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The aim of this work is to present a non-trivial confirmation of the
powerful Coulomb gas-techniques for Boundary Conformal Field Theory
(BCFT). We show that we can re-derive the known Cardy’s result of per-
colation problem via the techniques developed by S. Kawai in the Coulomb
gas formalism.
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1. Critical percolation and conformal invariance

In BCFTs, Coulomb gas formalism presents a strong tool to obtain cor-
relation functions without having to solve differential equations not only in
the case of conformal minimal models but also in different models such as
percolation model. In his papers [1,2], Kawai presents a general formalism
to compute correlation functions in the half plane using the free-field con-
struction of boundary states and applying the Coulomb gas formalism. This
formalism was applied for the critical Ising model with free and fixed bound-
ary conditions obtained from Cardy’s boundary states. In this work, we will
use Kawai’s techniques to provide the percolation crossing probability which
is a two-point correlation function on the upper half plane.

In the thermodynamic limit and, of course, at the critical point, percola-
tion is believed to be described by a conformal field theory M (p’ = 2,p = 3)
with vanishing central charge [3]. Crossing probability is of great interest
in studies of percolation. In two dimensions and in geometries with edges
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(a rectangle for example), a crossing event is a configuration of bonds or
sites on the lattice covering this geometry such that there exists at least one
cluster connecting two disjoint segments of the boundary. See figure 1 for
the case of the rectangle.
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Fig. 1. Crossing cluster between the two segments of the rectangle.

Let m be the crossing probability associated with this event, and p be
the probability for each bond to be open (and 1 — p to be closed). Then,
there is a critical value of p called the percolation threshold such as

0 if p<pe
TF(p,T) it p=p. 5 (1)
1 if p>pe

3
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where 7 represents the aspect ratio of the rectangle (height/width). The
most familiar way to think about percolation as a critical phenomenon is
through the @ — 1 limit of the @Q-state Potts model. Let Z,z be the
partition function of the ()-state Potts model with the constraint that all
spins at lattice sites on S are fixed in the state o and all the spins on So
are fixed in the state 3. The boundary spins are free on the horizontal sides
of the rectangle. The existence of a cluster would force spins on the two
segments (S, S2) to be in the same state. In this way, a formula for =(p,r)
on the lattice is obtained as [4, 5]

m(p,7) = Clgiinl(zaa - aﬂ)u (2)

where the partition functions we need are given in terms of correlators by
Zoa = Z (D(ta)(21)P(af)(22)D(fa) (23) P(af) (1))
Zop = Zi (D (a)(21) (o) (22)D(18) (23) b (a1) (24)) (3)

where Z; is the partition function with free boundary conditions and ¢
denote the boundary operator corresponding to a switch from boundary
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condition (i) to (j) at the point z. In our case, the relevant boundary
changing operator is identified as being the ¢(12) boundary primary field in
the M(2,3) theory (@ — 1 limit) [6,7]. For this particular minimal model
we see, from the Kac table formula

[r(m+1) —sm]? — 1
dm(m +1)
r,s > 0, m =2 (4)

hr,s =

)

that h12 = 0 and we have, in addition, limg_; Zf = 1. Then, to obtain
the crossing probability formula one has to find the form of the four-point
correlation functions [§|

G(n) = <¢(12)(21)¢(12)(22)¢(12) (Z3><Z5(12) (24)> (5)
which will depend only on the cross ratio

(21 — 22)(23 — 21)

(21— 23)(22 — 21)

2. Correlation functions from the Coulomb-gas approach

The correlator (5) can be written in the upper half plane — by applica-
tion of the method of images — (see [9]) as

G(n) = <¢(12)(21)¢(12)(22)</5(12)(23)¢(12)(Z4)>
= (Ba2)(21,21)¢(12) (22, 22) ) ypyp (6)

where z3 = Z1 and z4 = Zo.

In the Coulomb gas approach, the boundary 2-point correlation func-
tion for physical boundary conditions can be obtained by introducing the
screened vertex operators [1,2]. In this case, the correlator (6) becomes

Gn) = (Blo) [V ™ oV ™ GOVis™ (22) V5™ (22| 0,0:00) |
where |B(a)) is called the boundary coherent state, |0, 0; ag) represents the
vacuum state and V and V' are the screened Vertex operators.

In order that the correlator be non-vanishing, we must satisfy the charge
neutrality conditions

m+m=0, n+n=1 (7)
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then we have the boundary charge oo = a1 = 0 for the first condition and
o = a1 3 = —a_ for the second one, where

ars = 5(L—r)ay + (1 —s)a_,

a+:\f \@,
an = L=z,

The first condition (7) corresponds to the conformal block

N 2
_ (21 —71)(Z2 — 22) M2 (1-a2)
L =M — o P YO RY
(21 — 22)(Z1 — Z2) (21 — Z2)(Z1 — 22) I'(2-2a%)
1 2
F(2b,1-a%,2—a%n) =N (32) (0.5, 3:m) (8)
r(3)
where Nj is a constant, b = 2aq 2(209 — a1,2) with o = ﬁ and I is the

hypergeometric function of the Gaussian type. Whereas the second condition
corresponds to the conformal block

_ (21 — 51)(22 — 22) 2h1 2
I, = Ny { (21 — 22)(Z1 — Z2) (21 — Z2) (71 — Z2)}

—a? a? — o2
X r Fz;;g Sl x (=n)?M2t T F (0,1 - a?,2a% ;)
l 1
- WIS (3 k) )

where N, is a constant. Using the properties of the I" and the hypergeometric
functions [10] we can write the conformal blocks of equations (8) and (9) as

LT3
L =N Fé) , (10)

To find the appropriate combination (i.e. the values of N1 and Na) de-
scribing 7(p, r), we give the precise correspondence between the aspect ra-
tior of the rectangle and the cross ratio n by the two expressions

2
r = and = —=, 12
. n e (12)
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For infinitely wide lattice (r — 0 and n — 1), the vertical crossing
probability 7 (p,r) should be 1. But for infinitely narrow lattice (r — oo
and 1 — 0) it should be zero. Thus, we find N; = 0 and Ny = —F(%)/F(%)Q.
Then the vertical crossing probability takes the form

r(3)

r(;)’

me(pr) = 7((21, 22); (23, 22)) = 3 (msF(L,2,4m) . (13)

Wl
ol

The horizontal crossing probability m,(p,r) should be 1 for infinitely
narrow lattice and zero for infinitely wide lattice. Then, in this case we have
Ny = No=1I(2)/I'(3)? and we can write

2 1
ﬂ'h(pv’r) = W((Zl,Z4); (227'23)) =1-3 a (3) (77)3F (%7 %7 %an) . (14)

Of course, m, + my = 1 which means that whenever there is a horizontal
cluster, it cannot exist a vertical one. The two events are incompatible.

If we change the labelling of the rectangle corner’s from (z1, 29, 23, 24) to
(22, 23, 24, 21), we retrieve Cardy’s results 3]

— : =1 I'(3) CEF(L 2 4.0
Wv(par) 7T((Z1,Z4),(22,23)) 1-3 1 2(1 77) F(33373a1 77) (15)
r(s)
and
r(3)

1—n). (17)

T. Sahabi would like to thank G. Watts for discussions on aspects of
percolation and crossing formulas and his comments on this work.
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