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The density of bosonic states is calculated for spinless free massive
bosons in generalised d dimensions. The number of bosons is calculated
in the lowest energy state. The Bose–Einstein condensation was found
in generalised d dimensions (at and above d = 3) and the condensation
temperature is calculated. It is observed to drop abruptly above three
dimensions and decreases monotonically as the dimensionalities of the sys-
tem increase. The rate of fall of the condensation temperature decreases
as the dimensionality increases. Interestingly, in the limit d → ∞, the
condensation temperature is observed to approach a nonzero finite value.
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Bose–Einstein condensation (BEC) [1,2] is a very interesting and impor-
tant subject of modern research. The slowing of atoms by the use of cooling
apparatus produces a singular quantum state known as a Bose condensate
or Bose–Einstein condensate. Einstein demonstrated that cooling of bosonic
atoms to a very low temperature would cause them to fall (or “condense”)
into the lowest accessible quantum state, resulting in a new form of mat-
ter. This transition occurs below a critical temperature, which for a uniform
three-dimensional gas consists of non-interacting particles with no apparent
internal degrees of freedom. After its experimental discovery [3] the BEC
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becomes much more challenging in modern research. Very recently, the con-
densation of photons (massless bosons) was observed experimentally [4] in
an optical microcavity.

Recently, the static properties of positive ions in atomic BEC [5], the
band structures, elementary excitations, stability of BEC in periodic poten-
tials [6] and the collisional relaxation in diffuse clouds of trapped bosons [7]
are studied in physical systems.

However, all these studies are done in three dimensions. Although, it
is a pedagogical matter, one may try to see the condensation in higher
dimensions or, more generally, in d dimensions.

In this paper, we study the Bose–Einstein condensation in generalised
d dimensions. We hope, that the present study will motivate the researchers
to do such type of generalisation of some other physical phenomena in higher
dimensions.

In d dimensions, the density of states for non-interacting spinless bosons
is the same as that for free fermions [8]. The energy of a free boson can be
written as [2] (Appendix C)

E =
1

2m
(
p2
1 + p2

2 + p2
3 + . . .+ p2

d

)
. (1)

Here, the above relation represents an equation of d-dimensional hyper-
sphere (in momentum space) having radius R =

√
2mE. The density of

single bosonic states will be proportional to the volume of the spherical shell
bounded between energy E and E + dE. This can be calculated easily [8]
and gives

gd(E)dE = C(m,V )E
d−2
2 dE , (2)

where the constant C(m,V ) is given by

C(m,V ) =
V

Γ (d/2)

(
2mπ
h2

)d/2
. (3)

It may be readily checked that in three dimensions (d = 3), one gets the
well known and widely used result of density of states, i.e., g(E) ∼ E1/2.

The thermodynamics of the system can be easily obtained from the grand
canonical partition function, Zg(z, V, T ), which is given by

Zg(z, V, T ) =
∏

i

(
1− ze−βEi

)−1
, (4)

where β = 1/kT and z is the fugacity of the gas and related to the chemical
potential µ by the relation, z = e−βµ. Here the suffix i refers to the single
particle state, having energy Ei and the product is over all the single particle
states.
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The total number of particles of the system are given by the following
formula

N = Σi
1

z−1eβEi − 1
. (5)

It is to be noted that ze−βE < 1 for all E, and since for free particle minimum
value of E is zero, the maximum value of z is 1. The number of particle N0

at ground state E = 0 is

N0 =
1

z−1 − 1
. (6)

For large volume, the spectrum of free particle becomes almost continuous
and hence the summation in the above equation could be represented by∫
gd(E)dE. However, at E = 0, gd(E) becomes zero (Eq. (2)), hence the

contribution of the number of particles (N0) in the ground state (E = 0)
to the total number of particles (N) could not be obtained in this way. So,
one has to separate the number N0 from the total number N . This trick is
applied here since one finds that N0 becomes considerably large as z → 1.
Thus, the total number N is written as

N = N0 +

∞∫
0+

gd(E)dE
z−1eβE − 1

. (7)

From the expression of N0, it is quite clear that as z approaches to one,
the E = 0 state starts to populate. This phenomenon of accumulation of
particles in the ground state (even at T 6= 0) is known as Bose condensation

N −N0 = C(m,V )

∞∫
0

Ed/2−1dE

z−1eβE − 1
, (8)

N −N0 =
C(m,V )
βd/2

∞∫
0

Xd/2−1dX

z−1eX − 1
, (9)

where X = βE. Substituting the value of C(m,V ) from Eq. (3), one obtains

N −N0

V
=

1
λd
g d

2
(z) (10)

where λ is given by

λ−1 =

√
2mπkT
h2

, (11)
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and gν(z) is the Bose–Einstein function, given by

gν(z) =
1

Γ (ν)

∞∫
0

xν−1dx

z−1ex − 1
. (12)

Since, for bosons, the value of z is always ≤ 1, gν(z) can be expressed as
a power series

gν(z) = Σl=1
zl

lν
. (13)

The Bose condensation temperature (TB) is obtained here from the equation
for z = 1 (since µ = 0) and N0 = 0. Hence TB is given by [2]

TB
d
2 =

N/V

ζ(d/2)

(
h2

2mπk

)d/2
, (14)

where ζ(ν) = gν(z = 1) and is given by

ζ(ν) = Σ∞l=1

1
lν
. (15)

For ν ≤ 1, gν(z) diverges [2] (Appendix D) as z → 1, thus for one and two
dimensions Bose condensation temperature(TB) (see Eq. (14)) is zero. And
for d = 3 one obtains the well known result

TB =
(

h2

2mπk

)(
N/V

2.612

)2/3

. (16)

The condensation temperature TB can be calculated in any dimension (d),
from equation (14). We have estimated, the condensation temperature TB,
for helium in various dimensions and shown in Table I.

TABLE I

Dimensionality (d) Condensation temperature (TB) (in Kelvin)

d = 3 3.13269 (see Ref. [2])
d = 4 8.76365× 10−4

d = 5 5.83222× 10−6

d = 6 1.99971× 10−7

d = 7 1.77437× 10−8

d = 8 2.86711× 10−9

d = 9 6.92417× 10−10

d = 10 2.21788× 10−10



Bose–Einstein Condensation in Arbitrary Dimensions 1809

Here, we have used the value of V = 27.6 c.c./mole (see Ref. [2]) and
m = 6.65× 10−24. The results given in Table I show that the condensation
temperature falls abruptly in d = 4. As the dimensionalities of the system
increase, the condensation starts at lower temperature. It is also evident
from the data that the rate of fall of the condensation temperature with
respect to the dimensionalities decreases as the dimensionality increases.
Now the question is, should we find the BEC at zero temperature in infinite
dimensions? Interestingly, the answer is NO. Taking the limit d→∞ in the
expression (14), we get TB(d→∞) is equal to h2/(2πmk) [9]. Here, it may
be noted that (N/(V ζ(d/2)))

2
d approaches unity as d→∞.

In conclusion, we can say that the present study of BEC in generalised
d dimensions is a new one. The condensation temperature was found to
decrease abruptly (see Table I) in d = 4 and decrease monotonically (and
slowly) as the dimensionality of the system increases. Additionally, it may
also be noted (from Table I) that the rate of fall of condensation temperature,
decreases as the dimensionality increases. In addition, it is quite interesting
that Bose–Einstein condensation occurs at any nonzero finite temperature
[9], in any dimensions, even at d→∞, except d = 1 and d = 2.

It may be mentioned here that non-interacting electrons show some in-
teresting unusual behaviours in higher dimensions [8, 10, 11]. In infinite di-
mensions, all electron posses Fermi momentum [8]. Pauli spin susceptibility
becomes temperature independent [10] only in two dimensions, the form of
electrical conductivity remains invariant [11] in generalised d dimensions. All
these interesting results could not be obtained unless studied in generalised
d dimensions.

We sincerely thank the Referee for suggesting us to calculate explicitly
the value of condensation temperature in the infinite dimensions, which con-
stitutes the important conclusion of this paper.
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