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We consider the cosmological model which allows to describe on equal
footing the evolution of matter in the universe in the time interval from the
inflation till the domination of dark energy. The matter has a form of a
two-component perfect fluid imitated by homogeneous scalar fields between
which there is energy exchange. Dark energy is represented by the cosmo-
logical constant, which is supposed invariable during the whole evolution of
the universe. The matter changes its Equation of State with time, so that
the era of radiation domination in the early universe smoothly passes into
the era of a pressureless gas, which then passes into the late-time epoch,
when the matter is represented by a gas of low-velocity cosmic strings.
The inflationary phase is described as an analytic continuation of the en-
ergy density in the very early universe into the region of small negative
values of the parameter which characterizes typical time of energy trans-
fer from one matter component to another. The Hubble expansion rate,
energy density of the matter, energy density parameter, and deceleration
parameter as functions of time are found.
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1. Introduction

The standard cosmological model [1,2] describes the universe which con-
tains relativistic matter (radiation), visible and Dark Matter, and dark en-
ergy in the form of the vacuum (cosmological constant) or quintessence (hy-
pothetical cosmic fluid with the Equation-of-State parameter which changes
with time). The universe evolves so that in the course of the expansion, one
or another matter-energy component begins to dominate over the others.

In the early universe, the dominating matter component is radiation with
the energy density ρ ∼ R−4, where R is the cosmic scale factor. Then, as the
universe expands, the non-relativistic matter (dust) with the energy density

(1899)
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ρ ∼ R−3 begins to dominate. If one assumes that in the late-time universe
there exists a complementary linear constraint between the cosmic scale
factor and total amount of matter in the universe as a whole, the latter phase
will pass into the stage in which the matter in the universe will look like a
perfect gas of low-velocity cosmic strings with ρ ∼ R−2 [3]. In the radiation-
dominated universe, the number density of photons is nγ ∼ R−3, and the
energy of every photon decreases, during the expansion of the universe,
as mγ ∼ R−1 due to the cosmological redshift. As a result, the effective
mass of the matter attributed to relativistic matter reduces as well, Meff ∼
mγnγR

3 ∼ R−1. Arguing in the same way, one finds that in the universe,
in which the matter is represented by a dust, the effective mass is constant,
Meff = const., expressing the constancy of the sum of the masses of the
bodies in the volume ∼ R3. In the low-velocity cosmic strings phase, the
effective mass of the matter increases with the expansion of the universe,
Meff ∼ R. On the time interval from the reheating after the inflation till the
domination of dark energy, the Equation of State of the dominating matter
changes from the equation for radiation with the pressure p = 1

3ρ to the
equation for the low-velocity cosmic strings p = −1

3ρ passing through the
pressureless state p = 0.

It seems justified to consider the approach in which the Equation of State
of the matter in the universe changes continuously in time, passing through
the limiting cases being specified. Models, in which continuous change of
state of the matter was assumed, were studied by a number of authors [4,5].

In the present article, we consider the model of the universe in which the
matter has a form of a two-component perfect fluid, while dark energy is rep-
resented by the cosmological constant which is supposed invariable during
the whole evolution of the universe. Components of a fluid are described by
spatially homogeneous scalar fields. The first component has the Equation
of State which changes in time from the stiff Zel’dovich type equation to the
vacuum type one. The second component is pressure-free matter. During
the course of the evolution of the universe, there is redistribution of energy
between the components. As a result, the total matter changes its Equation
of State in time, so that the era of radiation domination in the early universe
smoothly passes into the era, when the matter is represented by a pressure-
less gas. The latter changes into the epoch in which the matter is described
by a gas of low-velocity cosmic strings. The solution obtained for the era
of radiation domination in the very early universe can be analytically con-
tinued into the region of extremely small negative values of the parameter
which characterizes typical time of energy transfer from one matter compo-
nent to another. At the same time, the first matter component acquires the
properties of the vacuum with the corresponding Equation of State and it
can be identified with the inflaton field, used in models of inflation, in this
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stage. The contribution from the cosmological constant can be neglected in
the early universe, while in the late-time epoch its role is vital to produce
the accelerating expansion.

For the homogeneous, isotropic and spatially flat universe with the
Friedmann–Robertson–Walker (FRW) metric, in terms of a two-component
model, we find the explicit expressions for the Hubble expansion rate, energy
density of the matter, energy density parameter, and deceleration param-
eter as functions of time for the whole time interval. The limiting cases
corresponding to small, intermediate (when the matter in the universe is
represented by a dust), and large (the late-time epoch of low-velocity cos-
mic strings) values of time are considered for a comparison with known
solutions.

2. Two-component perfect fluid

Let us consider the FRW universe which is described by a set of equations

H2 ≡

(
Ṙ

R

)2

=
8πG

3
(ρ+ ρΛ) , (1)

ρ̇+ 3H(ρ+ p) = 0 , ρ̇Λ = 0 , (2)
p = w(t) ρ , pΛ = −ρΛ , (3)

where R(t) is the cosmic scale factor, ρ(t) is the energy density of the matter
which has a form of the homogeneous perfect fluid, p(t) is its pressure, w(t)
is the Equation-of-State parameter, ρΛ is the energy density of the vacuum
which is connected with the cosmological constant Λ in the usual way as
ρΛ ≡ Λ

8πG , pΛ is its pressure, G is the Newtonian gravitational constant, an
overdot denotes d/dt, t is the proper time (units c = 1 are used).

We assume that the matter consists of two components

ρ = ρb + ρd , p = pb + pd . (4)

It is supposed that a redistribution of energy between these components
takes place in the course of the evolution of the universe. The energy con-
servation equation for the matter (2) rewritten for components takes the
form

ρ̇b + 3H(ρb + pb) = Q , ρ̇d + 3H(ρd + pd) = −Q , (5)

where Q describes the interaction between the components.
The components of the perfect fluid are imitated by scalar fields φb(t)

and φd(t) with potentials Vb(φb) and Vd(φd)

ρi = 1
2 φ̇i

2
+ Vi , pi = 1

2 φ̇i
2 − Vi , i = {b, d} . (6)
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The models of such a type which include a coupling between the matter
components were considered in the literature, in particular, within the con-
text of inflation and reheating and the coincidence problem of dark energy
and matter in the accelerating universe (see, e.g., Refs. [6, 7, 8] and refer-
ences therein). The form of the interaction term Q may be derived from
different physical arguments or obtained as a solution of some dynamical
equation, which describes the required properties of the matter fields φi.
Since, according to Eqs. (1)–(3), dark energy is modeled by the cosmolog-
ical constant, only the evolution of the matter as a two-component perfect
fluid is considered below.

Let us assume that the field φd forms the pressure-free matter component
(dust)

1
2 φ̇d

2
= Vd , ρd = 2Vd , pd = 0 . (7)

The potential Vd is taken equal to the density ρb, Vd = ρb. Then, ρd = 2ρb,
and the total energy density, the pressure, and the parameter w are

ρ = 3ρb , p = pb , w =
pb
3ρb

. (8)

In this case, Q = 2Hpb and the set of equations (5) reduces to one equation

ρ̇b + 3H
(
ρb + 1

3pb
)

= 0 . (9)

The following condition is imposed on the second field φb

1
2 φ̇b

2
= Vb e

−2(t−t0)/τ , (10)

where t0 is the instant of time close to which the field φb reproduces the
pressure-free matter, τ is the parameter which characterizes some typical
time of energy transfer from one component to another and the value 1/τ
determines the mean rate of change of the Equation-of-State parameter w(t)
of Eq. (8).

The field φb, which satisfies the condition (10), describes the matter
component which evolves in time from the stiff Zel’dovich matter

pb ≈ ρb at t ≈ 0 , for
t0
τ
> 2 , (11)

through the dust
pb ≈ 0 at t ≈ t0 (12)

to the matter with vacuum-type Equation of State

pb ≈ −ρb at t� t0 . (13)
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Substituting Eq. (10) into (6) and using the expression for w (8), we find

w(t) = −1
3

tanh
(
t− t0
τ

)
. (14)

Thus, in the model under consideration, the Equation-of-State parameter for
the two-component matter w changes from 1

3 , when Eq. (11) holds, passing
through the point w = 0 for the pressure-free matter component (12), to −1

3
in the case (13), taking all intermediate values.

Using the mechanical analogy, the function (14) can be considered as the
antikink solution of the equation

1
2
ẇ2 + [−U(w)] = 0 , U =

9
2τ2

(
w2 − 1

9

)2

(15)

which describes the motion of the analogue particle with zero energy in the
potential [−U(w)] (cf., e.g., Ref. [9]). This potential has two maxima at
the points w = ±1

3 and a local minimum at w = 0. The analogue particle
moves along the ‘trajectory’ (14) from the value w = 1

3 in the distant past
(t = −∞) to the value w = −1

3 reached at t =∞. At the moment t = t0, the
particle passes through the minimum of the potential at w = 0. Leaving the
point w = 1

3 , the analogue particle can only approach the point w = −1
3 at

t→∞, where its velocity and acceleration vanish. It cannot return back to
w = 1

3 . This analogy with the motion of the particle allows to understand a
unidirectional evolution of matter in the universe governed by Eq. (1) from
the radiation-dominated era through dust domination to the hypothetical
late-time epoch, in which the matter is described by a gas of low-velocity
cosmic strings. We note that Eq. (15) has another solution in the form of
the kink which is equal to the function (14) with an inverse sign. This case
would correspond to the model in which a gas of low-velocity cosmic strings
at t = −∞ transforms into radiation at t =∞, but we do not consider it in
the present paper.

Let us find, how the cosmological parameters, namely the Hubble expan-
sion rate and the total energy density, depend on time. From Eqs. (1), (9)
and (14), it follows the non-linear equation for the Hubble expansion rate

Ḣ +
1
2

{
3− tanh

[
1
τ

(t− t0)
]}(

H2 − Λ

3

)
= 0 . (16)

The general solution of this equation is

H(t) =

√
Λ

3
cothZ (t) , (17)
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where we denote

Z (t) ≡ 1
2

√
Λ

3

[
Ct0 + 3t− τ ln cosh

(
1
τ

(t− t0)
)]

, (18)

C is the constant of integration.
Substituting the solution (17) into Eq. (1), we find the energy density of

the matter as a function of time

ρ(t) = ρΛ sinh−2 Z (t) . (19)

The energy density parameter of the matter, ΩM = ρ/(ρ+ ρΛ), is

ΩM(t) = cosh−2 Z (t) . (20)

The deceleration parameter, q = −1− Ḣ/H2, is equal to

q(t) = −1 +
3− tanh [(t− t0) /τ ]

2 cosh2 Z (t)
. (21)

The scalar fields φb and φd themselves can be restored by integrating the
expressions

φb =

√
2
3

∫
dt

√
ρ(t)

e2(t−t0)/τ + 1
, φd =

√
2
3

∫
dt
√
ρ(t) . (22)

Their potentials are

Vb(t) =
1
3

ρ(t)
e−2(t−t0)/τ + 1

, Vd(t) =
1
3
ρ(t) . (23)

3. Limiting cases

Let us consider the different limiting cases, when the matter takes the
forms of radiation (t � t0), dust (t ∼ t0), and a perfect gas of low-velocity
cosmic strings (t� t0).

3.1. The late-time epoch of low-velocity cosmic strings

The Hubble expansion rate, the energy density, and the deceleration
parameter in this case do not depend on the choice of the constant of inte-
gration C and the parameters t0 and τ

H(t) =

√
Λ

3
coth

(√
Λ

3
t

)
, ρ(t) = ρΛ sinh−2

(√
Λ

3
t

)
,

ΩM(t) = cosh−2

(√
Λ

3
t

)
, q(t) = − tanh2

(√
Λ

3
t

)
at t� t0 .

(24)



Two-component Perfect Fluid in the FRW Universe 1905

If the cosmological constant is equal to zero, Λ = 0, then

H(t) =
1
t
, ρ(t) =

3
8πGt2

, q = 0 . (25)

The equations (24) reproduce the result of Ref. [3]. The equation for ρ(t)
(25) has a form of Whitrow–Randall’s relation [10].

3.2. The epoch, when the matter is in the form of dust

In this epoch the parameters are

H(t) =

√
Λ

3
coth

(
1
2

√
Λ

3
(3t+ Ct0)

)
,

ρ(t) = ρΛ sinh−2

(
1
2

√
Λ

3
(3t+ Ct0)

)
,

ΩM(t) = cosh−2

(
1
2

√
Λ

3
(3t+ Ct0)

)
,

q(t) = −1 +
3
2
ΩM(t) at t ∼ t0 . (26)

Choosing the constant of integration C = 0, one restores the expressions
obtained in Refs. [3,11]. In the case Λ = 0 and C = 0, we have the following
well-known result [12]

H(t) =
2
3t
, ρ(t) =

1
6πGt2

, q =
1
2
. (27)

3.3. The epoch of radiation

We have

H(t) =

√
Λ

3
coth

(
1
2

√
Λ

3
[4t+ (C − 1) t0 + τ ln 2]

)
,

ρ(t) = ρΛ sinh−2

(
1
2

√
Λ

3
[4t+ (C − 1) t0 + τ ln 2]

)
,

ΩM(t) = cosh−2

(
1
2

√
Λ

3
[4t+ (C − 1) t0 + τ ln 2]

)
,

q(t) = −1 + 2ΩM(t) at t� t0 . (28)
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Choosing C = 1− τ
t0

ln 2, in the case of Λ = 0, we obtain the known result [12]

H(t) =
1
2t
, ρ(t) =

3
32πGt2

, q = 1 . (29)

In the special case, when t� 1
4 | (C − 1) t0+τ ln 2| (it includes the very early

universe with t & M−1
P , whereMP = G−1/2 (~ = c = 1) is the Planck mass),

it follows from Eq. (28) that the energy density ρ remains almost constant
and equals to

ρe = ρΛ sinh−2

(
1
2

√
Λ

3
[(C − 1) t0 + τ ln 2]

)
. (30)

Passing to the limit Λ = 0, we obtain

ρe =
3

2πGt20

1(
C − 1 + τ

t0
ln 2
)2 . (31)

3.4. The era of inflation

Concerning the evolution of the matter, the era of inflation demands
special examination. In the approach under consideration, we can perform
an analytic continuation in the expression (31) into the region of small neg-
ative values of the parameter τ , τ < 0, |τ | � t0. Then, it follows from
Eq. (10) that φ̇b ≈ 0 and the corresponding matter component has the
vacuum-type Equation of State, pb ≈ −ρb ≈ −Vb. It can be identified with
the scalar field (inflaton) used in models of inflation to describe the evolution
of the very early universe [2,13]. Really, in this epoch, the energy density is
ρ = 3ρb ≈ 3Vb, where

Vb =
1

2πGt20

1(
C − 1− |τ |t0 ln 2

)2 (32)

plays the role of the inflaton potential. Assuming that the inflationary era
is smoothly connected to the radiation-dominated phase, from Eqs. (31)
and (32) it follows that the constant C must be close to unity, so that
the potential (32) is very large. Setting C = 1 and |τ | ≈ M−1

P , we can
rewrite Eq. (32) in a simple form Vb ≈ 1

3 M
4
P. Substituting ρ ≈ M4

P � ρΛ

into Eq. (1), we find the solution R(t) ∼ exp
(√

8π
3 MPt

)
, which describes

inflation.
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In the model under consideration, the inflationary era is driven by one
of the components of the two-component matter, while the cosmological
constant remains invariable at all stages of the evolution of the universe. In
such an approach, the contribution from the cosmological constant can be
neglected in the early universe, while in the late-time epoch of accelerating
expansion its role becomes crucial, according to Eqs. (24) and (26).

4. Discussion

In Fig. 1, it is shown the time dependence of the decelerating parameter
calculated in accordance with the general solution (21) and in cases when
the relations for the epochs of low-velocity cosmic strings (24), dust (26),
and radiation (28) are extrapolated to the whole time interval. The free pa-
rameters Λ and t0 (as the age of the universe) were taken from the WMAP7
data [14]. All curves go to −1 for infinite t/t0. The deceleration of the
universe turns into acceleration at the instant of time t ≈ 0.48t0. If t0 is
identified with the age of the universe, the corresponding cosmic redshift is
z ≈ 0.28. It can be seen from Fig. 1 that, near the instant of time t = t0,
the curves for a dust and radiation are close to the curve corresponding to
the general solution (21), whereas the curve for strings is far away from it.
This can be interpreted as evidence that in the region t ∼ t0, effectively,
the dominating matter component is a dust with a small addition of the
radiation, while a gas of cosmic strings makes a negligible influence on the
dynamics of the universe here.
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Fig. 1. The decelerating parameters (21), (24), (26), and (28) versus time. The

value of
√

Λ
3 t0 = 0.855 following from the WMAP7 data [14] is used. For definite-

ness, the constants C = 1 and τ = 0.2t0 are chosen.
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For a two-component perfect fluid with vanishing cosmological constant,
Λ = 0, the solution of Eq. (16) has a form

H (t) = 2
[
Ct0 + 3t− τ ln cosh

(
1
τ

(t− t0)
)]−1

. (33)

In this case, the deceleration parameter does not depend on the constant of
integration C

q(t) = 1
2 {1− tanh [(t− t0) /τ ]} . (34)

This function is plotted in Fig. 2. The deceleration parameter changes from
1 to 0 as t/t0 changes from 0 to infinity. Between the radiation-dominated
phase (t/t0 . 0.5) and the era of cosmic string gas domination (t/t0 & 1.5),
there is the transitional domain, where the phase of the radiation domina-
tion smoothly passes into the era of dust domination (t/t0 ∼ 1), which, in
turn, then passes into the late-time epoch of cosmic string gas domination.
Due to the gravitational attraction of the matter, the universe will be decel-
erating on the time interval from t/t0 = 0 to t/t0 ∼ 1.5. From the instant
of time t/t0 ∼ 1.5 to infinity, the effective gravitational attraction of the
perfect gas of low-velocity cosmic strings will be practically compensated
by its negative pressure acting repulsively, and such a universe will expand
with the constant velocity. In the region of the large values of t/t0, the
cosmic scale factor depends on time as R ∼ t. As it is claimed, e.g. in
Ref. [15], power-law cosmology, R ∼ tα with α ≈ 1, is consistent with the
recent Wilkinson Microwave Anisotropy Probe (WMAP7), Baryon Acoustic
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Fig. 2. The decelerating parameter (34) versus time. It is taken τ = 0.2t0.
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Oscillations (BAO) and Hubble data, therefore, the consideration of mod-
els, in which the cosmic scale factor evolves linearly with time, while the
cosmological constant is negligible, may be of practical interest.

Comparing Fig. 1 with Fig. 2, one finds that the general behavior of
the deceleration parameter with time remains the same, however, the action
of the cosmological constant smoothes the curve and also produce a new
physical effect which results in a change of the sign of the deceleration pa-
rameter, so that the deceleration phase in the history of the universe passes
into subsequent period of accelerating expansion.

5. Conclusion

In the present paper, we propose a single approach to the description
of the evolution of the matter in the universe with non-zero cosmological
constant in the whole time interval from the inflation till the domination
of dark energy. The new element here is the inclusion of the hypothetical
late-time epoch, when the matter is represented by a gas of low-velocity
cosmic strings, in the general scheme. In some sense, these strings may be
considered as emergent ones, since they correspond to the collective motion
of the matter. We draw attention to the fact that, if the final stage of the
evolution of the matter in the universe is not a pressure-free matter, but a
gas of low-velocity cosmic strings, then there arises an additional ‘symme-
try’ in the Equation of State of the matter. Namely, the Equation-of-State
parameter w (14) changes from 1

3 , passing through the point w = 0, to −1
3 ,

taking all intermediate values. For such a model, we find the solution (17)
of the equation for the Hubble expansion rate (16) in analytical form as a
function of time. The Hubble expansion rate (17), the energy density of the
matter (19), and the deceleration parameter (21) as functions of time repro-
duce all known cosmological solutions (25), (27), and (29) for the different
limiting cases obtained by a number of authors [3, 10, 11, 12] for vanishing
cosmological constant.
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