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We investigate accreting disk systems with polytropic gas in Keplerian
motion. Numerical data and partial analytic results show that the self-
gravitation of the disk speeds up its rotation — its rotational frequency is
larger than that given by the well known strictly Keplerian formula that
takes into account the central mass only. Thus determination of central
mass in systems with massive disks requires great care — the strictly Ke-
plerian formula yields only an upper bound. The effect of self-gravity de-
pends on geometric aspects of disk configurations. Disk systems with a
small (circa 10−4) ratio of the innermost radius to the outermost disk ra-
dius have the central mass close to the upper limit, but if this ratio is of
the order of unity then the central mass can be smaller by many orders of
magnitude from this bound.
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1. Introduction

The literature on those accretion disk systems, where the gas exhibits
Keplerian motion ω2 = ω2

0/r
3 (here ω is the angular velocity of the gas,

r denotes the cylindrical radius, and ω0 is a constant) brings a confusing
message. Usually the velocity of rotation of such disks is understood to
be dominated by a heavy central mass Mc, that is, the strictly Keplerian
equality Mc = ω2

0/G, where G is the gravitational constant, holds true. The
disk is assumed to be light. The analysis of the massive black hole in the
masing nucleus of NGC 4258 exemplifies this interpretation [1]. (Interest-
ingly, modelling of this system confirms that the disk is light [2].) On the
other hand, there are sporadic observations in the literature that even sys-
tems with massive disks can conform to the Keplerian rotation curve [3]. In
such a case the central mass cannot be deduced solely from the Keplerian
frequency. Quite recently Huré et al. [4] investigated thin dust disks and,
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assuming a monomial density profile, arrived to a conclusion that the rota-
tional Keplerian velocity gives only information on the enclosed mass of the
system, i.e., a sum of the central mass Mc and the mass of the disk Md.

In this paper, we deal with self-gravitating barotropic disks in Keplerian
motion. We show that, contrary to the folk belief, the Keplerian rotation
curve in pure hydrodynamics does not exclude heavy disks. The angular
frequency of the rotation curve does depend on the two masses, but they do
not contribute additively. We start the discussion with analytic results con-
cerning configurations with strictly (or almost strictly) Keplerian rotation
law, that is where ω2

0 is equal (or close) to GMc. This happens for elongated
disks, for which the ratio of the innermost radius rin to the outermost one
rout is small (or tends to zero), or in the test-fluid regime, that is when, the
gravity of the disk can be neglected.

In numerical calculations, we specialise to polytropic equations of state.
The results show that ω0 satisfies GMc ≤ ω2

0 ≤ G(Mc+Md), but the precise
value of ω0 depends on the geometry of the disk, in particular on the ratio
rin/rout. If rin/rout is small enough, then the central mass is reasonably
well approximated by the Keplerian expression ω2

0/G. A significant devia-
tion from this value can occur for elongated disks when their mass exceeds
the central mass by a few orders of magnitude. In contrast to that, when
rin/rout = 1/2, the ratio ω2

0/G yields a value close to the central mass Mc

only when in addition Md � Mc; in such a case the disk must be geo-
metrically thin. In this specific example, obtained for the polytropic index
Γ = 5/3, if Md ≈ Mc, the disk becomes thick and ω2

0/(GMc) ≈ 1.3 instead
of 1; the latter ratio grows rapidly with the further increase of Md.

Models of equilibrium toroidal or disk-like figures constitute a great sim-
plification of the astrophysical reality. While such configurations appear in
the late stages of current simulations of binary mergers, the theory of thick
accretion disks would require more complex modelling. Nevertheless, we are
convinced that a good understanding of the properties of self-gravitating
equilibrium disk-like figures is a prerequisite for the construction of more
realistic models (cf. [5]). We return to this and connected issues in Sec. 6.

2. Equations

We consider a stationary, self-gravitating disk of gas rotating around a
central point mass Mc. The gravitational potential of the system can be
written as the superposition Φ = −GMc/|x|+Φg, where the potential Φg is
due to the gravity of the disk. It satisfies the Poisson equation

∆Φg = 4πGρ , (1)
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where ρ denotes the mass density of the gas. Here x = (x, y, z) are the Carte-
sian coordinates originating at the central point-like mass. In the following,
we will also work in the cylindrical coordinates (r, φ, z).

Assume that the disk is axially symmetric and occupies a finite volume.
The last demand imposes a condition onto equations of state, as discussed in
Appendix A. For technical reasons, we will also assume that the fluid region
is connected, and that it is equatorially symmetric. The velocity of the
gas is U = ω(r, z)∂φ or equivalently U = rω(r, z)êφ, where êφ denotes the
unit azimuthal vector. A classical result due to Poincaré and Wavre states
that for a barotropic equation of state, ω depends only on the cylindrical
radius r [6]. We will deal later with polytropic equations of state p = KρΓ ,
where p is the gas pressure, and K and Γ are constant. The Euler equations

∇p+ ρ(U · ∇)U + ρ∇Φ = 0

can be integrated, yielding

h+ Φc + Φ = C (2)

in the closure of a region where ρ is nonzero. Here h denotes the specific
enthalpy of the fluid: dh = dp/ρ, and

Φc = −
r∫
dr′r′ω2

(
r′
)

is the centrifugal potential. The structure of the disk can be obtained from
Eqs. (1) and (2) provided that the equation of state and the rotation law
ω = ω(r) are known. We would like to point out that the process of solving
of Eq. (2) consists in the simultaneous finding of the unknown functions and
of the volume where the enthalpy h is nonnegative.

3. Keplerian rotation laws

In the rest of this paper, we investigate systems with the Keplerian ro-
tation laws

ω =
ω0

r3/2
. (3)

They are of special interest, because they agree with many observations.
Almost all known stellar black holes with gaseous disks and a few of AGNs
obey this law.

Suppose now that in an accretion system the motion of a gaseous disk
conforms to a Keplerian rotation law. The mass of gas (usually unknown
to an observer) can impact the rotation curve. How legitimate is the (often
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made) guess that the motion is almost strictly Keplerian, ω2
0 ≈ GMc, that

allows one to infer the central mass from the observed rotation law? Analytic
answers can be given in a few special cases. (i) A thin gaseous Keplerian
disk, with a mass negligibly small in comparison to the central mass Mc,
exhibits strictly Keplerian motion, i.e., ω2

0 = GMc. This is a well known
fact, and we give in Sec. 3.1 a proof, only for the sake of completeness. Thus,
in this case, one can obtain the value of the central mass simply by measuring
the rotation frequency. (ii) For thick and heavy disks the situation is more
complex. There is still a possibility to prove analytically the approximate
equality ω2

0 ≈ GMc, but only in special cases and under certain assumptions
on disk’s geometry. These results are discussed in Sec. 3.2 and 3.3.

In the generic case, the presence of massive disks influences the rotation
curve, or strictly saying, the frequency parameter. Our numerical analysis,
reported in later sections, suggests that the difference ω2

0 −GMc is strictly
positive and increases with the increase of Md/Mc, where Md ≡

∫
d3xρ is

the mass of the disk. A result of Huré et al. [4] (obtained for dust) suggests
that the difference ω2

0 − GMc should be proportional to the ratio Md/Mc.
We show later that this is not true for polytropes.

The centrifugal potential for the rotation law (3) can be written in the
form Φc = ω2

0/r. Suppose that the disk is finite and extends from the
innermost cylinder labelled by rin to the outermost cylinder at r = rout, and
the innermost and outermost points of the disk are located on the equatorial
plane. It follows from Eq. (2) that

ω2
0 = GMc − rinΦg(rin) + rinC = GMc − routΦg(rout) + routC , (4)

or

ω2
0 = GMc +

rinrout (Φg(rout)− Φg(rin))

rout − rin
, (5)

because h should vanish both for rin and rout. Here Φg(rin) = Φg(r = rin,
z = 0) and Φg(rout) = Φg(r = rout, z = 0).

There are simple analytic arguments — we discuss them in Sec. 3.4 —
showing that ω2

0 exceeds GMc, when the constant C ≥ 0. In the most of
this paper, however, we deal with finite-volume configurations for which C
can be negative, and the analytic argument of Sec. 3.4 does not work (the
relation between the equation of state, Keplerian rotation, and the sign of C
is discussed in Appendix A). Nevertheless, our numerical data reported in
later sections do suggest that in factGMc ≤ ω2

0 ≤ G(Mc+Md). We state this
as a conjecture: Barotropic Keplerian disks rotate with the angular velocity
exceeding (GMc/r

3)1/2, but smaller than (G(Mc +Md)/r3)1/2.
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3.1. Test-fluid limit

Massless Keplerian disks must be (i) strictly Keplerian and (ii) infinitely
thin.

Indeed, choose disk configurations with fixed rin and rout, but let the
density ρmax → 0. In this limit, the potential Φg also vanishes (Φg satisfies
Eq. (1), and it is normalised to zero at infinity). Part (i) follows now from
Eq. (5), which yields ω2

0 → GMc.
To prove part (ii), let us observe that Eq. (4) yields C = 0 in the limit

of Φg → 0. In this case, Eq. (2) should be written as

h+GMc

(
1

r
− 1√

r2 + z2

)
= 0 ,

and this form admits (notice that h → 0 when ρmax → 0) only infinitely
thin disks at z = 0.

3.2. Disks with small inner radii

Let us fix the maximum density within the disk, say ρ = ρmax, and let
rout be also fixed. This choice is justified by the scaling symmetry of the
equations (see Sec. 4). Then, it follows from Eq. (5) that ω2

0 → GMc as
rin → 0. To show this, it suffices to note that Φg is a bounded function
on R3. To be more precise: |Φg(rout)− Φg(rin)| must be finite when ρmax is
fixed.

The above result can be intuitively understood, because for r small
enough, the gravitational potential is always dominated by the divergent
term −GMc/|x|. In practice, if the ratio rin/rout is sufficiently small, then
the rotation curve of the gaseous disk should be influenced “almost exclu-
sively” by the central mass. We show later, solving specific examples, that
this is true.

3.3. Ring-like disks

One can also show that ω2
0 → GMc as rin → rout, that is when disk

becomes ring-like with a small inner radius (rout−rin)/2. The proof proceeds
according to the squeeze theorem. For the sake of simplicity, the second part
of the reasoning (the bound from below) will be presented for polytropic
equations of state, but the proof can be reformulated for general barotropes
satisfying certain additional conditions.

The starting point is the virial relation formulated in [7] for the system
consisting of a steady disk and a point mass. It yields

1

2

∫
ρΦgd

3x−
∫
ρ
GMc

|x| d
3x+

∫
ρ|U |2d3x+ 3

∫
pd3x = 0 . (6)
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For Keplerian rotation, this equation can be written as

1

2

∫
ρΦgd

3x+

∫
ρ

(
ω2
0

r
− GMc

|x|

)
d3x+ 3

∫
pd3x = 0 . (7)

Now, because p ≥ 0 we have∫
ρ

(
ω2
0

r
− GMc

|x|

)
d3x ≤ −1

2

∫
ρΦgd

3x ,

and, since |x| ≥ r,

(ω2
0 −GMc)

∫
ρ

r
d3x ≤ −1

2

∫
ρΦgd

3x .

Let Φg,min denote the minimum value of the potential Φg in the region where
ρ 6= 0. We have

ω2
0 −GMc

rout

∫
ρd3x ≤ −1

2
Φg,min

∫
ρd3x ,

and thus
ω2
0 −GMc ≤ −

1

2
Φg,minrout .

For rin → rout, the mass of the disk tends to zero (note that we keep ρmax

fixed, and the volume of the disk tends to zero), and so does the gravitational
potential Φg,max. Thus, in the limit we have ω2

0 −GMc ≤ 0.
On the other hand, the same formulation of the virial theorem gives

−3

∫
pd3x ≤

∫
ρ

(
ω2
0

r
− GMc

|x|

)
d3x ≤

(
ω2
0

rin
− GMc

rout

)∫
ρd3x ,

which, for polytropic equations of state implies that

−3KρΓ−1max ≤
ω2
0

rin
− GMc

rout
.

From the integrated Euler equation, we have

KΓ

Γ − 1
ρΓ−1max + Φg(r̂) +

ω2
0

r̂
− GMc

r̂
= C = Φg(rout) +

ω2
0

rout
− GMc

rout
,

where Φg(r̂) = Φg(r = r̂, z = 0), and r̂ denotes a cylindrical radius of
the point where the density reaches its maximum. For simplicity, we have
assumed that the maximum lies on the equatorial plane. The second equality
expresses the Euler equation at the outer boundary. Now, for rin → rout we
have r̂ → rout as well. In this limit, one obtains K = 0, so that 0 ≤
ω2
0 −GMc ≤ 0. This concludes the proof.
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3.4. Infinite disks

If disks are infinitely extended and posses a finite mass, then C = 0. (An
infinite extension imposes severe restrictions onto the allowed equations of
state — see also the discussion in Appendix A.) We claim that in this case
ω2
0 ≥ GMc.
Indeed, Eq. (1) yields, from the maximum principle [8], that the potential

Φg is nonpositive everywhere and vanishes at spatial infinity. Thus Eq. (4)
implies that the rotational angular frequency must exceed the Keplerian
value and ω2

0 ≥ GMc.
The same argument would work for the constant C > 0, but it is not

clear whether such configurations exist.

4. Rescaling of equations

It is convenient to transform Eqs. (1) and (2) into dimensionless forms.
The quantity u = Gr2outρmax has the dimension of potentials. We define
rescaled dimensionless potentials Ψ̃c = Ψc/u, Φ̃ = Φ/u, Φ̃g = Φg/u. The
scaled enthalpy is given by h̃ = h/u while the transformed density reads
ρ̃ = ρ/ρmax. New spatial coordinates are defined as x̃ = x/rout. Introducing
M̃c = GMc/(ρmaxr

3
out), we can split the new potentials as Φ̃ = −M̃c/|x̃|+Φ̃g.

A similar trick has been done in [9] and [10]. The disk-related gravitational
potential Φ̃g satisfies

∆̃Φ̃g = 4πρ̃ , (8)

where ∆̃ is the Laplacian with respect to the new coordinates x̃. The Euler
equation (2) reads

h̃+ Φ̃c + Φ̃ = C . (9)

For the polytropic equations of state, the enthalpy h can be expressed as
h = (KΓ/(Γ − 1))ρΓ−1, and h̃ = (K̃Γ/(Γ − 1))ρ̃Γ−1, where constants K
and K̃ are related by K̃ = KρΓ−1max /u. Finally, for the Keplerian rotation
law we can define Φ̃c = ω̃2

0/r̃. In this rescaled notation the Keplerian case
ω2
0 = GMc corresponds to ω̃2

0 = M̃c.
In the new variables, the set of parameters specifying the solution is re-

duced to Γ , M̃c and r̃in = rin/rout. Taking large values of M̃c corresponds to
test-fluid solutions. Small values of M̃c yield solutions with the massive disk.

5. Numerical examples

The numerical method of this paper follows the classic Self-Consistent
Field (SCF) scheme [9, 11, 12]. Eqs. (8) and (9) are solved iteratively on a
two dimensional grid. In every iteration step the gravitational potential of
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the disk is found from Eq. (8), assuming that the density is known. A new
density distribution is then obtained directly from Eq. (9). Equation (8) is
solved by the Green function formula, where the integral kernel is expanded
in Legendre polynomials. In this approach, the boundary conditions for
the potential are automatically satisfied, and one can restrict the numerical
grid to a region containing the disk. We would like to point out that this
method requires renormalisation of the constant C appearing in (9) and the
polytropic constant K̃. They are adjusted in each iteration step in order
to agree with the assumed parameters of the solution — rin, rout and the
maximal value of ρ̃ equal to 1. The constant ω̃0 is computed from (5) at
each iteration step.

There exist modern numerical methods that are characterised by better
convergence properties [13, 14]. Their implementation would probably be
necessary for non-Keplerian rotation laws. For Keplerian rotation laws nu-
merical solutions converge well even with the SCF method — one can obtain
a solution for nearly any set of parameters. The drawback of the method is
the need to employ a large number of Legendre polynomials for thin disks.
One is able, using a parallel version of the code and optimisations described
in [15], to find accurate solutions using up to 400 of Legendre polynomials
and large grids (up to 5000× 5000). Such resolutions are permitted because
of the simplicity of the SCF method.

Our numerical solutions successfully passed a virial test in the new for-
mulation that includes a point mass [7]. The virial theorem (6) can be
written as

Epot + 2Ekin + 2Etherm = 0 ,

where Epot =
∫
d3xρΦg/2−GMc

∫
d3xρ/|x|, Ekin =

∫
d3xρ|U |2/2, Etherm =∫

d3x3p/2. For the tested quantity, we choose

εv = |Epot + 2Ekin + 2Etherm|/|Epot| .

We have obtained a satisfactory accuracy, documented by the smallness of
the ratio εv. The value of εv depends on the resolution of the numerical grid.
Appendix B shows that εv decreases from the value of 10−4 to 10−8 with
the finessing of the resolution.

We performed a few thousands runs for polytropic disks, with two dif-
ferent polytropic indices Γ = 5/3 and Γ = 4/3. The results that we would
like to discuss first are presented in Figs. 1–3. Figures 1 (left and right)
show the graphs of ω̃2

0 − M̃c and M̃d versus r̃in for a couple of different val-
ues of M̃c. They confirm the conjecture stated in Sec. 3, which in the rescaled
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variables can be written as M̃c ≤ ω̃2
0 ≤ M̃c + M̃d or 0 ≤ ω̃2

0 − M̃c ≤ M̃d.
It is also clear that ω2

0 → M̃c for r̃in → 0 and r̃in → 1, as it was proven in
Sec. 3.2.
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Fig. 1. The plot shows ω̃2
0−M̃c (solid line) and M̃d (dotted line), as functions of rin.

The graphs are obtained for Γ = 5/3 (left) and Γ = 4/3 (right), and different values
of M̃c = 10, 10−1 and 10−3 respectively.

Graphs of ω̃2
0 − M̃c for different values of M̃c and different polytropic

exponents Γ are shown in Figs. 2 (left and right). We observe that this
difference ω̃2

0 − M̃c, treated as a function of r̃in, tends to zero for M̃c → ∞
(test-fluid limit), and to a fixed function ω̃2

0(r̃in, M̃c = 0) for M̃c → 0. The
solution with M̃c = 0 can be obtained numerically, and ω̃2

0(r̃in, M̃c = 0) has
a maximum of the order of 0.13 for Γ = 5/3 and 0.06 for Γ = 4/3. That, in
turn, yields upper estimates for the ratio ω̃2

0/M̃c, namely

ω̃2
0

M̃c

≤ 1 +
0.13

M̃c

for Γ =
5

3
, (10)

and
ω̃2
0

M̃c

≤ 1 +
0.06

M̃c

for Γ =
4

3
. (11)
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Fig. 2. Dependence of ω̃2
0 − M̃c on r̃in for different values of M̃c and Γ = 5/3 (left)

and Γ = 4/3 (right).

For the reasons of clarity, the values of ω̃2
0/M̃c − 1 are also plotted in

Figs. 3 (left and right). The maximum value of the rescaled mass of the disk
M̃d is attained for M̃c = 0. It is of the order of unity for Γ = 5/3 and
even smaller for Γ = 4/3. Thus, it is clear from Eqs. (10) and (11) that the
central mass M̃c influences the angular velocity ω̃ much stronger than M̃d,
or, to put it differently, M̃c enters the expression for ω̃ with a larger weight
than M̃d.
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Fig. 3. Dependence of ω̃2
0/M̃c−1 on r̃in for different values of M̃c and Γ = 5/3 (left)

and Γ = 4/3 (right).

Numerically obtained solutions correspond to thickest disks when M̃c=0,
and become infinitely thin for M̃c →∞, that is in the test-fluid limit. For a
fixed value of r̃in, the relative height of the disk H/(rin − rout) (we assume
that the disk extends from z = −H to z = H) decreases monotonically
with M̃c. Thus, in principle, geometrical parameters such as the ratio of
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rin/rout and the relative height of the disk should allow one to identify a
particular solution and to obtain values of ω̃2

0/M̃c and M̃d/M̃c, provided
that the polytropic exponent is known.

Figures 4 and 5 show the dependence of ω̃2
0/M̃c on the mass ratio M̃d/M̃c.

We focus on the physically interesting range of parameters 0 < M̃d/M̃c < 1
and 0 < r̃in < 1/2. Results obtained for Γ = 5/3 are shown in Fig. 4; the
data for Γ = 4/3 are depicted in Fig. 5. These graphs confirm quantitatively
what was anticipated in Sec. 1. For small values of r̃in (elongated disks) the
motion is strictly Keplerian with ω̃2

0 ≈ M̃c, even if the mass of the disk is
comparable to the central mass. Faster rotation can occur for M̃d ≈ M̃c

only if in addition r̃in is large, but even for r̃in = 1/2 we get ω̃2
0 ≈ 1.3 for

Γ = 5/3 and ω̃2
0 ≈ 1.4 for Γ = 4/3. In general, these results weakly depend

on the polytropic index Γ .
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Fig. 4. Dependence of ω̃2
0/M̃c on M̃d/M̃c for different values of r̃in and Γ = 5/3.
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Fig. 5. The same as in Fig. 4, but for Γ = 4/3.
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6. Summary

We show explicitly, by analysing thousands of solutions of polytropic
hydrodynamic models, that the self-gravity of a gaseous heavy disk orbiting
a central mass can be compatible with the Keplerian motion. Nevertheless,
the masses of the two components can be resolved, if in addition to the
rotation velocity two geometric pieces of information are given, namely the
ratio of the innermost radius rin to the outermost disk radius rout and its
relative maximal height H/(rout − rin).

How legitimate is the (often made) guess that rotation is strictly Keple-
rian, ω2

0 ≈ GMc, which allows one to infer the central mass from the observed
rotation law? A result of Huré et al. [4] (obtained for dust) suggests that
the error implied by this identification should be proportional to the ratio of
Md/Mc, where Md is the mass of the disk. We show that this is not true for
polytropes. Our numerical results suggest that polytropic Keplerian disks
rotate with the angular velocity exceeding (GMc/r

3)1/2, but smaller than
(G(Mc +Md)/r3)1/2. The lower bound in these inequalities can be obtained
analytically for special configurations, reported in Sec. 3.

Presented results are based on hydrostationary modelling. Situation can
be different for systems strongly influenced by physical factors that were
not discussed here. For instance, models of strongly radiating thick toroids
considered in [3] are not only Keplerian, but strictly Keplerian with ω2

0 =
GMc, although those disks are massive, and the value of rin/rout is not small.
In other words, very strong radiation can invalidate conclusions concerning
hydrostationary systems. On the other hand, rotation velocity of weakly
radiating disks analysed in [16] is consistent with the results of this paper.

This analysis is entirely Newtonian and, therefore, it should be repeated
in the general-relativistic context. We do not expect essential changes in
those systems, where the inner disk boundary is well separated from a black
hole horizon, rin � 6Mc. This issue — and further related questions —
deserve separate studies.

The research was carried out with the supercomputer “Deszno” purchased
thanks to the financial support of the European Regional Development Fund
in the framework of the Polish Innovation Economy Operational Program
(contract no. POIG. 02.01.00-12-023/08).

Appendix A

We derive in this appendix various criteria — restrictions on equations
of state — that guarantee finite disk configurations. The configuration is
called finite if it can be contained in a compact subset of R3. We redo
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the proof, since the existing versions [17] do not include the case with the
singular central potential −GMc/|x|.

We start with an observation that the inifiniteness in the axial direction
z is incompatible with the cylindrical Keplerian rotation law (any cylindrical
rotation in fact). This can be demonstrated as follows. Assume that the
fluid extends to infinity along z direction for two different constant radii r1
and r2. Then from Eq. (2) we have

lim
z→∞, r=r1

(h+ Φ+ Φc) = Φc(r1) = C ,

and the same applies to r = r2. Thus, we would conclude that Φc(r1) =
Φc(r2) = C, which contradicts the assumption that the motion is Keplerian.

In principle, the disk could still extend to infinity at the equatorial plane.
Assume now that the disk has a finite mass. Then the only value of constant
C appearing in Eq. (2) allowing for an infinite configuration is C = 0 (note
that the Keplerian centrifugal potential is normalised to zero at r → ∞).
This situation can be excluded for some cases with the help of the virial
theorem (7).

The first necessary step is to establish suitable function spaces for the
density, and the pressure, that include infinitely extended fluids, and for
which the virial theorem can still be proven. This can be done in terms
of weighted Sobolev spaces. Details (which we omit) can be found in [17].
Apart from the suitable falloff behaviour we also assume that the support
of the density is a connected set.

Multiplying the integrated Euler equation by ρ and integrating over R3,
we get

C

∫
ρd3x =

∫
ρhd3x+

∫
ρΦgd

3x+

∫
ρ

(
ω2
0

r
− GMc

|x|

)
.

Combining this equation with the virial theorem (7), one obtains

C

∫
ρd3x =

1

2

∫
ρΦgd

3x+

∫
(ρh− 3p)d3x .

Now, for those barotropic equations of state for which ρh − 3p ≤ 0 every-
where, we can conclude that C is strictly negative, and hence the fluid must
be finite. For polytropic equations of state we have ρh − 3p = ((3 − 2Γ )/
(Γ − 1))p, and the finiteness is guaranteed for Γ ≥ 3/2.

The condition on the equation of state can be relaxed on the expense of
additional assumptions on the rotation. Making use of the virial theorem
we can also write

C

∫
ρd3x =

∫
(ρh− 6p)d3x−

∫
ρ

(
ω2
0

r
− GMc

|x|

)
d3x .
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If ω2
0/r−GMc/|x| ≥ 0 everywhere, it is enough to demand that ρh−6p < 0

in order to conclude that the fluid must be finite. For polytropes the latter
condition simply states that Γ > 6/5.

Appendix B

Below, we report results of the convergence tests for typical disk config-
urations obtained with our SCF numerical scheme. In our implementation,
numerical precision is controlled by the grid resolution, the maximum num-
ber of Legendre polynomials used in the angular expansion L, and a value
of the maximal difference between density distributions obtained in the last
two consecutive iterations ρ̃tol. (In each iteration we compute the quantity
ρ̃err = maxi,j |ρ̃(k+1)

i,j − ρ̃(k)i,j |. Here index k numbers subsequent iterations;
indices i and j refer to different grid nodes. The iteration procedure is
stopped, when ρ̃err ≤ ρ̃tol.)

Table I shows the dependence of results (ω̃0 and the virial parameter εv)
on the grid resolution, the maximum number of Legendre polynomials L,
and ρ̃tol. For this test, we have assumed M̃c = 1, r̃in = 0.3, Γ = 5/3. The
corresponding mass of the disk yields M̃d ≈ 0.29.

TABLE I

Typical dependence of the results on the grid resolution, the maximum number of
the Legendre polynomials L, and the tolerance coefficient ρ̃tol.

Resolution L ρ̃tol ω̃0 εv

100 × 100 200 10−5 1.029945714 2.22× 10−5

200 × 200 200 10−5 1.029948775 5.49× 10−6

400 × 400 200 10−5 1.029949540 1.30× 10−6

800 × 800 200 10−5 1.029949076 2.45× 10−7

1600 × 1600 200 10−5 1.029949123 1.67× 10−8

3000 × 3000 200 10−5 1.029949140 7.92× 10−8

5000 × 5000 200 10−5 1.029949137 9.51× 10−8

100 × 100 200 10−6 1.029945714 2.22× 10−5

200 × 200 200 10−6 1.029948775 5.49× 10−6

400 × 400 200 10−6 1.029949540 1.30× 10−6

800 × 800 200 10−6 1.029949076 2.45× 10−7

1600 × 1600 200 10−6 1.029949123 1.67× 10−8

3000 × 3000 200 10−6 1.029948709 2.54× 10−8

5000 × 5000 200 10−6 1.029948705 4.13× 10−8

2400 × 2400 100 10−5 1.029948963 7.35× 10−7

2400 × 2400 200 10−5 1.029949132 6.53× 10−7

2400 × 2400 300 10−5 1.029949145 6.47× 10−7

2400 × 2400 400 10−5 1.029949147 6.46× 10−7

2400 × 2400 500 10−5 1.029949148 6.45× 10−7
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In addition, Tables II and III illustrate the dependence of the convergence
properties on the value of M̃c (or, equivalently, the ratio of Mc/Md). Data
listed in these tables were obtained for L = 200, Γ = 5/3, r̃in = 0.3, and
ρ̃tol = 10−5. Table II corresponds to M̃c = 0 (in this case M̃d ≈ 0.49). In
Table III we assumed M̃c = 10 (M̃d ≈ 1.4× 10−2).

TABLE II

Dependence of the results on the resolution of the grid for a massive disks with
M̃c = 0. Here ρ̃tol = 10−5 and L = 200.

Resolution ω̃0 εv

100 × 100 0.339018059 1.32× 10−4

200 × 200 0.339031477 3.67× 10−5

400 × 400 0.339034828 1.29× 10−5

800 × 800 0.339035663 6.99× 10−6

1600 × 1600 0.339035431 5.51× 10−6

3000 × 3000 0.339035495 5.15× 10−6

5000 × 5000 0.339035486 5.06× 10−6

TABLE III

Dependence of the results on the resolution of the grid for a light disk with M̃c = 10.
Here ρ̃tol = 10−5 and L = 200.

Resolution ω̃0 εv

100 × 100 3.164121422 1.14× 10−6

200 × 200 3.164121530 2.32× 10−7

400 × 400 3.164121439 1.25× 10−9

800 × 800 3.164121436 5.66× 10−8

1600 × 1600 3.164121424 7.12× 10−8

3000 × 3000 3.164121425 7.46× 10−8

5000 × 5000 3.164121425 7.55× 10−8

Notice that the obtained value of the virial test parameter depends
mainly on the resolution of the numerical grid. Values obtained in this
paper agree with those reported by Axenov and Blinnikov [13], who were
also testing their implementation on high-resolution grids.



122 P. Mach, E. Malec, M. Piróg

REFERENCES

[1] M. Miyoshiet al., Nature 373, 127 (1995).
[2] P. Mach, E. Malec, M. Piróg, Acta Phys. Pol. B 43, 2141 (2012).
[3] M. Hashimoto, Y. Eriguchi, E. Müller, Astron. Astrophys. 297, 135 (1995).
[4] J.-M. Huré et al., Astron. Astrophys. 530, 145 (2011).
[5] J. Frank, A. King, D. Reine, Accretion Power in Astrophysics, Cambridge

University Press, Cambridge 2002.
[6] J.L. Tassoul, Theory of Rotating Stars, Princeton Univ. Press, Princeton,

NJ, 1978.
[7] P. Mach, Mon. Not. R. Astron. Soc. 422, 772 (2012).
[8] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second

Order, Springer, New York 1983.
[9] S.I. Blinnikov, Sov. Astron. 19, 151 (1975).
[10] I. Hachisu, Astrophys. J. Suppl. 61, 479 (1986).
[11] J.P. Ostriker, J.W-K. Mark, Astrophys. J. 151, 1075 (1968).
[12] M.J. Clement, Astrophys. J. 194, 709 (1974).
[13] A.G. Axenov, S.I. Blinnikov, Astron. Astrophys. 290, 674 (1994).
[14] Y. Eriguchi, E. Müller, Astron. Astrophys. 146, 260 (1985).
[15] E. Müller, M. Steinmetz, Comput. Phys. Commun. 89, 45 (1995).
[16] P. Mach, E. Malec, Astron. Astrophys. 541, A128 (2012).
[17] P. Mach, W. Simon, Ann. H. Poincaré 14, 159 (2013).

http://dx.doi.org/10.1038/373127a0
http://dx.doi.org/10.5506/APhysPolB.43.2141
http://dx.doi.org/10.1051/0004-6361/201015062
http://dx.doi.org/10.1111/j.1365-2966.2012.20658.x
http://dx.doi.org/10.1016/0010-4655(94)00185-5
http://dx.doi.org/10.1051/0004-6361/201015755
http://dx.doi.org/10.1007/s00023-012-0181-0

	1 Introduction
	2 Equations
	3 Keplerian rotation laws
	3.1 Test-fluid limit
	3.2 Disks with small inner radii
	3.3 Ring-like disks
	3.4 Infinite disks

	4 Rescaling of equations 
	5 Numerical examples
	6 Summary
	A 
	B 

