)

F3

(
α
(
N0 −

n

k

))
= C3 −

1
4

[
f0(n, k)

(n
k

)4
+ 4f1(n, k)

(n
k

)3

+ 6f2(n, k)
(n
k

)2
+ 4f3(n, k)

n

k
+ f4(n, k)

]
, (42)

where the constant C3 is chosen to make the structure function positive, if
necessary. In equation (42), the grading functions fi(n, k) (for i = 0, 1, 2, 3)
have been defined earlier, while the fourth grading function f4(n, k) is given
by

f4(n, k) =
k−1∑
s=0

[
k−1∑
t=0

((
t

k

)2( t
k
− 1
)2

− 1
30

)
ωs+t

]
∆n,s , (43)

where the convention ωs+t ≡ ωs+t mod k is understood. Likewise, only the
term, satisfying the condition n = s mod k, survives in the index s sum-
mation. Taking k = 4 in equation (43), we obtain the awkward results:
f4(4i, 4) = 1

3840(−128ω0 +7ω1 +112ω2 +7ω3), f4(4i+1, 4) = 1
3840(−128ω1 +

7ω2 + 112ω3 + 7ω0), f4(4i+ 2, 4) = 1
3840(−128ω2 + 7ω3 + 112ω0 + 7ω1), and

f4(4i+3, 4) = 1
3840(−128ω3+7ω0+112ω1+7ω2), where i = 0, 1, 2, . . . Again,

the second subscript “3” of ωs,3 in all the grading functions is omitted.
Furthermore, the complicated expression of the structure function

F3(α(N0 − n
k )) in equation (42) can be recast into the relatively simple

form

F3

(
α
(
N0 −

n

k

))
= C3 −

1
4
f̃4(n, k) , (44)

after we denote the modified fourth grading function by

f̃4(n, k) =
k−1∑
s=0

[
k−1∑
t=0

((
t+ n

k

)2( t+ n

k
− 1
)2

− 1
30

)
ωs+t

]
∆n,s . (45)

The energy spectrum of the initial Hamiltonian H(−)
0 (x,α(N0)) can be sim-

ilarly determined via equation (19) as E(−)
n = 1

4(f̃4(n, k)− f̃4(0, k)).
Up to now, let us give a brief remark on what we have learned concerning

the structure functions and grading functions, constructed from the order-
by-order remainders Ri(α(N )) in (N0 −N ). As for the structure functions
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Fi(α(N0 − n
k )) presented in equation (29), (34), (38), and (42), they seem

to follow some sort of binomial-like expansions of power (i + 1), for i =
0, 1, 2, 3, respectively. With regard to the grading functions fi(n, k) shown
in equations (30), (35), (39), and (43) that are used to characterize the
Zk-grading symmetry, they seem to relate to one another by certain integral
relations. The similar pattern can also be detected among the modified
grading functions f̃i(n, k). In the next subsection, we will show that the
naive observation is indeed correct and that the general expressions for the
structure functions and grading functions can be formally written out.

3.5. The arbitrary order remainder

We are now at a position to talk over the general algebraic structures of
translational shape invariant potentials in k steps, in which the remainder
can be arbitrary order in (N0−N ). To be more specific, the unified remain-
der in the present class takes the form RI(α(N )) =

∑k−1
s=0 ωs,I(N0−N )I Πs,

where I is an arbitrary integer. When acting the remainder RI(α(N )) on
the associated number eigenstates |N0 − n

k 〉 (for n = 0, 1, 2, . . .), we obtain
the result

∑k−1
s=0 ωs,I(

n
k )I∆n,s, where ∆n,s is defined in equation (26).

The structure function FI(α(N )) can be similarly determined via equa-
tion (16). After some algebras, we find that it is as anticipated given by the
following binomial-like expansion as (for n = 0, 1, 2, . . .)

FI
(
α
(
N0 −

n

k

))
= CI −

1
I + 1

[
I+1∑
i=0

(
I + 1
i

)
fi(n, k)

(n
k

)I+1−i
]
, (46)

where
(
I+1
i

)
is the binomial coefficient and the constant CI is chosen to

render the associated structure function positive, if necessary.
In addition, all the grading functions fi(n, k) appearing in equation (46)

can be systematically determined through certain integral equations. In Ap-
pendix A, we depict the determination of the grading functions fi(n, k) by
the method of recurrence relations, which in turn shows that the constructed
grading functions are surprisingly expressible in terms of the Bernoulli func-
tions Bi(x) as

fi(n, k) =
k−1∑
s=0

[
k−1∑
t=0

Bi

(
t

k

)
ωs+t

]
∆n,s , (47)

where the convention ωs+t ≡ ωs+t mod k is understood. In equation (47),
the symbol ∆n,s singles out in the s summation the term that satisfies the
condition n = s mod k, and the second subscript “I” of ωs,I is suppressed
as before.
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In the same manner, by introducing the modified notion of grading func-
tions

f̃i(n, k) =
k−1∑
s=0

[
k−1∑
t=0

Bi

(
t+ n

k

)
ωs+t

]
∆n,s , (48)

we readily obtain the structure function FI(α(N0 − n
k )) in the compact

expression

FI
(
α

(
N0 −

n

k

))
= CI −

1
I + 1

f̃I+1(n, k) . (49)

As a closing note, the energy spectrum of the initial Hamiltonian H
(−)
0

(x,α(N0)) in the present class can be obtained by equation (19), as before.

3.6. A closed-form example
An instructive example is given here to demonstrate the closed-form al-

gebraic properties of translational shape invariant potentials in arbitrary
k steps. To show this, the unified remainder is taken to be an analytic func-
tion of (N0−N ) and admits the Taylor series: R(α(N )) =

∑k−1
s=0

∑∞
I=0 ωs,I

(N0−N )I Πs. When the remainder R(α(N )) is acted on the number eigen-
state |N0 − n

k 〉 (for n = 0, 1, 2, . . .), we find that

R
(
α
(
N0 −

n

k

))
=

k−1∑
s=0

[ ∞∑
I=0

ωs,I

(n
k

)I ]
∆n,s . (50)

The corresponding structure function F(α(N )) can be readily constructed
from equation (49). We therefore have

F
(
α
(
N0 −

n

k

))
= C −

k−1∑
s,t=0

[ ∞∑
I=0

1
I + 1

BI+1

(
t+ n

k

)
ωs+t,I

]
∆n,s ,

(51)
where C is a constant to yield the above structure function positive definite,
if necessary. Here, the modified grading function f̃I+1(n, k) in equation (51)
has been replaced by using equation (48), and BI+1(x) is the (I + 1)th
Bernoulli function. Note that the second subscript “I” of ωs+t,I is explicitly
written out.

To proceed, we consider the example of quantum mechanical system, in
which the remainder function, i.e., the energy gap between two adjacent
eigenstates, is of the form

R
(
α

(
N0 −

n

k

))
=

k−1∑
s=0

γs e
−n

k
εs ∆n,s =

k−1∑
s=0

γs

[ ∞∑
I=0

(−εs)I

I!

(n
k

)I ]
∆n,s ,

(52)
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where γs and εs are positive constants. When comparing (52) with (50), we
immediately have ωs,I = γs(−εs)I/I!, which results in the following exact
structure function of the system

F
(
α

(
N0 −

n

k

))
= C −

k−1∑
s,t=0

γs+t

[ ∞∑
I=0

BI+1

(
t+ n

k

)
(−εs+t)I

(I + 1)!

]
∆n,s ,

= C −
k−1∑
s,t=0

γs+t

[
e−( t+n

k ) εs+t

e−εs+t − 1
+

1
εs+t

]
∆n,s , (53)

where, to go from the first line to the second one, we use B0(x) = 1 and the
property of generating function that defines Bernoulli functions [35]. Finally,
according to equation (19), the energy spectrum of the initial Hamiltonian
H

(−)
0 (x,α(N0)) is given by (n = 0, 1, 2, . . .)

E(−)
n =

k−1∑
t=0

{
k−1∑
s=0

γs+t

[
e−( t+n

k ) εs+t

e−εs+t − 1
+

1
εs+t

]
∆n,s − γt

[
e−

t
k
εt

e−εt − 1
+

1
εt

]}
.

(54)

Correctness of the exact expression of energy spectrum (54) can be easily
checked for the ordinary shape invariant potentials in SUSY QM, that is,
for the special case k = 1. When k = 1, there is no grading structure in
the associated potential algebra, so that the grading indices are taken as
s = t = 0. If we now denote γ0 = γ and ε0 = ε, equation (54) is reduced to
the simple form

E(−)
n = γ

1− e−nε

1− e−ε
, (55)

which yields E(−)
0 = 0 andE(−)

1 = γ > 0 as is necessary by the requirement of
unbroken SUSY. Furthermore, let us compute the energy difference between
two adjacent eigenstates from equation (55). It is found to be

R(α(N0 − n)) = E
(−)
n+1 − E

(−)
n = γ e−nε . (56)

Consistency of equations (56) and (52) (when letting k = 1 and s = 0 in
the latter one) is therefore manifest. Finally, it is pointed out that in the
limiting case ε→ 0, equation (55) becomes E(−)

n = nγ, which is nothing but
the eigenenergy spectrum of simple harmonic oscillator.
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4. Conclusions

In this article, the algebra of translational shape invariant potentials in
k steps is investigated, within the framework of SUSY QM. We start with
the k arbitrary relations (3) of shape invariance condition in k steps and
then impose the identification (5) among the k superpotentials and k re-
mainders. The simplified potential algebra of shape invariance in k steps (6)
is accordingly deduced, which is found to be equivalent to be the generalized
deformed oscillator algebra with a built-in Zk-grading structure. Resembling
the latter one, the simplified potential algebra of shape invariance in k steps
is, therefore, described by the similar set of operators {I,A,A†,N , Πs} (for
s = 0, 1, . . . , k − 1), which fulfill equations (13), (14), and (15).

The detailed algebraic properties of translational shape invariant poten-
tials in k steps are then determined. The remainders Rs(am) are taken to be
analytic functions of the parameter am, in which the parameters of partner
potentials are related to each other by translation: am = am−1 +δ. Without
loss of generality, we further set an

k
= α(N0 − n

k ) in equation (20) and ex-
pand the unified remainder R(α(N )) in the power series of (N0 −N ) (27).
For the purpose of illustration, we explicitly work out four classes of trans-
lational shape invariant potentials in k steps, in which the unified remain-
der Ri(α(N )) (for i = 0, 1, 2, 3) is zeroth, first, second, and third order
in (N0 − N ), respectively. In each class, we determine the corresponding
structure function Fi(α(N )) that defines the algebra of Zk-graded deformed
oscillators. In addition, the grading functions fi(n, k) and the modified ver-
sions f̃i(n, k) that characterize the inherited Zk-grading symmetry are also
constructed.

From the constructed structure functions Fi(α(N0 − n
k )) (for i = 0,

1, 2, 3), we observe that, when the unified remainder RI(α(N )) is Ith order
in (N0 −N ), the general form of structure function FI(α(N0 − n

k )) can be
written in the binomial-like expansion (46). Up to a constant, it is also iden-
tical to the (I+ 1)th modified grading function f̃I+1(n, k) (49). In addition,
all the grading functions fi(n, k) are found to be expressible in terms of the
Bernoulli functions (47), which are shown in Appendix A to relate to one
another by recurrence relations. Finally, we discuss a typical example of
remainder function (52) to demonstrate how the infinite series of structure
function (51) can be summed up to render the closed-form result (53). Con-
sistency of the obtained energy eigenvalues (54) is afterwards verified, for
the special case k = 1. To conclude the paper, we emphasize that the energy
eigenvalues of the initial Hamiltonian H(−)

0 (x,α(N0)) of shape invariance in
k steps can be completely determined by purely algebraic means, when the
unified remainder R(α(N )) is any analytic function of (N0 −N ).
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Appendix A

In this appendix, the grading functions fi(n, k) that are used to construct
the Zk-graded structure functions F(α(N )) of shape invariant potentials
in k-steps, presented in Sec. 3, will be systematically determined by the
recurrence relations developed below. It turns out that the general form of
grading functions is expressible in terms of the Bernoulli functions.

From equations (30), (35), (39), and (43), we conclude that the general
expression for the ith grading function fi(n, k) is given by

fi(n, k) =
k−1∑
s=0

[
k−1∑
t=0

Bi

(
t

k

)
ωs+t

]
∆n,s , (57)

in which the ith coefficient function Bi(x) (for x ≡ t
k and i = 0, 1, 2, . . .) is

formally defined as a certain polynomial of x of order i. Note that Bi(x) is
not the Bernoulli functions, yet. When integrating the coefficient function
Bi(x) over x, we obtain the resultant (i+1)th function Di+1(x) of x of order
i+ 1 in the form

Di+1(x) ≡ (i+ 1)

x∫
0

Bi
(
x′
)
dx′ , (58)

in such a way that the boundary conditions are to be satisfied: Di+1(0) =
Di+1(1) = 0. Further, the next, (i + 1)th coefficient function Bi+1(x) is
given by Di+1(x) through the definition

Bi+1(x) ≡ Di+1(x) + ci+1 , (59)

where ci+1 is a constant that is to be determined by a relation similar to
equation (58), with i replaced by i + 1, such that Di+2(0) = Di+2(1) = 0.
Based on the two defining recurrence relations (58) and (59), the entire
sequence of the coefficient functions Bi(x) can thus be determined, term-by-
term.

To be more explicitly, let us work out some of the functions Bi(x) and
Di(x). We start with the simplest case D1(x) = x, then B1(x) = x + c1,
according to equation (59). Substituting the expression of B1(x) into equa-
tion (58), we arrive at the function D2(x) = x(x + 2c1). To fulfill the
boundary condition D2(1) = 0, we have to choose c1 = −1

2 and therefore

B1(x) = x− 1
2 . (60)
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Secondly, from D2(x) = x(x− 1), we write B2(x) = D2(x) + c2, which is
then substituted to equation (58) to render D3(x) = x(x2 − 3

2x+ 3c2). The
boundary condition thus implies c2 = 1

6 and in addition

B2(x) = x(x− 1) + 1
6 . (61)

Thirdly, from D3(x) = x(x − 1
2)(x − 1), we define B3(x) = D3(x) + c3.

The use of equation (58) shows that D4(x) = x2(x−1)2 + 4c3x. As a result,
we have c3 = 0 and

B3(x) = x(x− 1)
(
x− 1

2

)
. (62)

Fourthly, from D4(x) = x2(x − 1)2, we let B4(x) = D4(x) + c4. Then
equation (58) renders us that D5(x) = x(x − 1

2)(x − 1)(x2 − x − 1
3), with

c4 = − 1
30 . Therefore,

B4(x) = x2(x− 1)2 − 1
30 . (63)

The search for the higher coefficient functions Bi(x) can be continued,
though the resultant coefficient functions become complicated and compli-
cated. For the purpose of completeness, we list some of the calculated func-
tions Bi(x), for i up to eight, when the recurrence relations (58) and (59)
are repeatedly used. They are

B5(x) = x(x− 1)
(
x− 1

2

) (
x2 − x− 1

3

)
, (64)

B6(x) = x2(x− 1)2
(
x2 − x− 1

2

)
+ 1

42 , (65)

B7(x) = x(x− 1)
(
x− 1

2

) (
x4 − 2x3 + x+ 1

3

)
, (66)

B8(x) = x2(x− 1)2
(
x4 − 2x3 − 1

3x
2 + 4

3x+ 2
3

)
− 1

30 . (67)

Incidentally, the above constructed coefficient functions Bi(x) (i = 1 to 8)
that are used to define the structure functions fi(k, s) in equation (57), are
nothing but the Bernoulli functions, which satisfy B′i(x) = iBi−1(x) and
reduce to the usual Bernoulli numbers when setting Bi(x = 0) = Bi [35].

A final remark is given. All the odd indexed constants c2m+1, except
for c1, in the above computations are found identically to be zero, so that
we have B2m+1(x) = D2m+1(x), for any m = 1, 2, 3, . . . The reason for this
is that the function D2m+1(x) is actually an antisymmetric function about
the point x = 1

2 and vanishes at the boundaries D2m+1(0) = D2m+1(1).
Therefore, the integration of D2m+1(x) over x ∈ [0, 1] solely give vanishing
result, even without the help of the constant c2m+1. Nevertheless, this is not
the case for the even indexed functions D2m(x), where they are symmetric
functions about x = 1

2 . To obtain vanishing result after integration over
x ∈ [0, 1], we need to add to every D2m(x) the associated constant c2m, thus
resulting in the relation B2m(x) = D2m(x) + c2m.
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