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In this paper, we consider the problem of a moving heavy quark through
a hot non-relativistic, non-commutative Yang–Mills plasma. We discuss the
configuration of the static and dynamic quarks, and also obtain the quasi-
normal modes. The main goal of this study is calculating the jet-quenching
parameter for the non-relativistic, non-commutative theory and comparing
it with drag forces which were recently obtained in an independent work,
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1. Introduction

The drag force of a heavy moving quark through a hot non-relativistic,
non-commutative Yang–Mills plasma has been recently studied by using
the AdS/CFT correspondence [1]. As we know, the AdS/CFT correspon-
dence [2, 3, 4, 5, 6, 7, 8] is a powerful mathematical tool for simplification of
some complicated calculations in QCD. However, in reality, QCD itself is
not directly amenable to this correspondence which permits access to var-
ious other interesting strongly-coupled gauge theories. The problem of the
drag force has been studied in the ordinary N = 4 super Yang–Mills thermal
plasma [9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25] and in theN = 2
supergravity theory [26, 27, 28], and in the various other backgrounds [29].
We have already found that moving a heavy quark through N = 2 super-
gravity [30] thermal plasma with non-extremal black hole and finite chemical
potential corresponds to the case of N = 4 super Yang–Mills thermal plasma
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with near-extremal black hole without chemical potential [26, 27, 28]. The
holographic picture of the moving heavy quark through the thermal QGP
(quark gluon plasma) with the momentum P , the mass m, the constant ve-
locity v and an external force F is the stretched string in the AdS space. In
that case, the drag force is given by Ṗ = F−µP , where µ is called the friction
coefficient. Another interesting problem in the strongly coupled plasma is
the jet-quenching parameter [22,23,24,25,31,32,33,34,35,36,37,38,39,40,41].
In the ultra-relativistic heavy-ion collisions at LHC or RHIC, interactions
between the high-momentum parton and the QGP are expected to lead to jet
energy loss, which is called the jet quenching. The jet-quenching parameter
provides a measurement of the dispersion of the plasma. The jet-quenching
parameter is usually calculated by using the perturbation theory, but by us-
ing the AdS/CFT correspondence it is possible to compute the jet-quenching
parameter in the non-perturbative quantum field theory. The perturbative
QCD is not very reliable for current experimental temperature, therefore,
the non-perturbative calculations have been used in recent literature. It is
known that the non-perturbative definition of the jet-quenching parameter
may be obtained in terms of light-like Wilson loop [31]. When fitting the
current data, it seems that the value of the jet-quenching parameter is likely
to be within the range 5–25 GeV2/fm [39].

The shear viscosity in the strongly coupled plasma can be calculated by
using the AdS/CFT correspondence. In that case, the universality of the
ratio of the shear viscosity to the entropy density has been studied in various
backgrounds [42,43,44,45,46,47,48]. In Ref. [46], the shear viscosity of the
N = 2 supergravity thermal plasma and strong coupling limit of the shear
viscosity for the N = 4 super-Yang–Mill theory with a chemical potential
computed.

In Ref. [1], the non-relativistic non-extremal (D1, D3) bound state solu-
tion of type IIB string theory is constructed by using the standard procedure
of Null Melvin Twist [49, 50, 51, 52]. A particular low energy limit of this
configuration is reduced to a non-commutative Yang–Mills theory [53,54,55],
as well as coincident non-relativistic (D1, D3) bound state system. In some
unified theories, such as great unification theories (GUT), it has been pro-
posed that space-time coordinates could be non-commutative. Thus the
non-commutativity became an interesting subject in modern physics. We
have, therefore, strong motivation to study the plasma that simultaneously
incorporates non-relativistic and non-commutative features. The origin of
the non-commutativity in the D3-brane is the large magnetic field existing in
the background. Besides the CFT usually has relativistic nature. However,
in the context of condensed matter systems, it is useful to find holographic
descriptions of CFT with the non-relativistic nature [56, 57, 58, 59]. These
systems sometimes can be produced in the laboratory and, indeed, there
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exists such a strongly coupled non-relativistic system such as cold fermions.
Therefore, it is interesting to study non-relativistic, non-commutative QGP.
In Ref. [1], it is found that in the non-relativistic, non-commutative Yang–
Mills theory explicit expression of the drag force does not have a closed form
but in various limits has different forms. We deal with this difficulty in cal-
culating the jet-quenching parameter, too. Therefore, we discuss the effect
of the non-relativistic and non-commutative nature of the theory for large
and small corresponding parameter. However, up to the constant, we suc-
ceed to find a closed form for the jet-quenching parameter in the relativistic
case.

In this paper, we complement the discussion of the drag force and quasi-
normal modes. An important difference between our work about drag force
with Ref. [1] is the discussion of static quark and zero temperature limit.
Moreover, we calculate the jet-quenching parameter in the non-relativistic,
non-commutative Yang–Mills theory.

This paper is organized as follows. In Sec. 2, we obtain the equation of
motion and momentum densities. We discuss the straightforwardly stretched
string at zero and finite temperatures. In Sec. 3, we study the quasi-normal
modes of the string and obtain the lowest modes. In Sec. 4, we compute
the jet-quenching parameter and discuss the effect of non-commutativity
parameter and non-relativistic nature of the theory. Finally in Sec. 5, we
summarize our results.

2. Drag force

We begin with the following background metric in the original coordi-
nates [1]

ds2 =
r2

KR2

[(
1− β2r2f

) (
dx−

)2 − (1 + β2r2
)
f(dx+)2 + 2β2r2fdx−dx+

]
+
hr2

R2

((
dx2
)2 +

(
dx3
)2)+

R2

fr2
dr2 , (1)

where we have neglected the 5-sphere (S5) part of the metric (it has no
contribution in our calculations because we limited the calculation to the
AdS5 space only). Indeed, the metric (1) represents the AdS5 space, and r
denotes vertical direction to D-branes. In the above solution, K ≡ 1 + β2 r

4
h
r2

and R2 = r2h sinhϕ, rh denotes the horizon radius and ϕ is called the boost
parameter, β is a physical parameter related to the chemical potential of the
Yang–Mills theory on the boundary. Moreover,

f = 1−
r4h
r4
, h =

1
1 + a4r4

, (2)
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where
a4 =

1
r4h sinh2 ϕ cos2 θ

. (3)

D3-branes are lying along x1, x2, x3, and D1-branes along x1. The angle θ
in the relation (3) measures the relative numbers of D-branes. So, for N
D3-branes and M D1-branes one can write, cos θ = N√

N2+M2
.

In this configuration, there is a large magnetic field in the x2− x3 direc-
tions so these directions satisfy the non-commutativity relation [x2, x3]= iΘ,
where Θ is called the non-commutativity parameter [53]. It has been shown
that a4r4h ∼ Θ2 [1], so the parameter a measures the non-commutativity.
Also β → 0 limit recovers the relativistic cases, so the parameter β specifies
the non-relativistic feature.

Therefore, an external quark moves non-relativistically at non-commu-
tative plasma. Dual picture of this configuration is the stretched string from
the brane to the horizon. The end point of string on the brane represents the
external quark and string may move along the non-commutative direction
x2 ≡ x. The open string is described by the following Nambu–Goto action

S = −T0

∫
dτdσ

√
−g , (4)

where T0 is the string tension and (τ, σ) are the string world-sheet coordi-
nates and g is the determinant of the world-sheet metric gab. In the static
gauge, x+ ≡ t = τ and r = σ, the string world-sheet is described by the
function x(t, r), so the Lagrangian density is given by

L =
√
−g =

[
1 + β2r2

K
− h

f
ẋ2 +

r4

R4

1 + β2r2

K
hfx′

2
] 1

2

, (5)

where the prime and dot denote derivative with respect to r and t, respec-
tively. Then, by using the Euler–Lagrange equation one can find the string
equation of motion

∂

∂r

[
r4

R4

1 + β2r2

K
hf

x′√
−g

]
=
h

f

∂

∂t

[
ẋ√
−g

]
. (6)

In order to obtain the canonical momentum densities associated with the
string, we use the following expressions

π0
µ = −T0Gµν

(
Ẋ ·X ′

)
(Xν)′ − (X ′)2 Ẋν

√
−g

π1
µ = −T0Gµν

(
Ẋ ·X ′

)
Ẋν −

(
Ẋ
)2

(Xν)′
√
−g

, (7)



Energy Loss and Jet Quenching Parameter in a Thermal Non-relativistic . . . 1829

where the metric Gµν is given by relation (1). Therefore, for µ, ν = x, r, t
one can obtain π0

x π1
x

π0
r π1

r

π0
t π1

t

 = − T0√
−g


−h
f ẋ

r4

R4
1+β2r2

K hfx′

h
f ẋx

′ 1+β2r2

K − h
f ẋ

2

1+β2r2

K

(
1 + r4

R4hfx
′2
)

r4

R4
1+β2r2

K hfẋx′

 .(8)

Relation (8) is the general expression for the canonical momentum of the
string stretched on the brane from r = rm to r = rh. In that case, the
total energy and momentum of the string are calculated by the following
relations, respectively

E = −
rm∫
rh

drπ0
t , P =

rm∫
rh

drπ0
x . (9)

The component π1
x is interpreted as the drag force on the quark due to ther-

mal plasma. The simplest solution of the equation of motion (6) is x = x0,
where x0 is a constant. In this case the string is stretched straightforwardly
from r = rm to the r = rh. This configuration is a dual picture of the static
quark in the thermal non-commutative plasma. In this case −g = 1+β2r2

K ,
and the drag force vanishes which is expected for the static quark. Only
non-zero components of the momentum density can be obtained as

π1
r = π0

t = −T0

√
1 + β2r2

K
. (10)

By using the first relation of (9) one can obtain the total energy of the string.
For the case of β � 1 we get

E = T0

[
rm − rh +

β2

2

(
r4h
rm

+
r3m
3
−

4r2h
3

)]
+O

(
β4
)
. (11)

It is clear that at β → 0 limit we recover the result of Ref. [9], where the total
energy of the string was obtained as E ∼ rm − rh. Therefore, β → 0 limit
of these calculations is corresponding to the moving heavy quark through
N = 4 super Yang–Mills plasma.

The temperature of the non-relativistic, non-commutative Yang–Mills
theory is given by [1]

T =
rh
πR2

=
rh√

2λ̂πα′
, (12)

where α′ is the slope parameter (α′ = 1
2πT0

), and λ̂ is the ’t Hooft cou-
pling of the non-relativistic, non-commutative theory, which is related to the
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’t Hooft coupling of the ordinary Yang–Mills theory by the relation λ = α′

Θ λ̂.
Therefore, the zero-temperature limit is obtained by taking rh → 0. At the
zero-temperature limit one can interpret E as the physical mass of the quark,
hence in this limit one can obtain

(E)T=0 = m = T0rm

[
1 +

β2r2m
6

]
. (13)

As we expected, at the rm →∞ limit (brane position moves to the bound-
ary) the quark mass will be infinite. Also, increasing the temperature de-
creases the quark mass, so one can write

(E)T 6=0 = Mrest(T ) = m−∆m(T ) , (14)

where thermal rest mass shift is defined as

∆m(T ) = E = T0rh

[
1 +

β2

2

(
4
rh
3
−
r3h
rm

)]
. (15)

We summarized these results in Table I.

TABLE I

AdS/CFT translation table. Expressions of ∆m(T ), Mrest(T ) and m obtained for
the infinitesimal β and O(β4) have been neglected. These results agree with [9] at
β → 0 limit.

Quantity NR-NC YM Type IIB string

Slope parameter R2√
2λ̂

α′

’t Hooft coupling λ̂ R4

2α′2

Temperature T rh
πR2

Horizon radius πR2T rh

Thermal rest mass shift ∆m(T ) T0rh

[
1 + β2

2 rh

(
4
3 −

r2h
rm

)]
Physical mass m T0rm

[
1 + β2r2m

6

]
Static thermal mass Mrest(T ) T0

[
rm − rh + β2

2

(
r4h
rm

+ r3m
3 −

4r2h
3

)]
On the other hand, for the case of β � 1 one can obtain

E ≈ T0
β2

2
rh

[
rm − rh − βrh ln

rm + βrh
rh + βrh

]
. (16)

In this case, the non-commutative parameter a is not important because the
static quark has no motion along the non-commutative directions.
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Another solution of the equation of motion (6) may be written as x =
vt+ x0, and is corresponding to the moving straightforward string which is
not a physical solution [9, 26].

The other solution, which satisfies the equation of motion, may be writ-
ten as x(t, r) = vt + ξ(r). Such a solution has been recently considered [1]
and the drag force was obtained in the standard form as the following

π1
x = −T0Cvr

2
c , (17)

where constant C is given by

C =
1

r2h (1 + a4r4c) sinhϕ
, (18)

and the critical radius rc is the root of the following equation(
r4 − r4h

) (
1 + a4r4

) (
1 + β2r2

)
− v2

(
r4 + β2r4hr

2
)

= 0 . (19)

Expression (17) for the drag force is in agreement with the previous works
such as [9, 26, 27, 28], the only differences are the definition of the constant
C and the critical radius rc. In the special case of β = a = 0 one can find

π1
x = −T0

v√
1− v2 sinhϕ

. (20)

Particularly, if we set sinhϕ = −
√

1− v2, this result coincides with [26] at
η → 0 limit and Λ2 = 1, where η is called the non-extremality parameter
and Λ denotes the cosmological constant. As we know, the non-extremality
parameter is related to the black hole charge q [28], and the black hole
charge q is related to the chemical potential (η ∼ q ∼ 1

β ). Thus, it is
reasonable that results of heavy quark in non-relativistic, non-commutative
Yang–Mills plasma at β → 0 and a → 0 limits agree with the results of
the moving heavy quark through N = 2 supergravity thermal plasma at
extremal limit without B-field [26,27,28]. Both theories at mentioned limits
are corresponding to moving heavy quark through N = 4 super Yang–Mills
thermal plasma without the chemical potential.

3. Quasi-normal modes

In this section, we would like to consider behavior of the curved string
at the late time and in the low velocity limit. In that case, the string has
small fluctuations around the straight string. It means that ẋ2 and x′2 are
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infinitesimal, so one can neglect them in the expression (5). Therefore, the
equation of motion reduces to the following equation

∂

∂r

[
r4

R4

√
1 + β2r2

K
fx′

]
=

1
f

√
K

1 + β2r2
ẍ , (21)

where a = 0 (there are no movements along the non-commutative direction).
Then, one may choose the time-dependent solution of the form

x(r, t) = ξ(r)e−µt . (22)

In that case, the equation of motion (21) reduces to the following differential
equation

Oξ(r) = µ2ξ(r) , (23)

where we define

O ≡ f
√

1 + β2r2

K

∂

∂r

r4

R4
f

√
1 + β2r2

K

∂

∂r
. (24)

Ansatz (22) satisfies the Neumann boundary condition at r=rm(ξ′(rm)=0).
In order to obtain the friction coefficient µ, it is convenient to expand ξ(r)
as power series of µ

ξ(r) = ξ0(r) + µξ1(r) + µ2ξ2(r) + . . . . (25)

Substituting expansion (25) in the equation (23) tells that

Oξ0 = 0 , Oξ1 = 0 , Oξ2 = ξ0 . (26)

The Neumann boundary condition causes to choose ξ0 = A, where A is a
constant, therefore,

ξ′(rm) = µξ′1(rm) + µ2ξ′2(rm) = 0 . (27)

At the β → 0 limit, by using equation (27), one can obtain

µ =
[
rm +

rh
4

ln
rm − rh
rm + rh

− rh
2

tan−1 rm
rh

]−1

. (28)

On the other hand, for β 6= 0, by using the near horizon behavior (r → rh
approximation which yields f ≈ 1 and K

1+β2r2
≈ 1), one can obtain

ξ′1(r) = −AR
4

r4
, ξ′2(r) = A

R4

r3
. (29)
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Therefore, applying the Neumann boundary condition yields to the following
expression for the friction coefficient

µ =
1
rm

(30)

which agrees with the first term of expression (28). This is the smallest
eigenvalue of operator O obtained for the given boundary condition.

As mentioned above, for the infinitesimal ẋ and x′ one can write
√
−g ≈√

1+β2r2

K , and then the momentum density is given by

π0
x = −T0

µ

[
r4

R4
f

√
1 + β2r2

K
x′

]′
, (31)

where we used the equation of motion (21) and solution (22). Then, we use
the second relation (9) to obtain the total momentum of the string

P =
T0

µ

r4min

R4

(
1−

r4h
r4min

)√√√√1 + β2r2min

1 + β2 r4h
r2min

x′(rmin)

 , (32)

where we used the Neumann boundary condition, and rmin > rh as an IR
cutoff at a lower limit of the integral.

In order to obtain the total energy, we expand
√
−g to the second order

of ẋ and x′, and obtain

π0
t = −T0

[√
1 + β2r2

K
+

1
2

(
r4

R4
f

√
1 + β2r2

K
xx′

)′ ]
, (33)

where we used the equation of motion (21). Then, we use the first relation (9)
to obtain the total energy of the string

E = T0

[
rm − rmin +

β2

2

(
r4h
rm

+
r3m
3
−

4r2h
3

)]
+
T0

2
r4min

R4

(
1−

r4h
r4min

)√√√√1 + β2r2min

1 + β2 r4h
r2min

x(rmin)x′(rmin) , (34)

where we assume that the parameter β is infinitesimal and use the Neu-
mann boundary condition. Combining relations (32) and (34) and using
ẋ = −µmx yields to the simple relationship E = Mrest + P 2

2m , where m is the
kinetic mass of the quark.
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4. Jet-quenching parameter

In order to calculate the jet-quenching parameter, we should consider
an open string whose endpoints lie on the brane. This is corresponding
to quark–antiquark configuration. In the light cone coordinates, the string
profile is given by the function r(t, y), where we used static gauge, x̃− ≡ τ =
t (L− ≤ x̃− ≤ 0) and x2 ≡ σ = y (−L

2 ≤ y ≤ L
2 ), and all other coordinates

are constant. Because of the condition L− � L, the world-sheet is invariant
along the x̃− direction, and one can consider the function r(y) as the string
profile, so r(±L

2 ) = ∞. Moreover, we use the light cone coordinates x̃− =
1√
2
(x+ − x−) and x̃+ = 1√

2
(x+ + x−) in the metric (1) [1, 56, 57, 58, 59]. In

that case, the Nambu–Goto action (4) takes the following form

S = 2T0L
−

L
2∫

0

dy

√√√√( r4h
2r4
− 2r2β2f

)
K

(
r4

R4
h+

r′2

f

)
, (35)

where prime denotes derivative with respect to y. Equation of motion (H =
L − ∂L

∂r′ r
′ = ε) yields to the following expression

r′2 =
fh

ε2
r4

R4


(
r4h
2r4
− 2r2β2f

)
K

r4

R4
h− ε2

 , (36)

where we interpreted the constant ε as the string energy. By using rela-
tion (36) in (35) and dy = dr/r′ one can rewrite the action (35) as the
following

S = 2T0L
−
∞∫
rh

dr

√√√√( r4h
2r4
− 2r2β2f

)
fK

1− ε2(
r4h
2r4
− 2r2β2f

)R4

r4
K

h

− 1
2

.

(37)
For the low energy limit (ε � 1), which is corresponding to L � L−, one
can obtain

S = S0 + T0L
−ε2

∞∫
rh

dr
R4

r4

√√√√ K

fh2
(
r4h
2r4
− 2r2β2f

) , (38)

where

S0 = 2T0L
−
∞∫
rh

dr

√√√√fh2
(
r4h
2r4
− 2r2β2f

)
fK

(39)
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can be interpreted as self energy of the isolated quark and antiquark. Fur-
thermore, one can integrate equation (36) and obtain the following relation

L = ε

∞∫
rh

dr
R4

r4

√√√√ K

fh2
(
r4h
2r4
− 2r2β2f

) . (40)

Therefore, one can find

S − S0 = T0L
−L2

 ∞∫
rh

dr
R4

r4

√√√√ K

fh2
(
r4h
2r4
− 2r2β2f

)

−1

. (41)

Finally, by using the following relation [25]

q̂ ≡ 2
√

2
S − S0

L−L2
, (42)

we find the expression of the jet-quenching parameter

q̂ = 2
√

2T0

 ∞∫
rh

dr
R4

r4

√√√√ K

fh2
(
r4h
2r4
− 2r2β2f

)

−1

. (43)

Before anything else, we check the validity of the above expression at β → 0
and a → 0 limits. In these limits, one find K = 1 and h = 1, so one can
obtain

q̂SYM =
π2

b

√
λT 3 , (44)

where T0 = 1
2πα′ , T = rh

πR2 , R2 = α′
√
λ and b=

√
π
Γ ( 5

4
)

Γ ( 3
4
)
≈ 1.311. Equa-

tion (44) is the well known relation of the jet-quenching parameter in the
hot N = 4 supersymmetric QCD [31].

From Ref. [1] it is found that, for the case of β = 0 and a = 0 the drag
force Ṗ is proportional to

√
λπT 2v. Therefore, in this case, one can obtain(

q̂

Ṗ

)
SYM

∼ T . (45)

It means that the ratio of the jet-quenching parameter to the drag force is
linear for the temperature in the N = 4 super Yang–Mills plasma without
the chemical potential.
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One can consider another case with β → 0 and arh � 1 which yields to
the following expression

q̂NC SYM =
12π2

5

√
2λ̂T 3 , (46)

where we assume a2r2h = Θ. This assumption is consistent with the rela-
tion (3) with Θ = (sinhϕ cos θ)−1. The large non-commutativity param-
eter a means that rh will be a small parameter, so in the above relation
the O(r4h) terms can be neglected. Therefore, the value of temperature in
relation (46) is lower than the value of temperature in relation (44), hence
it seems that the jet-quenching parameter for the case of β → 0, a � 1 is
smaller than the jet-quenching parameter for the case of β → 0 and arh → 0.
However, we should note that λ̂ > λ for a large non-commutativity param-
eter. So, in order to compare q̂NC SYM with q̂SYM, we exam their value
at T = 300 MeV. In that case, one can obtain q̂SYM ≈ 4.5 GeV2/fm, and
q̂NC SYM ≈ 19 GeV2/fm, which is nicely in the experimental range [39].
Therefore, the presence of the non-commutativity increases the value of the
jet-quenching parameter. In order to obtain numerical value of q̂NC SYM, we
assumed a to be of the order of 105, which is consistent with the value of Θ in
Ref. [60], to find a significant correction due to non-commutativity in collider
experiments. Such value is also in agreement with spin statistics violations in
non-commutative QED from Gran Sasso and Super-Kamiokande [61]. More-
over, we can impose other limits on non-commutativity from experiments,
for example quantum mechanics, Lamb shift in non-commutative QED and
non-commutative extensions of standard model give a ∼ 10 [62], and non-
commutative symplectic structure in classical mechanics and perihelion of
mercury give a ∼ 1013 [63].

In both cases, we find the standard form of the jet-quenching parameter
proportional to T 3 times square root of the ’t Hooft coupling. Although
the drag force for the large non-commutativity parameter is proportional to
(
√
λ̂T 2)−1, the jet-quenching parameter saves its shape. However, authors

in Ref. [1], for the large non-commutativity, concluded that the drag force
on quark is very small and this result is in agreement with our result.

The next case which we consider in this paper is the case of β � 1 at
a→ 0 limit. In this case, one can obtain

q̂NR SYM =
µ̄2

T
√

2ĝ2
YMN

I−1 , (47)

where µ̄ = (βα′)−1 is defined as the chemical potential of the non-relativistic,
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non-commutative Yang–Mills theory, and

I =

∞∫
rh

dr

r
√(

r4 − r4h
)
β2
(
r4h − 4r2β2

(
r4 − r4h

)) . (48)

In the case of high temperature (rh → ∞), one can obtain I ∝ β−2r−4
h .

Therefore, we found that q̂NR SYM ∝ T , comparing the jet-quenching pa-
rameter with the drag force yields to the following relation(

q̂

F

)
NR SYM

∼ T . (49)

In Ref. [1], it is found that the drag force for the case of β � 1 and arh � 1
does not depend on the temperature. It means that the ratio of the jet-
quenching parameter to the drag force at high temperature limit is propor-
tional to the temperature which was already obtained for the case of ordinary
theory (see relation (45)).

Finally, we consider the case of β � 1 and arh � 1 and obtain

q̂NC NR SYM ∝
π2a2

√
2λ̂T 3

a2 + π2λ̂α′2β2T 2
. (50)

It is clear that a → 0 limit of equation (50) yields to q̂NR SYM ∝ T and
β → 0 limit of equation (50) yields to q̂NC SYM ∝ T 3, which agree with the
results of relations (45) and (47).

5. Conclusion

In this paper, we considered non-relativistic, non-commutative Yang–
Mills plasma and studied the problem of the moving heavy quark through the
thermal plasma. As we mentioned in the introduction, the non-relativistic
nature of CFT is important for the condensed matter theory. Besides, the
large magnetic field existing in the background yields to non-commutativity
in the background which is important for some unified theories. Therefore,
the study of non-relativistic, non-commutative QGP is interesting. We have
obtained the full components of the momentum density and discussed the
static quark configuration. Then, we discussed the quasi-normal modes. Fi-
nally, we have computed the jet-quenching parameter for the non-relativistic,
non-commutative theory. For the large chemical potential (for both in-
finitesimal and large non-commutativity parameter) the jet-quenching pa-
rameter is obtained in its standard form, but for the case of infinitesimal
non-commutativity parameter and large β the jet quenching parameter is
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proportional to temperature. However, in this case, the ratio of the jet-
quenching parameter to the drag force is similar to the ordinary theory. We
have found that the presence of non-commutativity is necessary to obtain
the jet-quenching parameter in the experimental range. As we know, the
experimental data show that the value of the jet-quenching should be in the
range (15± 10) GeV2/fm [39]. We have found that q̂NC SYM ≈ 19 GeV2/fm
at T = 300 MeV which is in the experimental range. We should note that our
results differ from the usual results obtained by means of calculation in quan-
tum field theory involving the usual mechanisms of multiple scattering and
radiative energy loss [64]. For example, the value of the jet-quenching pa-
rameter obtained by using multiple scattering mechanism for T = 400 MeV
was about 2.3 GeV2/fm which is clearly lower than our result and experi-
mental data. The reason is that the AdS/CFT correspondence gives more
exact solutions than other methods.
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