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We study dynamics of two coupled periodically driven oscillators. The
internal motion is separated off exactly to yield a nonlinear fourth-order
equation describing inner dynamics. Periodic steady-state solutions of
the fourth-order equation are determined within the Krylov–Bogoliubov–
Mitropolsky approach and we compute the corresponding amplitude pro-
files. In the present paper, we explore rich variety of singular points of the
amplitude profiles. Metamorphoses of these curves induced by changes of
control parameters and the corresponding changes of dynamics are studied.
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1. Introduction

In this work, we study dynamics of two coupled oscillators, one of which
is driven by an external periodic force. Equations governing dynamics of
such system are of the form

m1ẍ1 − V1 (ẋ1)−R1 (x1) + V2 (ẋ2 − ẋ1) +R2 (x2 − x1) = F (t)
m2ẍ2 − V2 (ẋ2 − ẋ1)−R2 (x2 − x1) = 0

}
, (1.1)

where R1, V1 and R2, V2 are nonlinear elastic restoring force and nonlinear
force of internal friction for mass m1 and mass m2, respectively. Dynamic

(35)
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vibration absorber, consisting of a (generally small) mass m2, attached to
the primary vibrating system of (typically larger) mass m1 is a generic me-
chanical model described by (1.1) [1, 2].

Dynamics of coupled periodically driven oscillators is very complicated
[3–8]. Starting from equations (1.1) and the following simplifying assump-
tions

F (t) = f cos (ωt) , R1 (x1) = −α1x1 , V1 (ẋ1) = −ν1ẋ1 (1.2)

we derive the exact 4th-order nonlinear equation for internal motion. Apply-
ing the Krylov–Bogoliubov–Mitropolsky (KBM) method to this equation, we
compute and study the corresponding nonlinear resonances. More exactly,
we investigate the amplitude profiles (resonance curves) A (ω), i.e. depen-
dence of the amplitude on the frequency ω, given implicitly by the KBM
method as L (A,ω; a, b, . . .) = 0, where a, b, . . . are some parameters and L
a polynomial function.

Metamorphoses of the resonance curves A (ω) induced by changes of
the control parameters, leading to new nonlinear phenomena, have been
studied in the case of the approximate effective equation (this approximation
performs well for m2

m1
� 1 [9, 10]) within the theory of algebraic curves since

they occur in the neighbourhoods of singular points of A (ω) [11–13].
In the present paper, we apply our approach, based on the theory of

algebraic curves and described in our recent papers [11–13], to a new model.
More exactly, we study the exact 4th-order equation for internal motion
which has been derived from Eqs. (1.1), cf. [9, 10]. The resonance curves
are more complicated than in the case of effective equation and hence more
complicated metamorphoses are possible. The aim of the present paper is to
explore these possibilities. For example, we address the problem of algebraic
curves with two singular points. This is a more difficult global problem since
a single singular point needs local methods only.

The paper is organized as follows. In the next section, the exact
4th-order equation for the internal motion in non-dimensional form is pre-
sented. In Sec. 3, equation for resonance curves A (ω) is derived via the
Krylov–Bogoliubov–Mitropolsky approach. Since the KBM method was
originally designed to study second-order equations, we had to prepare the
4th-order equation properly to remove secular terms. In Sec. 4, theory of
algebraic curves is used to compute singular points on these amplitude pro-
files. In Sec. 5, new results are presented. We compute for the first time a
resonance curve with two singular points, a curve with a degenerate singular
point as well as the corresponding bifurcation diagrams. Our results are
summarized in the last section.
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2. Exact equation for internal motion

In new variables, x ≡ x1, y ≡ x2 − x1, equations (1.1), (1.2) can be
written as

mẍ+ νẋ+ αx+ Ve (ẏ) +Re (y) = f cos (ωt)
me (ẍ+ ÿ)− Ve (ẏ)−Re (y) = 0

}
, (2.1)

where m ≡ m1, me ≡ m2, ν ≡ ν1, α ≡ α1, Ve ≡ V2, Re ≡ R2.
We can eliminate variable x in (2.1) to obtain the following exact equa-

tion for relative motion

L̂ (µÿ − Ve (ẏ)−Re (y)) + εmeK̂y = F cos (ωt) , (2.2)

where L̂ = M d2

dt2
+ ν d

dt + α, K̂ =
(
ν d
dt + α

)
d2

dt2
, F = meω

2f , ε = me/M ,
µ = mme/M andM = m+me [9, 10], see also Ref. [14], where separation of
variables for a more general system of coupled equations was described. For
small ε, we can reject the term proportional to ε to obtain the approximate
(effective) equation which can be integrated partly to yield the effective
equation [9, 10]. This effective model was also investigated in [8], where
limiting phase trajectories approach was used.

In what follows, we shall assume that Re (y), Ve (ẏ) are nonlinear

Re (y) = −αey − γey3 , Ve (ẏ) = −νeẏ + λeẏ
3 . (2.3)

In this work, we shall investigate the exact equation (2.2). Introducing
nondimensional time τ and rescaling variable y

τ = tω̄ , z = y

√
γe
αe

, (2.4)

where

ω̄ =

√
αe
µ
, (2.5)

we get

L̂

(
d2z

dτ2
+ h

dz

dτ
− b

(
dz

dτ

)3

+ z + z3

)
+ κK̂z =

κ

κ+ 1
GΩ2 cos (Ωτ) , (2.6)

where L̂, K̂ are linear operators

L̂ =
d2

dτ2
+H

d

dτ
+ a, K̂ =

(
H
d

dτ
+ a

)
d2

dτ2
, (2.7)
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and nondimensional constants are given by

h =
νe
µω̄

, b =
λe
γe
ω̄3 , H =

ν

Mω̄
, Ω =

ω

ω̄
,

G =
1

αe

√
γe
αe
f , κ =

me

m
, a =

αµ

αeM
. (2.8)

3. Nonlinear resonances via
Krylov–Bogoliubov–Mitropolsky method

We apply the Krylov–Bogoliubov–Mitropolsky (KBM) perturbation ap-
proach [15, 16] to the exact nonlinear fourth-order equation (2.6) describing
internal motion of the small mass. The equation (2.6) is written in the
following form

L̂
(
d2z

dτ2
+Ω2z

)
+ ε

(
σL̂z + g (z, ż)

)
= 0 , (3.1)

where L̂, K̂ are defined in (2.7) and εg (z, ż) is given by

εg = L̂

(
h
dz

dτ
− b

(
dz

dτ

)3

+ z + z3

)
−Θ2L̂z + κK̂z − λΩ2 cos (Ωτ) , (3.2)

where λ = κ
κ+1G and

Θ2 −Ω2 = εσ . (3.3)

Equation (3.1) was prepared in such a way that for ε = 0 the general solu-
tion is z (τ) = A cos (Ωτ + ϕ) +C1 exp

(
−1

2H−τ
)

+C2 exp
(
−1

2H+τ
)
, where

H− ≡ H−
√
∆, H+ ≡ H+

√
∆, ∆ = H2−4a, with constant and arbitrary A,

ϕ, C1, C2. We note that this solution for H, a > 0 does not contain secular
terms and z (τ) −→ A cos (Ωτ + ϕ) for τ −→∞.

We shall now look for 1 : 1 resonance using the KBM method. For small
nonzero ε, the solution of Eqs. (3.1)–(3.3) and (2.3) is sought in form

z = A cos (Ωτ + ϕ) + εz1 (A,ϕ, τ) + . . . (3.4)

with slowly varying amplitude and phase

dA

dτ
= εM1 (A,ϕ) + . . . , (3.5)

dϕ

dτ
= εN1 (A,ϕ) + . . . . (3.6)
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Computing now derivatives of z from Eqs. (3.4), (3.5), (3.6) and substi-
tuting to Eqs. (3.1)–(3.3), (2.3) and eliminating secular terms and demand-
ing M1 = 0, N1 = 0, we obtain the following equations for the amplitude
and phase of steady states

−ΩA
(
pΩ2 − q

)
+ 3

4ΩA
3
(
H − baΩ2 + bΩ4

)
+ λΩ2 sinϕ = 0 , (3.7)

−A
(
Ω4 − rΩ2 + a

)
− 3

4A
3
(
a−Ω2 +HbΩ4

)
+ λΩ2 cosϕ = 0 , (3.8)

where λ = κ
κ+1G, p = h+H (κ+ 1), q = ah+H, r = hH + a (κ+ 1) + 1.

Solving the system of equations (3.7), (3.8), we get the implicit expres-
sions for the amplitude A (Ω) and the phase ϕ (Ω)

A (Ω) = λ
Ω2

√
C2 +D2

, (3.9a)

tanϕ =
C

D
, (3.9b)

C = ΩA (Ω)
(
pΩ2 − q

)
− 3

4ΩA
3 (Ω)

(
H − baΩ2 + bΩ4

)
, (3.9c)

D = A (Ω)
(
Ω4 − rΩ2 + a

)
+ 3

4A
3 (Ω)

(
a−Ω2 +HbΩ4

)
. (3.9d)

Equation for the correcting term z1 is of form

L̂
(
d2z1
dτ2

+Ω2z1

)
= 3

4HΩA
3 sinΦ+ 1

4A
3
(
(3 + a)Ω2 − 3b

)
cosΦ , (3.10)

where Φ ≡ 3Ωτ + 3ϕ (Ω). Solving Eq. (3.10) and substituting to (3.4), we
get finally

z = A (Ω) cos (Ωτ + ϕ)− 1

32
A3 (Ω) bΩ sin (Φ) +

1

32Ω2
A3 (Ω) cos (Φ) ,

(3.11)
where A (Ω) , ϕ (Ω) are given by Eqs. (3.9).

4. General properties of the function A (Ω)

After introducing new variables, Ω2 = X, A2 = Y , the equations (3.9a),
(3.9c), (3.9d) defining the amplitude profile read

L (X,Y ; a, b, h,H, κ, J)
df
= XY

(
pX − q − 3

4Y
(
H − abX + bX2

))2
+Y

(
X2 − rX + a+ 3

4Y
(
a−X + bHX2

))2 − JX2 = 0 , (4.1)

where, as before, p = h + H (κ+ 1), q = ah + H, r = hH + a (κ+ 1) + 1.
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A new parameter J is a renormalized G2, J = λ2 =
(

κ
κ+1

)2
G2. To obtain

the corresponding expression for the effective equation, one can put G =
γ κ+1

κ so that J = γ2 and then substitute κ = 0.
Singular points of L (X,Y ) are computed from equations [17]

L = 0 , (4.2a)
∂L

∂X
= 0 , (4.2b)

∂L

∂Y
= 0 . (4.2c)

We can eliminate J from Eqs. (4.2a), (4.2b) computing L− 1
2X

∂L
∂X = 1

32Y K,
where

K = −18b2H2X4Y 2 − 24a2 (κ+ 1)XY + 24bhH2X3Y + 32X3

−18aXY 2 − 48aXY + 32HhX3 + 32a2 − 27b2X5Y 2 + 16H2X

−32aX − 32a2 (κ+ 1)X + 32a (κ+ 1)X3 + 9H2XY 2 + 24X3Y

+24H2XY + 48a2Y + 18a2Y 2 + 48hbX4Y − 9a2b2X3Y 2 − 32X4

−16h2X3 + 16a2h2X − 16 (κ+ 1)2H2X3 + 48bH (κ+ 1)X4Y

−32hH (κ+ 1)X3 − 48abhX3Y − 48bHX4Y + 36ab2X4Y 2 (4.3)

to obtain simplified equations

K = 0 , (4.4)
∂L

∂Y
= 0 (4.5)

from which X, Y can be computed as functions of parameters a, b, h, H, κ
and, finally, J can be computed from the last equation

∂L

∂X
= 0 . (4.6)

Equations (4.4), (4.5), (4.6) are still very complicated making analyti-
cal investigation virtually impossible. We shall thus solve these equations
numerically.

5. Computational results

In the present section, singular points of amplitude profiles — solutions
of Eqs. (4.4), (4.5), (4.6) — are studied. More exactly, resonance curves with
one singular point, two singular points on one curve, and with degenerate
singular point are presented and metamorphoses of bifurcation diagrams are
shown.



Exact Nonlinear Fourth-order Equation for Two Coupled Oscillators . . . 41

5.1. Amplitude profiles with one singular point

We have computed singular points for the following values of control
parameters: κ = 0.05, b = −0.001, H = 0.4, a = 5, h = 0.5 obtaining four
physical solutions (i.e. with X > 0, Y > 0, J > 0).

TABLE I

X Y J n

2. 170 051 157 1. 357 255 661 1. 656 917 694 1
4. 835 083 103 4. 192 055 014 1. 036 434 992 2
2. 798 801 078 1. 237 140 868 1. 814 387 388 3
4. 153 001 386 4. 680 111 331 0. 963 352 654 4

The first two solutions correspond to self-intersections, see Fig. 1, while
the second pair represents isolated points.

Metamorphoses of bifurcation diagrams which occur in the neighbour-
hood of self-intersections for the exact fourth-order equation are, for small κ,
qualitatively similar to those studied for the case of 1 : 1 resonance in the
effective equation in [11, 13] and are not shown here.
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Fig. 1. Amplitude profiles with singular points, κ = 0.05, b = −0.001, H = 0.4,
a = 5, h = 0.5, J = 1. 656 918 (left self-intersection, thin black/red curve, n = 1

in Table I) and neighbouring curve (thin light grey/blue and grey/green lines);
J = 1. 036 435 (right self-intersection, medium black/red curve, n = 2 in Table I)
and neighbouring curves (medium light grey/blue and grey/green lines).
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5.2. Amplitude profiles with two singular points

It is possible, tuning the parameters properly, to obtain amplitude profile
with two singular points.

Let, as before, κ = 0.05, b = −0.001, a = 5, h = 0.5, H being arbitrary.
We can compute, for some H, from (4.4), (4.5) X (H), Y (H), then from
Eq. (4.6) we get J1 (H) and J2 (H) corresponding to two curves with one
intersection each. The condition for a curve with two intersections is J1 = J2
for some H.

To find this value ofH, we compute J1, J2 for two values ofH,H0 = 0.40,
H1 = 0.55, and use linear extrapolation to compute H = Hcr such that
J1 (Hcr) = J2 (Hcr). In one step of this procedure, we compute new value of
H(i+2) from known H(i), J (i)

1 , J (i)
2 and H(i+1), J (i+1)

1 , J (i+1)
2 solving linear

system of equations for α(i,i+1), β(i,i+1)

J
(i)
1 − J

(i)
2 = H(i)α(i,i+1) + β(i,i+1) ,

J
(i+1)
1 − J (i+1)

2 = H(i+1)α(i,i+1) + β(i,i+1) , (5.1)

where i = 0, 1, 2, . . .. Then, the next value ofH(i+2) is computed asH(i+2) =

−β(i,i+1)

α(i,i+1) . The convergence is quite fast, see Fig. 2 and Tables II, III, where
convergence of two curves with one singular point to one curve with two
singular points is shown.
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Fig. 2. Convergence of amplitude profiles to critical amplitude profile with two
singular points (thick/red curves): convergence of curves from Table II (left figure,
thin/green curves), and from Table III (right figure, thin/blue).

Bifurcation diagrams computed for parameters in the neighbourhood of
such resonance curve display presence of two singular points, see Fig. 3. The
parameters are κ = 0.05, b = −0.001, a = 5, h = 0.5 in both cases, and
J∗ = 1. 745 481 261, H∗ = 0.6054 for Fig. 3 (left), and J = 1. 740 481 261,
H = 0.6034 for Fig. 3 (right).
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TABLE II

X
(i)
1 Y

(i)
1 J

(i)
1 H(i) i

2. 170 051 157 1. 357 255 661 1. 656 917 694 0.40 0
2. 222 181 140 1. 452 883 358 1. 736 397 285 0.55 1
2. 250 807 092 1. 503 767 806 1. 775 975 009 0.611 498 955 2
2. 247 348 900 1. 497 675 627 1. 771 343 329 0.604 644 433 3
2. 247 330 153 1. 497 642 563 1. 771 318 111 0.604 606 880 4
2. 247 330 182 1. 497 642 613 1. 771 318 150 0.604 606 937 5

TABLE III

X
(i)
2 Y

(i)
2 J

(i)
2 H(i) i

4. 835 083 103 4. 192 055 014 1. 036 434 992 0.40 0
4. 793 018 228 2. 753 798 647 1. 555 975 411 0.55 1
4. 620 272 267 2. 513 582 261 1. 798 606 879 0.611 498 955 2
4. 641 565 672 2. 538 879 342 1. 771 466 643 0.604 644 433 3
4. 641 680 711 2. 539 018 448 1. 771 317 923 0.604 606 880 4
4. 641 680 536 2. 539 018 236 1. 771 318 150 0.604 606 937 5

Fig. 3. Bifurcation diagrams. Left: The amplitude profile as singular point with
two cusps. Right: The nonsingular curve with two gaps.
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Let us notice that singular points of A (Ω) which show up in the bi-
furcation diagram as two cusps, cf. Fig. 3 (left) , appear at slightly dif-
ferent values of J , H than in Tables II, III above, i = 5. These differ-
ences (J∗ = 1. 745 481 261, H∗ = 0.6054 instead of Jcr = 1. 771 318 150,
Hcr = 0.604 606 937) provide the test of accuracy of the KBM method. The
diagrams correspond to amplitude profiles shown in Fig. 4. Singular points
in Fig. 4 (left) are those listed in Tables II, III, i = 5 (note that X = Ω2,
Y = A2).
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Fig. 4. The amplitude profile with two singular points (left figure, black/red) and
nonsingular curve (right figure, grey/magenta). Parameters are κ = 0.05, b =

−0.001, H = 0.4, a = 5, h = 0.5 and J = Jcr, H = Hcr for the left figure,
J = 1.766 318 150, H = 0.602 606 937 for the right figure.

More exactly, singular points (A,Ω), i.e. self-intersections visible in
Fig. 4 (left), are (1. 499 111, 1. 223 782) and (2. 154 456, 1. 593 430).

5.3. Merging two singular points into a single degenerate point

It is possible, by smooth change of the parameters, to merge two singular
points lying on the red curve in Fig. 2. The resulting singular point is
degenerate, i.e. fulfils the following set of equations [17]

L = 0 ,
∂L

∂X
= 0 ,

∂L

∂Y
= 0 ,

∂2L

∂X2
= 0 ,

∂2L

∂X∂Y
= 0 ,

∂2L

∂Y 2
= 0 , (5.2)

where L (X,Y ) is given by (4.1).
Solving Eqs. (5.2) for κ = 0.05, J = 1. 771 318 150 (these two parameters

correspond to the parameters of the critical red curve with two singular
points), we get X = 3. 113 090 974, Y = 2. 087 620 813, h = 0. 548 982 679,
a = 4. 538 990 962, b = −1. 718 542 532×10−2, H = 0. 644 095 068, see Fig. 5.
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Fig. 5. Amplitude profile with degererate singular point (black/red dot) and two
neighbouring curves (dark grey/green and grey/blue).

Bifurcation diagrams computed in the neighbourhood of the degenerate
singular point depend sensitively on small changes of parameters, Fig. 6.

Fig. 6. Metamorphosis of the bifurcation diagrams near amplitude profile with
degenerate singular point.

6. Summary and discussion

In this work, we have studied dynamics of two coupled periodically driven
oscillators. The inner motion of this system has been described by the exact
fourth-order equation (2.2) (or (2.6) in nondimensional form). Applying the
KBM method, we have computed approximate resonance curves (amplitude
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profiles) A (Ω). Although the KBM method is basically used for the second-
order equations, we managed to apply it to the fourth-order equation since it
was possible to eliminate secular terms and impose steady-state conditions.
Dependence of the amplitude A on the forcing frequency Ω is complex since
A (Ω) is defined implicitly as an algebraic curve, L (X,Y ) = 0, see Eq. (4.1),
with polynomial function L depending on variables X = Ω2, Y = A2 and
control parameters a, b, h, H, κ, J in a complicated manner.

In our previous paper, we stressed that near singular points of algebraic
curves, defining amplitude profiles, metamorphoses of bifurcation diagrams
(and hence of dynamics) take place. In the present paper, we have studied
three cases of singular points of the resonance curves defined by Eq. (4.1):
(i) the case of one singular point (Sec. 5.1), (ii) the case of two singular points
on one resonance curve (Sec. (5.2)), (iii) the case of degenerate singular point
(Sec. (5.3)). Indeed, dynamics of the system (2.6) changes significantly in the
neighbourhood of singular points of resonance curve L (X,Y ) = 0. Singular
points described in Sec. 5 are just the tip of the iceberg and thus, we are
going to study multitude of singular points of amplitude profiles (4.1) in our
future work.
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