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Single particle momentum spectra are calculated within three micro-
canonical statistical ensembles, namely, with conserved system energy, sys-
tem momentum, as well as system energy and momentum. Deviations from
the exponential spectrum of the grand canonical ensemble are quantified
and discussed. For mean particle multiplicity and temperature, typical for
p+ p interactions at the LHC energies, the effect of the conservation laws
extends to transverse momenta as low as about 3GeV/c. The presented
results should be considered as the next step in development of statistical
models for particle production in high energy collisions. They can be use-
ful to interpret spectra measured in nuclear collisions at high energies, in
particular, their system size dependence.
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1. Introduction

Questions concerning possible phases of strongly interacting matter and
transitions between them have been motivating experimental and theoret-
ical study of relativistic nuclear collisions for many years now [1]. Results
on collision energy dependence of hadron production properties in central
lead–lead (Pb+Pb) collisions indicate that a high density phase of strongly
interacting matter, a quark-gluon plasma (QGP), is produced at an early
stage of collisions at energies higher than about 8GeV (center-of-mass energy
per nucleon–nucleon pair) [2]. Signals of the onset of deconfinement are not
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observed in proton–proton (p+p) interactions. This is probably because of a
small volume of the created system. Also, in other cases, when interpreting
signatures of the onset of deconfinement and/or QGP in nucleus–nucleus
(A+ A) collisions it is popular to refer to a comparison with properly nor-
malized data on p+ p interactions at the same collision energy per nucleon.

Statistical models in thermodynamical approximation are, in general,
sufficient to describe mean particle multiplicities in central Pb+Pb colli-
sions at high energies. This is because the volume of the created matter is
large and, therefore, an influence of the material and motional conservation
laws can be neglected. On the other hand, data on p+p interactions are no-
toriously difficult to interpret within statistical approaches. This should be
attributed to an importance of the conservation laws and thus invalidity of
thermodynamic models. Instead of the grand canonical ensemble (GCE), the
canonical (CE) or micro-canonical (MCE) ones should be used. Of course,
this may also impact conclusions from a comparison of results on Pb+Pb
and p + p interactions as well as the study of system size dependence in
A+A collisions.

An influence of material conservation laws on particle yields has been
studied within the CE since a long time [3]. In particular, strangeness [4],
baryon number [5], and charm [6] conservation laws were considered sepa-
rately in detail. A complete treatment of the exact material conservation
laws within the CE and MCE formulations was developed and applied to
analyze hadron yields in elementary collisions in Refs. [7,8]. The main result
is that the density of conserved charge carriers decreases with decreasing sys-
tem volume. This so-called CE suppression becomes significant for a mean
multiplicity of conserved charges of the order of one.

Similar to the CE suppression of particle yields, one may expect that a
shape of single particle momentum spectra changes when energy and mo-
mentum conservation laws are imposed. This conjecture is addressed quan-
titatively in our paper in which three micro-canonical statistical ensembles,
namely, with conserved system energy, system momentum as well as system
energy and momentum, are considered.

The paper is organized as follows. Partition functions for the three en-
sembles are defined and calculated in Section 2. The corresponding single
particle momentum spectra are shown and discussed in Section 3. Summary
presented in Section 4 closes the paper.

2. Partition functions with conserved momentum and energy

For simplicity, a non-interacting gas of mass-less particles (without con-
served charges) will be studied. Moreover, the classical Boltzmann approxi-
mation, which neglects (small) quantum effects, will be used. This allows to
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derive analytical formulas for single particle spectra in three micro-canonical
statistical ensembles. These are ensembles with the fixed volume, V , and
conserved system energy E only, system momentum ~P only as well as E and
~P being conserved together. They are referred to as (E, V ), (T, ~P , V ), and
(E, ~P , V ) ensembles, respectively, where T denotes the system temperature.
For comparison, spectra obtained within the GCE, i.e. the (T, V ) ensemble,
will be used. The corresponding partition functions read

Z(T, V ) =
∞∑
N=0

ZN (T, V ) =
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N=0

[
V

(2π)3

]N WN (T )
N !
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where

WN (T ) =
∫
d~p1 . . . d~pN exp

(
−
∑N

r=1 pr
T

)
=
(
8π T 3

)N
, N ≥ 0 , (5)

WN (E) =
∫
d~p1 . . . d~pNδ

(
E −

N∑
r=1

pr

)
, N ≥ 1 , (6)

WN

(
E, ~P

)
=
∫
d~p1 . . . d~pNδ

(
E −

N∑
r=1

pr

)
δ

(
~P −

N∑
r=1

~pi

)
, N ≥ 2 , (7)

WN

(
T, ~P

)
=
∫
d~p1 . . . d~pN exp

(
−
∑N

r=1 pr
T

)
δ

(
~P −

N∑
r=1

~pr

)
, N ≥ 2 .

(8)

Note, that the minimal possible number of particles in the ensembles with
conserved momentum, Eqs. (3)–(4) and (7)–(8), is N = 2.

Using the integral representation of the δ-functions,
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one finds
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Calculating the α- and λ-integrals [10] in Eq. (12), one obtains
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Performing the summation and rewriting (14) using the hypergeometric
functions, one gets

WN

(
E, ~P

)
=
(π

2

)N−1
(
E2 − P 2

)N−2

2P
(E + P )N

×
[

(E + P )
(N − 2)!(2N − 1)!2

F1

(
1− 2n, −n; n− 1;

E − P
E + P

)
− (E − P )

(N − 1)!(2N − 2)!2
F1

(
2− 2n, −n; n;

E − P
E + P

)]
. (15)

Equation (13), after taking the integral, reads
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where K2N−3/2(P/T ) are the modified Bessel functions. From Eqs. (15)
and (16) follow that WN (E, ~P ) = WN (E,P ) and WN (T, ~P ) = WN (T, P ).
Therefore, as it is intuitively expected, the partition functions (3) and (4)
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depend on the absolute value P of the 3-vector ~P , and they are independent
of the ~P direction. For ~P = 0, from Eqs. (15) and (16), one gets
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Using Eqs. (5), (11), and (15)–(16), one obtains the partition functions in
the GCE (1), and the micro-canonical ensembles (2)–(4). Then, the corre-
sponding mean multiplicity is calculated as

〈N〉 =
∑

N N ZN
Z

. (19)

3. Single particle momentum spectra

The single particle momentum spectrum in the GCE (5) reads [9]
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The single particle momentum spectra in the micro-canonical ensembles
(2)–(4) are [9]
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Relations ZN (E−p, ~p, V ) = ZN (E−p, p, V ) and ZN (T, ~p, V ) = ZN (T, p, V )
in the right-hand side of Eqs. (22) and (23), respectively, were used. Note
also that the spectra (20)–(23) satisfy the same normalization condition

∞∫
0

p2dpF (p) = 1 . (24)
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The single particle momentum spectra obtained within the (T, V ), (E, V ),
(E, ~P , V ), and (T, ~P , V ) ensembles are shown in Fig. 1. They are calculated
for T = 160MeV and E = 48GeV in the (T, V ), (T, ~P , V ) and (E, V ),
(E, ~P , V ) ensembles, respectively. The average multiplicity in the GCE is
selected to be 〈N〉 = 100. Note, that the selected mean multiplicity and
temperature are close to those measured in p + p interactions at the LHC
energies. The energy in the (E, V ) and (E, ~P , V ) ensembles was set to be
equal to the mean energy in the (T, V ) ensemble, i.e. E = 3T 〈N〉. Fi-
nally, the GCE relation 〈N〉 = V T 3/π2 was used to obtain the volume V ,
which is used in all ensembles. For these values of E, V , and T the average
multiplicities (19) in (E, V ), (E, ~P , V ), and (T, ~P , V ) ensembles are then
approximately equal to that in the GCE.
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Fig. 1. Single particle momentum spectra F (p) in the (T, V ) (dashed line), (E, V )
(dash-dotted line), (E, ~P = 0, V ) (solid line), and (T, ~P = 0, V ) (dotted line)
ensembles.

As seen in Fig. 1, at high momenta the spectra calculated imposing
energy and/or momentum conservation are significantly below the GCE ex-
ponential spectrum. This is expected because at the threshold momentum
the particle yield has to equal zero, namely, F (p;E) → 0 at p → E, and
F (p;E, ~P = 0)→ 0 at p→ E/2.

In order to quantify impact of the energy and momentum conservation
at momenta significantly below the threshold one, the ratio of the spectra
in the (T, ~P , V ), (E, V ), and (E, ~P , V ) ensembles to the spectrum in the
(T, V ) ensemble is shown in Fig. 2. The suppression of the spectra due to
the energy and momentum conservation is already significant (a factor of
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about 2) at momentum p ∼= 3GeV/c which is as low as about 12.5% of the
threshold one. Note, that the ratio is lower than the one by (1 ÷ 2)% at
low momenta of several hundred MeV/c as a result of the suppression of
the spectra (21)–(23) at higher momenta and their normalization to unity,
Eq. (24).

0 1 2 3 4 5
0

1

2

3

4

5

0 0.5 1 1.5

0.99

1

1.01

1.02

Bo
ltz

 

p (GeV/c) 

F    
   
(p

) /
 F

(p
)

 

 

 

 

     <N> = 100
 

     E = 48   GeV
     T = 160 MeV
     P = 0

 

  E, P, V
  T, P, V
  E, V 

 

 

 

 

 
 

Fig. 2. The ratio of FBoltz(p)/F (p), where F (p) equal to F (p;E) (21),
F (p;E, ~P = 0) (22) and F (p;T, ~P = 0) (23), is shown as a function of p by the
dash-dotted, solid and dotted lines, respectively. The small momentum region,
p < 1.5GeV/c, is presented in the inset. Further details are given in the text.

Dependence of the ratio FBoltz(p)/F (p) at p = 3GeV/c on mean particle
multiplicity is shown in Fig. 3. The temperature is fixed as T = 160MeV.
The energy and volume are calculated as E = 3T 〈N〉 and V = π2〈N〉/T 3,
and they have the same values in all statistical ensembles. For small statis-
tical systems (at low 〈N〉) the effect of the energy-momentum conservation
is strong and the ratio FBoltz(p)/F (p) is large. The ratio decreases to unity
with increasing 〈N〉 for all three ensembles with conserved E and/or ~P .
This is expected, because in the thermodynamical limit an influence of the
energy-momentum conservation on single particle momentum spectra at any
fixed particle momentum should disappear. Note, that in the (E, V ) and
(E, ~P , V ) ensembles, FBoltz(p)/F (p) → ∞ at the threshold values of 〈N〉
equal to p/3T and 2p/3T , for p = E and p = E/2, respectively.
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Fig. 3. The ratio of FBoltz(p)/F (p), where F (p) equal to F (p;E) (21),
F (p;E, ~P = 0) (22) and F (p;T, ~P = 0) (23) is shown as a function of 〈N〉 at
p = 3GeV/c by the dash-dotted, solid and dotted lines, respectively. Further
details are given in the text.

4. Summary

Single particle momentum spectra are calculated in the system of mass-
less non-interacting Boltzmann particles within three micro-canonical statis-
tical ensembles, namely, with the conserved system energy, system momen-
tum, as well as system energy and momentum. We find a strong suppression
of the spectra at large momenta in comparison to the exponential spectrum
of the grand canonical (T,V) ensemble. In the (E, V ) and (E, ~P = 0, V ) en-
sembles, the spectra approach zero for momentum approaching its thresh-
old value, p → E and p → E/2, respectively. There is no threshold in
the (T, ~P = 0, V ) ensemble, nevertheless the spectrum is also strongly sup-
pressed. For the mean particle multiplicity and temperature typical for p+p
interactions at the LHC energy, the suppression of the spectra due to the en-
ergy and momentum conservation is already significant (a factor of about 2)
at p = 3GeV/c, i.e. at momenta as low as about 12.5% of the threshold
momentum for the (E, ~P = 0, V ) ensemble.

The presented results should be considered as the next step in develop-
ment of statistical models for particle production in high energy collisions.
They can be useful to interpret spectra measured at high energy collisions.
In particular, the energy-momentum conservation effects are important to
describe the system size dependence in nuclear collisions. In the present
study, we consider only gas of massless Boltzmann particles. This allows to
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present all results in analytical form. An interesting region of particle mo-
menta is found to be p = (2÷ 4)GeV/c. Effects of Bose or Fermi statistics
can be safely neglected in this region, because exp(p/T ) � 1. Moreover,
in this region mπ/p � 1 and, consequently, the pion mass can be safely
neglected in calculations. On the other hand, an essential part of pions in
this kinematic region comes from decays of heavy resonances. Therefore, a
detailed comparison with data on pion transverse momentum spectra as well
as an analysis of kaon and proton spectra would require further development
of the model.
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